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Magnetic Susceptibility of InSb

R. 80WERs AND Y. YAPET
Westinghouse Research Laboratories, Pittsburgh, Pennsylvania

(Received March 26, 1959)

The magnetic susceptibility of n-InSb has been measured for a range of extrinsic carrier densities extending
from 10" to 6X10"cm '. Measurements were made in the temperature range 300'K to 1.3'K, The de-
generate conduction electron susceptibility was determined from the data. The deviation of the conduction
band from parabolic form is clearly exhibited in the susceptibility. A theoretical analysis has been made
using Kane's band-structure calculation. The mixing of the conduction and valence bands resulting from
the magnetic field has been treated exactly. Consideration of these two bands alone will not explain the
dependence on concentration of the observed susceptibility; at the higher carrier densities, higher bands are
important and a perturbation-theoretical treatment of these indicates that the observed susceptibility is
consistent with Kane's model.

which is based on the band structure proposed by Kane
and exhibits the following features. In the parabolic
region, consideration of the conduction and valence
bands alone is sufhcient to determine x. Beyond the
parabolic range, the inhuence of other bands cannot be
neglected. In particular certain higher bands have a
large effect on the susceptibility, much larger than their
effect on the energy E,(k) in the absence of a Geld. These
higher bands are those which determine the value of
the effective mass of the heavy holes. The resulting
calculated susceptibility is in good agreement with the
experimental results.

INTRODUCTION

'HIS paper describes a study of the contribution of
extrinsic electrons to the static magnetic sus-

ceptibility of InSb. ' The purpose was to compare the
observed susceptibility with theoretical expectations
and by this means obtain information concerning the
band structure. InSb was chosen because its conduction
band departs from the simple parabolic form' ' in the
experimentally attainable range of carrier concentra-
tions; this seemed a logical extension of the work of one
of the authors on the susceptibility of Ge, where the
band remains parabolic under similar conditions. 4 The
reader is referred to reference 4 for the details of the

. analysis of experimental data.
The only previous detailed study of the susceptibility

of InSb is due to Stevens and Crawford. ' Most of their
measurements concern intrinsic .carriers above 77'K.
The extrinsic conduction electron contribution was
determined at only one carrier density, 1.6&10"cm '.
Recently Matyas' has published a study of intrinsic
carrier susceptibility, obtaining results very similar to
those of Stevens and Crawford.

Our measurements cover a temperature range from
300'K to 1.3'K and a range of carrier densities from
10' to 6&(10' cm '. The Fermi level at absolute zero
for the highest density was calculated to be 0.35 ev, ' so
that this work provides information concerning the form
of the conduction band to levels of 0.35 ev.

The conduction electron susceptibility is mainly
orbital in character because of the smallness of the
effective mass. However, spin-orbit effects cannot be
neglected.

Our measurements show that the dependence of the
conduction electron susceptibility on carrier density
does indeed depart strongly from that expected for a
parabolic band. A theoretical analysis will be given

EXPERIMENTAL METHODS

The methods of susceptibility measurements were
identical to those used in the Ge work. 4 The specimen
dimensions were 0.2)(0.2)&5 cm.

The specimen of highest purity was cut from a zone-
refined ingot. The doped material was prepared by the
Bridgman method, selenium being used as the doping
agent; the resulting ingots were polycrystalline with an
average grain dimension of several mm. The uniformity
of doping of the final susceptibility specimens has been
examined by measuring the Hall coeKcient of 4 or 5
plates which were cut along the length of the specimen
from a slice of the ingot adjacent to that from which the
specimens were cut.

The number of carriers has been derived from
measurements of the Hall coe%cient in the extrinsic
temperature range (27'K for specimens with carrier
densities less than 10'7 cm ' and 300'K for the more
highly doped specimens). The donor density e has been
calculated from the Hall coefficient using the relation
R&=a/ne, taking rr to be unity7 for the following
reasons: (1) At the temperature of the Hall measure-
ment, the electron gas is degenerate in a band with a
single minimum. (2) It can be shown that the general
formula for the degenerate Hall coe%cient reduces to
R&= 1/rse for nonparabolic bands provided they have

' R. Bowers, Bull. Am. Phys. Soc. 3, 120 (1958).
~ K. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
~ W. G. Spitzer and H. Y. Fan, Phvs. Rev. 106, 882 (1957l.
4 R. Bowers, Phys. Rev. 108, 683 (1957).
~D. K. Stevens and J. H. Crawford, Jr., Phys. Rev. 99, 48

(1955).' M. Matyas, Czechoslov. J. Phys. 8, 544 (1958).

