
1152 R. NEWMAN AN D k. M. CHREXKO

Co'+ sites has, to first approximation, cubic symmetry.
It was not observed in a salt where the crystal field
had tetrahedral symmetry. The absorption is inter-
preted as resulting from transitions between energy
levels of the L S fine structure multiplet. These levels
do not appear to be completely explicable in terms of a
proposed crystal Geld theory. ' The introduction of
various solid state interaction mechanisms such as
phonons or exchange may be required for quantitative
understanding of both the basic absorption process,
and of the finer details that are observed such as optical
polarization and antiferromagnetic eGects.

It should be pointed out that the fine structure
absorption in Co salts o6ers the possibility of appli-
cation in an infrared quantum detector of the type
described by Bloembergen. "
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In a perturbation framework, Kohler's variational method has been extended to obtain deviations from
Ohm's law for a nondegenerate electron gas. Solution for the distribution function reduces to solving sets of
linear algebraic equations. It is shown that, to second order in the field strength, the "popular" Maxwellian
distribution (with a new temperature) is only a first-order variational solution. The method becomes ex-
tremely simple if the diffusion approximation is introduced and a relaxation time can be defined. Under
these conditions, the second-order term in the mobility is expressed as the ratio of two infinite determinants
using the usual representation, in which the unknown function is expressed as an energy polynomial. This
ratio can be expressed by an in6nite series.

l. INTRODUCTION

~OR the past decade, Kohler's variational method' '
has been very useful in treating otherwise formid-

able problems in the theory of /ieear conductivity in
solids. There is at the present considerable theoretical
and experimental interest in the eonlieear part of the
conductivity in semiconductors and insulators. One is
usually interested in two regions of field strength. The
first is the weak-field region in which the system does
not deviate substantially from thermal equilibrium. The
second is the high-field region in which the system
departs considerably from its thermal behavior. It is
with the weak-field region that this paper is concerned. 4

%e shall limit this treatment to a nondegenerate
electron gas obeying classical statistics. For small

*This part covers the theoretical aspects of a paper presented
at the 1959 Cambridge meeting of the American Physical Society.
Part II of this work will deal with deviations from Ohm's law
in nonpolar crystals. See I. Adawi, Bull, Am. Phys. Soc. 4, 129
(1959).

' M. Kohler, Z. Physik 124, 772 (1948); 125, 679 (1949).
~ E. H. Sondheimer, Proc. Roy. Soc. (I.ondon) A203, 75 (1950).' See A. H. Wilson, The Theory of 3I/etals (Cambridge University

Press, Cambridge, 1954), Chap. X, second edition. Other references
will be found there.

4 Prehminary calculations for germanium at room temperature,
for example, indicate that the theory is valid for fields below, say,
10' volts/cm.

departures from equilibrium, perturbation theory is
valid and the distribution function is expanded in
powers of the field. The Boltzmann equation is reduced
to a set of linear equations in which the collision
operator is symmetric and positive definite. Conse-
quently, Kohler's variational method can be applied to
solving these equations and thus obtaining deviations
from Ohm's law. Although this method does not reduce
the number of equations one has to solve to obtain
corrections to Ohm's law, to a certain order in the field,
yet for a given set of trial functions this method offers
the best solution.

To obtain approximate solutions, the variational
method offers a powerful practical tool. Its application
leads to solving sets of linear algebraic equations
whose number is not large in practice. This is a more
general method than a numerical solution for the
distribution function which is quite tedious. Needless
to say, exact solutions are out of the question except
in a limited number of cases.

In Sec. 3, two important applications of this varia-
tional method are discussed. The first application
concerns the Maxwellian distribution (with a new
temperature) which has become popular in discussing
hot electron problems. To second order in the field,
we shall show that under borad general conditions, a
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Maxwellian is a one-parameter variational solution.
In the second application the diffusion approximation'
is used. A large class of problems, for which a relaxation
time can be defined, is then discussed and a formal
solution is given to second order in the field. The
variational solution is carried out using the usual
useful representation in which the unknown function
is expressed as an energy polynomial. The second-order
correction to the mobility is expressed as the ratio of
two infinite determinants which can be evaluated by
much the same methods that are used in the theory
of linear conductivity.