7 7 Compare with reference 4, p. 685.
8 N. F.Mott and H. Jones, The Theory of the Properties of Metals

and Alloys (Oxford University Press, Oxford, 1936), p. 282.
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Fzo. 1. The total magnetic susceptibility of various specimens
of rr-EnSb plotted against 1/T. The numbers listed under (al are
the carrier densities as determined from the Hall coeKcients. Note
that the left-hand ordinate gives the susceptibility per cc, while
the right-hand ordinate gives the susceptibility per gram.

spherical symmetry. While the admixture of higher
bands will cause a departure from spherical symmetry,
the e8ect of this is small.

Allowing for any lack of uniformity, the carrier
densities of specimens are estimated to be known to an
accuracy of 20%. The cube root of the carrier density is
the important parameter for interpreting our data and
this is estimated to be known to 7%.

EXPERIMENTAL RESULTS

In Fig. 1 are shown measurements of the total
susceptibility of various specimens of e-InSb plotted
against 1/T. The susceptibility was found to be
independent of magnetic field (maximum field 4500
gauss for low temperature measurements and 8300 gauss
for the room temperature points). It should be noted
that the ordinate in Fig. 1 is not continuous; this ha, s
been done in order to separate the various sets of data.
The lowest curve v~10'4 cm ' represents, at low

temperatures, the pure InSb (lattice) susceptibility
since the coduction electron susceptibility in this
specimen is smaller than our estimated error.

Figure 2 is a plot of the degenerate conduction
electron susceptibility plotted against e&. The experi-
mental points on this curve were obtained by subtract-
ing the low-temperature lattice susceptibility from the
susceptibility of doped material. The results designated

by closed circles have been obtained from measurements
of the susceptibility of doped specimens which extended
down to 1.3'K and are illustrated in Fig. 1. The open
circles were obtained from room temperature measure-
ments on other specimens, a small correction (less
than 2%) being made for any expected change in the
total susceptibility of the sample between room tern-

perature and liquid helium temperatures. The correc-
tions were interpolated from the data in Fig. 1. This
expedient was used in order to avoid measurements of

all specimens to 1.3'K; its justification results from the
fact that Fig. 1 shows the susceptibility to be almost
independent of temperature for densities larger than
10" cm '. The straight line in Fig. 2 shows the sum of
(a) the Landau-Peierls expression for a constant
effective mass' re*=0.013ms and (b) the Pauli spin
paramagnetism for a magnetic moment @=AS asso-
ciated with the spin S and due to spin-orbit interaction.
Here P is the Bohr magneton and g= —53." By a
comparison with the case of free electrons, we see that
the ratio of the paramagnetism to the diamagnetism in
the present case is (—3) (g/g, )'(m*/m)'= —0.35.
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Fro. 2. The magnetic susceptibility of conduction electrons in
InSb plotted against Nx. An abscissa scale for k0 is also given. The
solid curve is the result of the calculation in this paper.

~Dresselhaus, Kip, Kittel, and Wagoner, Phys. Rev. 98, 556
(1955).

"This is the g factor at the bottom of the conduction and was
first given by L. M. Roth et a/. , Bull. Am. Phys. Soc. 3, 128
(1958).

~' F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 594.

'2 The inadequacy of the z3 term alone has been stressed by
E. N. Adams, Phys. Rev. 89, 633 (1953); E. N. Adams and R.
Zitter, Phys. Rev. 96, 1705 (1954). Only at the bottom of the
band and without spin-orbit coupling is the susceptibility given
by z3, as shown by T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806
(1957)."J.W. McClure, Phys. Rev. 104, 666 (1956).

THEORETICAL INTERPRETATION

The difhculty of interpreting these results arises from
the fact that there is no general formula giving the
susceptibility in terms of the band shape except for the
simplest case of parabolic bands. The X3 term of Peierls"
which relates the susceptibility to the curvature of the
Fermi surface in k-space is only part of a more complete
expression; its use would not be justified here. " In
particular, it does not include spin-orbit interaction.
In view of this, we have made a calculation specifically
for InSb using the band-structure parameters of Kane.
A somewhat similar calculation for the case of graphite
has been made by McClure"; however, the band struc-
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ture of graphite and InSb are so dissimilar that different
problems arise.

We shall calculate the susceptibility using the
Luttinger and Kohn representation" (hereafter ab-
breviated as L.K.). This representation was the one
employed in the band structure calculation and our use
of it will enable us to compare the effect of the various
matrix elements on the energy E,(k) with their effect
on the susceptibility. According to Kane, the small
value of the eGective mass is due to a strong interaction"
between conduction and valence bands which are
separated by a small energy gap. A subdivision of the
susceptibility 'calculation is suggested by the band
structure calculation, i.e. , (a) to treat exactly the part
of the Hamiltonian" connecting the conduction and
valence bands, and (b) to include the effects of other
bands by perturbation theory.

In the next three sections we calculate (I) the energy
levels in a magnetic field resulting from the conduction
band interaction, (II) the resulting susceptibility, and
(III) the effect of higher bands.

I. Energy Levels

A method has been found" for determining the
magnetic energy levels in a spherical band which will be
applied to the conduction band of InSb. In the approxi-
mation where only the interaction between the conduc-
tion and valence bands is included, the conduction band
is not quite spherical because of the nonvanishing
constants E2, E3 arising' from interband matrix ele-
ments of the spin-orbit interaction. The magnitude of
these is, however, so small that we shall neglect them
and follow Kane in choosing for the orbital part of our
L.K. states the complete set N„e(r)e'"' where the N„e are
the solutions at k=O of the periodic Hamiltonian with-
out the spin-orbit interaction. Let IS); IX), I V), IZ)
denote the normalized orbitals ii„s(r) for the conduction
band and valence bands respectively; under the sym-
metry operations of the crystal, the last three of these

transform as the coordinates along the cubic axes.
Because of cubic symmetry, the susceptibility is
isotropic and the magnetic 6eld 3C has been taken for
convenience to be along the L100j direction.

We choose for the periodic part of our L.K. functions
the following states which diagonalize the Hamiltonian,
including spin-orbit interaction to first order, at k=0:

The spin quantum numbers —,+ refer to a direction
of quantization along X. The Zeeman energy Pea. ,
where P is the Bohr magneton and o, a Pauli spin
matrix, will be neglected because of its smallness.

The eigenvalue equation, in the L.K. representation,
consists of a set of coupled. diQerential equations. This
set is simply the Schrodinger equation in k space. The
wave function is given by a set of 8 functions F;(k)
where the indexi refers to the order of the states in (1).
These states transform under the symmetry operations
like states of definite total angular momentum J(i) =-',

and -', and definite Z component of angular momentum
mz(i). Because of the cubic symmetry of InSb, the
interaction matrix between the s like and p like levels is
formally the same a,s if the states

I 5), I X), . were the
product of a radial function and a spherical harmonic;
according to reference 17 the eigenvalue problem can
be solved exactly in terms of harmonic oscillator
functions of k, .

In atomic units, and using Rane's notation in which
Pc is the band gap at k=O, 6 is the spin-orbit splitting
of the valence band and P is the interband momentum
matrix element, the eigenvalue equations in matrix
form are given by

Bg—)'
0

(s)*'Pk+
(-') lPk,

—(-', )~Pk
0

(-', )fPk,
(-', )lPk

0
Bg—)'

0
(s)'Pk+
(s)'*Pk.
(-,')~Pk

—' (s)'Pk+
(-',)lPk,

(-', )lPk
0

0
0
0
0
0

(-', )lPk,
(-', )lPk

0

0
0
0
0

—(s)'Pk+
(-', ) Pk.

0
0

—X'

0
0
0

0
(-,')~Pk~

0
0
0

—X'

0
0

(-', )lPk.
—(-', )~Pk

0
0
0
0

—5—X'

0

(s)'*Pk+
(-', )-**Pk.

0
0
0
0
0

—5—X'.

Here'A' is the operator'A —k'/2 where k'= k '+k '+k '
and. X is the eigenvalue. The gauge (0,3'.x,0) is used and

"J.M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
'~ For the sake of brevity, the expression "interaction between

two bands" will be used to refer to the interband coupling in the
Hamiltonian resulting from the interband matrix elements of the
velocity between the L.K. states of the two bands.

"The one-electron picture is used and the Hamiltonian in the
absence of the magnetic Geld is the familiar periodic Hamiltonian
with spin orbit interaction."Y.Yafet, following paper LPhys. Rev. 115, 1172 (1959)j.

the operators 0+——k,&ik„with k =k, ;0„=k„+is8/rfk;
s= AC/kc. The eigenvalues of the operators k„, k, will be
denoted by primes, k„', k,'. Because the dependence of
the energy on the magnetic field involves only the com-
bination k„+isrf/Bk„ the energy of a state is inde-
pendent of the value of k„'. This is seen by transforming
k„'+isB/Bk, by means of the unitary transforma-
tion exp( —ik„'k,/s). For ease of computation k„' is
put equal to zero. In (2) the small contribution
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from the ir-dependent spin-orbit interaction' has been
neglected.