A geometrical interpretation of the variational
method is given in the Appendix.

2. THEORY

Let the electrostatic field E point in the s direction,
then the transport equation reads

qE 8
LW(k', k)f(k') —W(k, k') f(k) jd'0', (1)

A Bk.

where g is the charge, k is the wave vector, f is the
distribution function and W(k', k) is the transition
probability from state k' to k. With no loss of generality,
we set

(2)

where C is a normalization constant and M is the
Maxwellian distribution, namely,

M(k) = expt —«(k)jETj, (3)

where e and ET are the electron and thermal energies,
respectively. We shall discuss only the cases where

e(k) =e(~k~) and W is cylindrically symmetric with k
as an axis of symmetry. Ke can then expand C in a
series of Legendre's polynomials,

ES4=AC,

which is satisfied by the solution,

(7)

y, =E"P u...+.(k)E'",

found by inspection. ' Substitute (8) in (7) and equate
the coefficients of equal powers of E on both sides and
an infinite system of equations connecting the a's is
obtained. The first few are

0=Aoapp,

Slpaop ~1+11

Spla11 ~paply

S21a11 ~2a22)

+loiiol++12o22 i11o12

S01a12=Apap2, etc.

(9.1)

(9.2)

(9 3)

(9.4)

(9.5)

(9 6)

Now, A~, which is in general an integral operator, can
be shown from (5) and (6) to satisfy the two relations,

(N, ,i1,v) = (v,S,~)—= Na, vd'k,
aJ (10)

and 8 is the angle between k and k'. The last equality
in (6) follows from thermal equilibrium, when E=O,
and shows that V is symmetric in k and k'. We shall for
convenience introduce an abbreviated notation. Treat
C as a column matrix with elements Pi. Define the
diagonal matrix A. whose elements are A~ such that
hst i stands for the integral on the right of (5). Introduce
the matrix S with S&,&+1 as the only nonvanishing
elements. Define these elements such that ES~ ~ 1 and
ESi, i+i are the differential operators in (5) operating
on P& i and gt+&, respectively. Thus (5) can be replaced

by the matrix equation,

e (k) = P y, (k)P, (cosn),
I=o

(4) (m, i1&e)&~ 0,

where n is the angle between k and E. Substituting

(2), (3), and (4) into (1) and using the properties of
Legendre's polynomials, we obtain

qE —(O' 'Myi i)
(2/ —1) dk

(1+1) 1 d—(k'+'Mpi+i)
(21+3) k'+2 dk

f%

=
~i V(k', k)(pi(k) —Pi(cos8)pi(k'))d'k',

1=0, 1, 2, 3, , (5)
where

V(k', k) =—M(k') W(k', k) =cV(k) W (k,k'), (6)

'By the diffusion approximation we mean that only the 6rst
two Legendre coefficients are retained in the distribution function.

where n and v are any two functions of k for which the
above scalar products exist. Ap has a constant c as an
eigenfunction with zero eigenvalue. At the same time
(c Soggi) =0 which shows that if pi were known, then
the equation

&oui =&go

would determine po within an additive constant.
Variational methods can be used for solving (11) and
these are well discussed in the literature. 3 7 All other
A&'s do not have a zero eigenvalue. This can be seen by
showingthat for NWO, (m,Aiu))0, for l)0. Conse-

quently, the equation A&I =known function determines
I uniquely if l&0.

With this information at hand, we proceed to solve

~ It is only at this point that perturbation theory is introduced
in Eq. (8).

7 See also Appendix.
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of the distribution function Mgo. The justification is
that electron-electron collision dominates other energy
exchange mechanisms. ""In this treatment we ignore
electron-electron collision altogether. It is therefore
instructive to show that the Maxwellian distribution
occurs in a eatlral may in the variational solution. To
prove this, consider Eq. (9.3) in which u» is assumed
to be known from solving Eq. (9.2). The proof does not
depend, however, on how (9.2) has been solved. I.et
us represent ap& as a polynomial in energy:

FIG. 1. A diagram showing the order in which the coefficients c
are evaluated. The dotted line connecting two coefficients indicate
that both of these coefficients are used to obtain the coefficient
immediately to the right of the dotted line, for example, u0& and
ooo are needed to determine a&o. If the system is truncated (all pi's
are set equal to zero for l greater than a certain value), then the
lowest two rows will be connected by a sawtooth solid line similar
to that connecting the upper two rows.

the system (9). Equation (9.1) does not determine the
constant happ uniquely. We shall arbitrarily set app=1,
and (9.2) can then be solved for air(k). Once air is
known, (9.3) can be solved for aoi, and (9.4) for ass.
In the solution of api, however, we have an additive
constant at our disposal. We adjust this constant so as
to normalize Map~ to zero. ' In general we normalize
Mao, e)0, to zero and this will determine ao„(k)
uniquely. The scheme for solving the system (9) has
become clear and can be continued to any order. It
should be pointed out that (9.2) is Kohler's equation
and the system (9) defines the generalization, which
is the core of this development.

Figure 1 shows the sequence in which the a's are
evaluated. It is seen that if we calculate the coefficients
up to a„„then Po is determined to order E'" and gi to
order E'" ', and consequently the electrical conduc-
tivity will be determined to order E'(" '&.

This method is valid if the series (8) converges. For
strong fields, the series might converge slowly (and a
large number of terms might be needed), or not at all.
In the latter case a solution can be obtained by diferent
means (such as expanding the collision term in a
Taylor's series) and the two solutions can be joined
by some interpolation scheme. '

3. APPLICATIONS

For purposes of illustration we shall consider two
applications of special interest:

(a) Maxwellian Distribution

Several authors have assumed a Maxwellian (with
a new temperature) for the spherically symmetric part

This choice is unique. For when we normalize C3/I/0 to 1, we
obtain 1=Ct (ooo)Av+(sod)avE+(ooo)aoE'+ ~ ), where the brackets
are used for averages. This equality will hold for all E in a
neighborhood of E=0 if and only if all (a0„)«=0 for n )0.

9The standard method of expanding the collision term in a
Taylor series is, in general, a high-field approximation and does
not necessarily hold in the domain where perturbation theory, as
discussed here, is applicable. There are, in certain situations, field

idol = P ere
7=1

It follows from the variational principle' that the
coefFicients c„ in (12) satisfy the set of linear algebraic
equations,

n

(e SptGii) = g (e" Aoe )c., r= 1, 2, , oi. (13)
s=l

If we set I=1, we obtain from (12) and (8) that

Mpo =M (1+ciE'e) (14)

We get from (13), after multiplying both sides by the
normalization constant' C and E', that

(e)Soiiiii)CE'= ( )Ae)oce,CE'

Equation (15) can then be identified as an energy
balance equation to order E'. The left-hand side is the
energy supplied by the 6eld per unit time, namely,
qIJE' (p is the mobility to zeroth order), and the right-
hand side is the energy loss by collisions per unit time.
But, this energy balancing is the method used to
determine the new temperature of the Maxwellian
solution. "Furthermore, the form of Mgo given by (14)
is identical to that of a Maxwellian with a temperature
T*=T+hT, where AT«T. For to first order in hT,

M(T+aT) =M(T)$1+ (aT/ET') ej. (16)

Comps. ring (16) and (14), we identify ciE' with
hT/ET'. This completes the proof that a Maxwellian,
to order E', is a first-order variational solution (m = 1).It
cannot be reliable in general, as we have shown recently
in a specific case."The solution is improved by taking
n) 1. (The normalization of Maoi to zero is performed
as the final step, and does not enter into the above
discussion. )

(b) Problems with a Relaxation Time in
the Diffusion Approximation

Many problems in semiconductors are treated using
the following model. All pi's=0 for /) 1, (the diffusion

ranges for which neither theory is valid. Interpolation schemes
become then essential. See. I. Adawi, Bull. Am. Phys. Soc. 4,
244 (1959).' H. Fr5hlich and B.V. Paranjape, Proc. Phys. Soc. (I.ondon)
B69, 21 (1956).

» R. Stratton, Proc. Roy. Soc. (London) A242, 355 (1957)."I.Adawi, Phys. Rev. 112, 1567 (1958).
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approximation). The energy e is parabolic in k and re
is an effective mass. Finally, a relaxation time exists.
A relaxation time can be defined for scattering by
impurities, acoustical phonons when equipartition is
valid, and optical phonons in nonpolar crystals when
the cross section is isotropic, to mention only a few
examples.

For this model the system (5) reduces to two equa-
tions in po and pt. Atilt reduces to Mpt(r, where r is the
relaxation time and dr is expressed in terms of tbo.

Introduce the dimensionless variable x=e/ET and
d'k ~ x'dx. The mobility p, is given by

4V
rx'e *~ Qo

— ~dx.
3ms**~o E dx j

The sum in (21) can be expressed as the ratio of two
infinite determinants. Denote this sum by P, and we
have

0
00

P= P c,b, '= —bs

g/ pl
d11 d12
d21 d22

~ ~ ~

d21 d22
d31

(22)

This result can be simplified further by the method
discussed by Wilson. ' " Let D~") be the determinant
obtained by taking only the first e rows and columns
of ~d„, ~. Let Do&" '& be the determinant formed from
D&"& by replacing the last row (or column) by bt, bs,

~ . b„. Dp'" "is similarly defined. Then,

The normalization is such that C=2x' ' app=1 and D (n—1)D,(n-l)

P= +Z (23)

Jp

To obtain p to second order in E, we have to solve
(9.3). After substituting for aii from the preceding
equation (9.2), we obtain the equation

2g s
(rx'e )=—Aoaot&

31ÃET dS
(18)

which will now be solved by variational methods, no
matter how complex A.p might be. Represent ap1 by a
power series in x plus a constant so that Mup1 is normal-
ized to zero as was discussed in Sec. 2. This is most
conveniently written as

q ~ ) 3 5 2r+1q
aot —— P c,

~

x"—--
ET~t ( 2 2 '2

The series on the right of (23) can be evaluated to any
desired accuracy. In practice a few terms will do,"
and this is why the variational method is quite simple
and useful. "

The last. example is simple when treated by this
method. It is quite important" and has been discussed
in some detail to illustrate how this method can be used
to handle more dificult problems to any accuracy. In
concluding, we remark that this method might be
extended in two directions. The first is to include more
complex energy surfaces which would require the
expansion of f in the surface harmonics Y '. The
second is to use Fermi-Dirac statistics. It should be
borne in mind that Kohler's collision operator is linear

only to the first order in E when we use Fermi-Dirac
statistics.

where

fir= Z Jrac~q
s=1

f
b =——r ~~ x"+ 7-e dx

3 8$ p

(20)

drs dsr X"+sA X'dX.

From (19), (1/), and (20) we obtain that

gg oo

p, =2tr i br+ Q c,b,'+
ET r

where
3 5 2r+1

b„'= (r+1)-'b,+,—b,———
22 2

(21)

The coefficients c„are then determined by solving
the infinite set of equations:

"This is a special case of Jacobi's theorem. See C. V. Durell
and A. Robson, Advanced Algebra (G. Bell and Sons, London,
1952), Vol. III, p. 411.

'4It is interesting to observe that (23) gives P=O to a erst
approximation when b&' ——0. From (21}, b~'=0 when be=5b&
This can happen for a proper combination of scattering mecha-
nisms, such as for example, ionized impurities and lattice vibra-
tions. Since bI' depends only on integrals involving v, it follows
that the details of A0 do not enter, to a erst approximation, in
determining when the E'-term correction to the mobility (which
is proportional to P) should vanish. To higher approximations, the
details of A0 enter through the elements d„, in determining when
P=O as can be seen from (23). The erst approximation is
equivalent to the use of a Maxwellian as we discussed before. In
the problem we worked out earlier, "there was hardly any differ-
ence between the exact and the Maxwellian solutions regarding
the condition for P=0.

'~ See D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953),for calculations of this type.