The set of Zqs. (2) is solved by a perturbation
method: Because the effective mass m*=0.013 is so
much smaller than the free mass @so, a first approxima-
tion to the levels is obtained by neglecting all the terms
k'/2 (diagonal) that contain the free mass. The effect
of the free mass will be included later. With this
approximation, the set (2) is reduced by elimination of
all F, but F» and F2 to the two uncoupled equations:

( (Eg—X)X+-',P'(k,2+k '—s'8'/Bk. '+-,'s)
+/P9/3(A+X)](kP+k s'—8 /Bk —s))Pi=0,

( (Eg—X)X+-,'P'(kP+k. '—s'8'/Bk. '——,'s) (3)

+LP2y/3(g+y)](k '+k '—s'cP/gk '+s))F2=0.
These are immediately solved by harmonic oscillator
eigenfunctions C„(k,) of the dimensionless variable
k./gs. Further the other F; are also such eigenfunctions
as seen from (2) and the wave functions can be
written as

Pa, n ~& &(ir)=—(F ~ &)

= (C '(k. '„ I, &)4~ rN g('& ~-;(—kg) }, (4)

with the coeflicients C,' & to be determined from (2).
The trivial dependence 5(k„)5(k,—k, ') on k„and k, has
been omitted. The band index n stands for one of the
letters c, 1, h, or d, according to whether the state is in
the conduction band, light hole, heavy hole, or split-off
bands, respectively.

The spin quantum number is —or + for the state
having a nonvanishing component in the L.K. states
obtained from j (X iF) —)or —

~
(XjiF)+), respec-

tively. For the heavy-hole states' which are spin-
degenerate to this approximation (with X'"&=0) this
assignment is made by choice of the proper linear
combinations. The energy levels are given by the
solutions of

D(X„~)—=) „~(X„~—Eg) (l%,„~+6)
—P'Lk. +s(2N+ 1)]p,„,+-;~]

&-'P'As =0, (5)

where A, „+stands for A,I,, n, ~( . For zero magnetic held,
(5) reduces to Kane's equation (10). The spin-depend-
ent terms are proportional to s and give the g shift. In
the limit 6 —+ ~, the factor at the bottom of the band
becomes equal to the reciprocal of the effective mass,
g= —(m*) '= —(4/3) (P'/Eo). For the values of 6=0.9
ev, E6=0.23 ev, and P'=0.44 a.u. given by Kane, the

g factor at k=0 is —55; the Zeeman term reduces
it to —53.

Equation (5) is cubic in l%. and an analytical expression
for the energy levels would not be useful. The equation
is su%cient however for a numerical calculation of the

' The heavy-hole states are not given by (3) but are obtained
from the set (2) by neglecting the free mass and setting X=0,
FI =-.F2=FP= F;=0.

susceptibility. Before doing this we want to show that
the oft-diagonal matrix elements of the neglected free-
mass terms k'/2 between any two states of (4) are small
compared to the level separation so that they can be
treated by perturbation theory.

It is sufhcient to confine attention to the case where
the two levels are in conduction band since k'/2Eg is
smaller than O. i even at the concentration of 10"cm '.
If the states have the same spin, the matrix element of
k' is zero as results from (4) and the fact that each F; is
an eigenfunction of k'; if they have opposite spin
quantum numbers, there is a nonvanishing matrix
element only between 4'&„n, —"and %x„n—», +".
This is of the order of P'k's/Eo' and therefore small
compared to the level separation P s/Eg.

The correction to the energy levels due to the free
mass is found by keeping the k,2/2 terms to first order in
the operations leading to Eq. (5). (Second order effects
a,re negligible. ) It is given by

where

e X g+g g/P. „p dl&, „~
Q,„g=

2L1+-,'X g/(6+X„p)] dk, '

~„=(3/2P')[kp+s(2N+1)],

(6)

1+ (fk '+s(2++1)]'+2s'}
2(~+&.,)'

W 1— (s/2)fk '+s(2m+1)].
(6+X,g)'

Here f is the Fermi energy and the E(k., I, &) are the
energy levels in the conduction band. By means of
Euler's summation formula,

2 f(~+l) = f(~)d~ —(1/24)Lf'( )—f'(0)], (g)
n=o 0

we obtain q to second order in s. We shall first neglect
the free mass and take E(k„m, &)="A„,~'&. The energy
levels are obtained from (5) as a power series in s,