'6 A problem of this type has been treated approximately by
J. Yamashita, Phys. Rev, 111,1529 (1958). See also, J. B. Gunn,
J. Phys. Chem. Solids 8, 239 (1959);and T. N. Morgan, J. Phys.
Chem. Solids 8, 245 (1959). From a rigorous point of view, the
slope of the distribution function at the origin, namely, ('(0) in
Vamashita's notation, is determined by the behavior of p at ~.
This slope is 6nite, in general, and not zero, as Yamashita appar-
ently assumes. Only the proper slope leads to @ distrjbutiog whjclg
cgn be gorma4zgg,
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APPENDIX. GEOMETRICAL MEANING OF THE
VARIATIONAL METHOD

The task is to solve the equation,

(A1)

for P, where g is a known function (orthogonal to all the
eigenfunctions of A with zero eigenvalue) and A is a
symmetric and positive-definite operator. To obtain a
variational solution, express P in terms of a complete
set of functions I„:

P= P c,tc„.
r=1

(A2)

it follows that the coefficients c, are determined by
maximizing QAQ) subject to the condition

(lb@)= (lbAll) (A3)

From here on, we depart from the standard method
of introducing Lagrange's multipliers. Instead, we shall
determine the c,.'s from geometrical considerations.
Introduce the column matrix B with elements b„and
the symmetric matrix D with elements d„„where

b, = (tc„g), d„,= (tt„Att, ) =d,„. (A4)
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DC=B, (A5)

which is the equation determining the c,.'s.

Physically, the system of equations (A5) represents a

set of transfer equations, or balance equations, for the
set of functions e,

Let C be any column vector in the n-dimensional c
space with components c„. The problem then reduces
to finding the maximum value of s for which the plane
C~B=s cuts for real C the quadratic C~DC=s. The
superscript T denotes the transpose. Since D is sym-
metric and positive-definite, then CrDC= s is an
ellipse in e dimensions and s&0. If we write down
formally the equations for all the tangent planes which
touch the ellipse, C~DC = s, at its points of intersection
with the plane CrB=s, regardless whether these points
are real or complex, then we easily see that all these
tangent planes pass through the common point P whose
position vector P is determined by DP=B. Thus, I' is
invariant and does not depend on the parameter s.
Clearly, if P lies inside the ellipse, the plane does not
intersect the ellipse in real points, and this happens
when PrB (s. On the other hand, for all PrB) s, I' lies
outside the ellipse and the plane intersects the ellipse

in real points. Hence, the maximum value of s is
PrB=BrD 'B. This happens when the plane touches
the ellipse at P and P= C which gives
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Suggestion Concerning Magnetic Interactions in Spinels*

D. G. WIcKHAM AND J. B. GooDENQUGH
Iincoln Laboratory, 3fassachnsetts Institnte of Technology, Lerington, jfassachnsetts

(Received April 6, 1959)

The indirect-exchange mechanisms which produce spontaneous magnetization in metal oxides are an
optimum if two interacting cations are located on opposite sides of an anion. The coupling rules which have
been developed for this case are not applicable to spinels in which the cation-anion-cation angles differ
appreciably from 180'. An examination of t'he d-orbital symmetry of various cations in respect to the crystal
lattice leads to several suggestions concerning the magnetic interactions in spinels. Of particular interest
are those spinels containing cations with three or fewer d electrons in the octahedral sites, or four if the
symmetry is tetragonal. The properties of several spinels of this kind are considered in the light of the sug-
gestions overed. Direct interactions between octahedral-site cations appear to be possible.

'N metal oxides, the cations are separated by rela-
- - tively large distances, and the magnetic interactions
of principal previous interest have been indirect inter-
actions in which an anion is an intermediary. Such
indirect-exchange mechanisms are an optimum if the
two cations are located on opposite sides of an anion. '
An indirect-exchange mechanism and consequent cou-

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research, operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.' P, W, Anderson, Phys. Rev. 79, 350 (1950).

pling rules have been proposed' 4 for this case which
are at once consistent with recent detailed calculations'
and with experimental data on perovskite-type and
rock salt-type structures. In the spinel lattice the situa-
tion is complicated by the fact that the cations are not
located on opposite sides of the anion. The tetrahedral

(A) cation-anion-octahedral (8) cation angle is 125',

' J. B. Goodenough, Phys. Rev. 100, 564 (1955).' J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).' J. B. Goodenough, J. phys. radium (to be published).' P. W. Anderson, Phys. Rev. (to be published),