E(k„e, &)=E"&WsE&'&+s'E@&, (9)

where E& ), Eo), and E(') depend only on the argument
k, +s(2@+1).The term E' &(k') is just the energy in

II. Susceytibility

The susceptibility per unit volume is

&c= —(1/K) Bg/BSC,

where the free energy p is given by

t'1l' r

q =PUBS' —Q,y,„( —(
i' dk, skT

(2~& ~

&&+„ln(1+expL(f —E(k„n, ~))/kT]}. (7)
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the absence of a magnetic field;

&&D
E(i& xP2g

(&&&(~J x~=E& &0

(10)

5.0

4.0

( a'D)
E(»= i (E(i&)2~

( &&)&„')

( &&D$

(11)
& @,.i &,.=a(o&

5.0

2,0

The energy levels E(e&[k,'+s(2m+1) j are just the
Onsager levels" for the Hamiltonian E&"(k') since at
6xed k„ the energy curve which they define embraces an
area equal to 2ms(e+ —',) in k„k„space; the terms in
E") and E") are Geld-dependent energy shifts of these
levels.

We now evaluate the second term in Euler's formula
(8). E('& and E&" give contributions of order higher
than s' so that it reduces simply to

-X

1,0

—l0

-2.0

-3,0

1 e' &'"' dE&'& (k,')
XQ -dk, .

6m-' A'c' "p dk ' (13)

s' 1+" dk, gg(p)
', g(E('&Z), (12)

6 " „(2x)' &&k,mr, p

where g(E,f) is the Fermi function. Here the spherical
symmetry of E"'(k') has been used. The resulting
susceptibility at absolute zero is

-4.0

-5.0
2

ko(IQ ~P.U. )

Fzo. 3.The various calculated contributions to the susceptibility
of n-InSb. Curve 3 represents the effect of the conduction band—
valence band interaction and is the sum of Curves 1 and 2 as
described in the text. Curve 4 represents the effect of the higher
bands. The straight line has been drawn for a value of g= —55,
consistent with the neglect of the Zeeman term in the calculated
curves.

We consider next the first term of (8). The substitu-
tion 2sx= k,'+k„' transforms the double integral
J'f(k '+2sx)sdxdk, into 2J'f(k')k'dk. The term in E& &

being independent of s, does not contribute to this part.
of the susceptibility; the term in E"' contributes a
"spin" susceptibility (just as the ordinary spin moment
does) given by

(e') dn
I(E'")'

Ek'c') dE&'&
&&&

where [de/dE(e& 1& &&
is the density of states at the Fermi

surface. The E(') part contributes

e2 p pro
E(»(k')k'dk. (1S)(~') Ek'c') ~&&

The subdivision of the susceptibility into the three
contributions X, Xb, and X, is mathematically t"on-

venient. In addition, each of the terms has a simple
meaning: X results from the semiclassical quantization
of the levels, Xb results from the orbital moment
induced by spin-orbit interaction, and X, is due to the
energy-level shifts of order s'.

In order to evaluate the susceptibility, the values of
E&" have been obtained from (5) for a number of
values of k and the quantities E"', E"&, and de/dE('&

"L.Onaager, Phil. Mag. 43, 1006 (1952l.

have been calculated by substitution in (10) and (11).
The sum of X„X&„and &(, has been plotted in curve (1)
of Fig. 3.

We now discuss the relative contributions of these
terms. At very small kp, X, is negligible, being propor-
tional to kp", the ratio of X to Xb is 1 to —0.35. Hence
the Pauli susceptibility of the anomalous spin moment is
appreciable at small kp."With increasing kp the g factor
drops sharply, exhibiting a behavior not unlike that of
the reciprocal effective mass. Because of this drop the
Pauli paramagnetism becomes unimportant at large
concentrations. The g factor at the Fermi surface is
plotted as a function of kp' in Fig. 4. Finally the term X,
which is also proportional to the spin splitting, in-
creases with kp initially, reaches a maximum and then
decreases; it is always small compared to X, reaching
at its maximum a value of 0.25X . Thus, except near
kp= 0, the susceptibility is due mainly to X .

The effect of the corrections (6) to the energy levels,
arising from the free-mass terms, is to modify the three
terms of the susceptibility. Let X ', Xb', and X,' be the
three correction terms. Since (13) and (15) are linear
in the energy eigenvalues, X,' and X,' are found directly

'0 Values of the effective mass near the band edge were deduced
by Stevens and Crawfords and also Matyas from their sus-
ceptibility measurements. The values obtained were more than
twice the cyclotron resonance value of 0.023; this is caused by a
combination of (2) change in band curvature and (2) effect of the
g factor. In these experiments the latter eRect happens to be the
more important.
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valence band. Neglecting the spin-orbit splitting of the
higher states, the matrix elements of H' between the
L.K. states with periodic parts 1X), 1I'), 1Z) are given
by

40

30
-g

20

lP

0 1

5
ko(tO 4a. u. )

1

IO

FIG. 4. The g factor for the conduction band of InSb as a func-
tion of ko'. The free spin g value has been taken positive, g, =+2.
only the interaction between the conduction and valence bands is
included.

by using the contribution of the free-mass terms to
Eio& and Ei'i. The contribution to E' i is simply k'/2,
resulting in the free-electron susceptibility for X,',
while the contribution to E"' is extracted i'rom (6). The
term Xb' is slightly more complicated to evaluate and it.

has been neglected; it is of the same order as X,' and has
the same sign. For the region where the band is no
longer parabolic, X,' is the dominant term; thus at
e=10'9/cc, we find that X,' 6X,'. The sum of X,' and
X,' is plotted in Curve 2, Fig. 3.

The sum of curves 1 and 2 gives the total sus-

ceptibility resulting from the interaction between the
conduction and valence bands and it is plotted as
Curve 3 in Fig. 3. Curve 3 disagrees with the experi-
mental points shown in Fig. 2. We therefore investigate
in the next section whether higher bands, omitted sofar,
have an appreciable effect on X.

III. Effect of Higher Bands

This section is schematic in character and can only
serve as a guide to the actual calculation. This has been
done because the calculation is lengthy but presents no

difhculty. Only the expression for the most important
matrix elements will be exhibited.

The fact that the heavy-hole mass is close to 0.2mo"
shows that there is a substantial interaction between
the valence band and higher bands. Since these bands
are energetically far removed, it is sufFicient to treat
them to order O'. Two of these bands will be taken into
account first, those transforming like Fq and F4 and
giving rise, in Kane's paper, to the constants 8 and C.
This is done by eliminating the interband matrix
elements to first order in k; and one obtains an eGective
Hamiltonian, II', consisting of terms quadratic in I{;,and
connecting any two of the six L.K. functions of the

"Experimental evidence is summarized in reference 2.

H;,'=Ck'+(8 C)k—P, j=x, y, s,

H.„'= (C——,'8) k„k.+-,'Bis,

H„'=H, ,'= (C——,'8)k, k, , j=x, y.

The states obtained in II are now no longer eigenstates )

and the energy levels cannot be obtained by perturba-
tion theory, there being some o6-diagonal elements of
order (8+C)ms, where ms is of order ko2, between states
belonging to the conduction band and diGering in
energy by P's/Eg. For the purpose of obtaining the non-
oscillatory part of the susceptibility, perturbation
theory on the free energy, with the complete set of
states %„~&"' can still be used'i provided that kT&&l
and 1H'1«{' which is the case here. Formal expansion
of the free energy gives

(16)

p=lf{' Q, kT in{1+—expLQ' —E;)/kTj)
+2' g(E' {)H"—'+2 2' (~g/~E') (H"')'
+2 2 Z2~'{[g(E') —a(E~) j/(E' —E~)) I

H'~'
I

' (17)

The susceptibility resulting from (17) is still a sum of
three terms of the type X„Xb, X, although when the
band is not spherical the expression for X will be
different from (13). We consider first the correction
terms X ", Xb", X," that are of the first order in H';
they are due to the diagonal matrix elements of H' over
the states of the conduction band, given by:

X„g'(X.~")'
8+2C 11 s—k4%—(35k' —16q')

3 15 30

26 X~ (2 s 2

1

—k4~—(10k2+4q2)+—s'
1

15 6+X„g (15 30 15 )
()„~)' ( 5 s 25+,I

k4% (25k' —20q') +—s'
1

(6+X„p)' ~ 15 30 3O )
s 1

+ (4C—38) (7k'+10k'q' —35q') T—'——s'
I. 270 5 40

( 1
+ 1

(7k4+10k2q2+q4)
(6+X„~)&135

s 1
w-q' ——s' 1, (18)

5 20

where k'=k, '+s(244+1), q'=kP —s(m+2) and lV„,+ is
the normalization factor for the state 0'„,+').

The term X," resulting from (18) is positive and the
magnitude of its ratio to x„of order 1H'1/g, is found
to be less than 0.2. The term Xb" is negative and of order
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0.1X . These two terms have been neglected. The most
important contribution is due to the level shifts of
order s' in (18).These level shifts are given. not only by,
the terms which are explicitly of order s' in (18), but
also by the terms of order s and s' in the expressions
for X + and &~ ~ occurring in (18). By a detailed
consideration of the various s' terms, it can be seen
that they are approximately equal to

(~'/& 'l ')j:(B+2C)/33(26/15)~' (19)

the other s' terms nearly cancelling each other. In
particular, the departure of the band from sphericity
which is measured by the value of the coefFicient
(4C 38) h—as only a negligible effect on the sus-
ceptibility for reasonable values of 8 and C. (It may be
noticed that there is no first order eGect, proportional to
(4C—38) on the free energy in the absence of a field,
while there is a small effect on the susceptibility). The
contribution X," is calculated by simply integrating
the energy term (19) over the spherical distribution of
the electrons in k space, and it is found that the resulting
susceptibility it not small, being comparable to X of
(13), so that it is necessary to include second order
terms. Ke just enumerate the matrix elements of
interest:

(a) Within t:he conduction band, j &z, W) is connected
to j (I+4), W) and jzz, —) to j (zz —1), +). The first
of these matrix elements vanishes if 4C—38=0; in
this case the bands are spherical and the energy levels
can be obtained exactly. Both of these matrix elements
give negligible contributions.

(b) The most important matrix elements are those
connecting p„,+" to 0'„,~"&, p„,~i'& to &p„+&'"& and

to 4i„~i& ~~&'&. These have been evaluated;
at I=10" they amount to 25% of the first order
contribution.

The susceptibility due to the higher bands, calculated
to order (H')', is plotted in curve (4), Fig. 3. The
constants 8 and C for which there is no direct experi-
mental evidence have been chosen somewhat arbitrarily
to be in the ratio 1 to 1.6, i.e., that taken by Stern, "-

and their magnitude has been adjusted to fit the
measured susceptibility data at m=10". The required
values are C —8/3 and B~—5/3 a.u. The spherical
average of the heavy hole mass for these values is
1/z&z*= 1+3/5 (2C+8) =3.2 or z&z*= 0.31. The total
theoretical susceptibility of the electrons in the con-
duction band is given by the sum of curves 3 and 4,
Fig. 3 and is plotted on Fig. 2; the fit to the experimental
points is seen to be reasonably good. We now ask about
the possible effect of the interactions responsible for the
other constants in Kane's theory:

The constant A which involves the interaction
between a p-like and an s-like band does not contribute
to X, in the absence of spin-orbit interaction"; so its
actual contribution will be small; the constant F has a

22 F. Stern, Bull. Am. Phys. Soc. 2, 347 (1957).

small effect for the same reason; the constant D is
believed to be smalP; the only constant that may have
an appreciable effect is |. The second order in A:;

Hamiltonian B" resulting from this interaction has
matrix elements:

II..."=—2iau, k„; a,, „"=—2~6&,l.;

H..."=—iG(k, k„+k,k,.) = —-,'G(k+' —k ').

The diagonal element of H" over the P,~" is found to
vanish, just as is the case in the absence of a magnetic
held. ' The contribution of H" is thus of second order
and appreciably smaller than that of II'. The matrix
elements of H" that are important are found to be those
connecting &p»

i"' to &p( —3&,+ ' and &p»
' to pi»~i&, +' '.

A crude estimate of their contribution to the suscepti-
bility shows that it is negative and for a value of G
equal to C, which is reasonable, the values of C and 8
required for a fit of the susceptibility at e= 10"become
C= —3.4 a.u. and 8= —2.1 a.u. which result in a heavy-
hole mass of m*=0.23. The shape of the X versus e'
curve would be little changed by this new correction,
the curve becoming slightly Ratter with the height at
the maximum decreasing by about 5%. In view of the
approximate nature of our numerical work, it appears
that the agreement with Karie's theory is satisfactory.
If (a) the experimental measurements could be signifi-
cantly improved in a,ccuracy and (b) the effects of the
impurities on the band structure were better under-
stood, then it might be worthwhile to do the present
calculation more carefully. Curve fitting of X versus e'
would then restrict the possible choices of values for
the band parameters.

Finally, it is worth considering how higher bands can
produce such a large effect on the susceptibility: The
term X„which is the dominant part of curve 3 of Fig. 3,
results solely from the diGerence between a sum and an
integral; the factor (1/24) in the second term of Euler's
formula makes this a small effect. It is only because of
the s and p characters of the bands involved that the X,
contribution is smaller than X, :Equation (5) shows that
in the absence of spin-orbit coupling there are no level
shifts and X, is rigorously zero. The presence of spin-
orbit eQ'ect results in a small value for X,. In contrast
to this situation, the higher bands make their contribu-
tions mainly through the level shifts in the absence of
spin-orbit interaction. They contribute via the 6rst
Euler term and the absence of a small numerical
coefhcient in this term makes their contribution com-
parable to that of the valence band. We had another
example of the importance of the level shifts in comput-
ing the e6ect of the free mass terms when we found that
X,' 6X ' at n = 10" cm '. Loosely speaking and
neglecting the orbital moment, the higher bands give
the effect of an additional effective-mass term with
zzp —(1+1/0.2) '= —(1/6)z&za and contribute a sus-
ceptibility of the order of —6 times that of the free mass.

In view of the similarity of the band structure of
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InAs to that of InSb, the theory presented may also be
applied to Geist's susceptibility data on InAs. " As
expected, there is a qualitative similarity between the
data on these two substances.

CONCLUSION

The results of measurements on the carrier suscepti-
bility in e-InSb show that the susceptibility departs
appreciably from that of a parabolic band. The essential
feature of the observed susceptibility is that it increases
with increasing carrier density at low carrier densities
and decreases at high carrier densities. A theoretical
analysis based on current ideas about the band structure
of InSb shows that at low carrier densities the inter-
action between the valence band and the conduction

"D. Geist, Z. Naturforsch. 15a, 699 (1958).

band is the principal contributor to the susceptibility.
This interaction alone cannot explain the observed

, behavior of g at the higher densities. The eGect of higher
bands is estimated to be of sufhcient magnitude to
account for the decrease of the susceptibility at the
higher densities. Within the limitation resulting from
the approximate computation of the higher band inter-
actions, the observed susceptibility appears consistent
with Kane's band-structure calculation.
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The energy levels of an electron in a periodic potential and a constant magnetic Geld are found as the
solutions to a secular determinant when the following approximations are made: (a) the energy band of
interest is spherically symmetric and (b) lattice broadening of the levels is neglected. Inclusion of spin-orbit
coupling gives the g factor as function of position in the band. Perturbation theory is used to treat the eBect
on the free energy of small departures of the band from spherical symmetry.

INTRODUCTION

~ 'HIS paper is concerned with the determination of
the energy levels of an electron in a periodic

potential and an applied constant magnetic field. The
problem is formulated in the Luttinger-Kohn' repre-
sentation and since this representation has been used in
several papers dealing with the magnetic properties of
conduction electrons, we first review brieQy this previous
work.

The treatments of Luttinger and Kohn' and Kjeldaas
and Kohn' for nondegenerate bands are based on an
expansion in powers of ko, the wave-vector at the Fermi
surface and thus are useful only if this expansion
converges fast enough. Considering the magnetic levels
of the valence band of germanium, Luttinger' included
the interactions4 between the valence band and other
bands to order O'. When the band structure coefficients
were such that the valence band was spherically
symmetric, the magnetic levels could be obtained

' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).' T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).' J. M. Luttinger, Phys, Rev. 102, 1030 (1956).
'The expression "interaction between bands" refers to the

oG-diagonal elements in the hamiltonian matrix, resulting from
the interband matrix elements of the velocity between the L. K.
states.

exactly. On the other hand, in the case of two-
dimensional graphite the energy is not an analytic
function of 4 at k=o so that an expansion in powers
of k is impossible. For this case, McClure obtained the
magnetic levels for any k exactly as far as the magnetic
interactions are concerned; however other approxi-
mations were made in the calculation.

It is the purpose of this paper to extend these results
by pointing out that in the approximation of spherical
bands the existence of a selection rule in the interband
matrix elements of the velocity makes it possible to
obtain the energy levels exactly' for arbitrary k. Since
energy bands are not in general spherical, the levels
thus obtained are strictly speaking, not those of an
electron in a lattice, except in the case of cubic sym-
metry with only s and p bands interacting. Rather
they are the levels of a model which is an approxi-
mation to substances with nearly spherically symmetric

energy bands, such as the alkali metals or semi-

conductors such as InSb. ' The corrections to the energy

' J.W. McClure, Phys. Rev. 104, 666 (1956).
'Except for the lattice broadening which is neglected; see

below.' Treated in R. Bowers and Y. Yafet, preceding paper [Phys
Rev. 115, 1165 (1959)j.


