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The pair theory of many-boson systems is used to obtain a weak-coupling expansion for the ground-state
energy to third order in the coupling constant. The relationship of this expansion to the formal Rayleigh-
Schrédinger perturbation expansion is discussed, with particular reference to the relationship between the
divergent third-order term in the formal perturbation expansion and the terms of § and third orders in the
correct weak-coupling expansion. The excitation energy is discussed briefly; it is pointed out that the
lowest-order “nonpair” correction to the phonon energy is of the right order of magnitude to cancel the

spurious energy gap of the pair theory.

1. INTRODUCTION

HE purpose of this note is to show that the pair
theory of many-boson systems! can be used to
obtain a weak-coupling expansion for the ground-state
energy correct to third order in the coupling constant;
this expansion is of theoretical interest because of the
well-known divergence of perturbation theory in third
order which is associated with a branch point at the
origin of the coupling-constant plane. The method of
calculation involves analytical iteration of the basic
variational integral equation of the pair theory,
starting with the Bogoliubov? approximation; a by-
product of this procedure, when supplemented by an
estimate of the “triad” and ‘“‘quartet” corrections by
(now convergent) perturbation theory, is a determi-
nation of the domains of validity of the Bogoliubov
and pair-theory approximations. Our treatment and
Bogoliubov’s are found to be in some respects comple-
mentary: The Bogoliubov theory gives a physically
reasonable linear phonon spectrum at low momentum,
but a ground-state energy incorrect in third order; the
pair theory gives a rigorous upper bound for the ground-
state energy which first differs from the exact energy
in  order, but a phonon spectrum with an unphysical
energy gap at low momentum.

2. FORMULATION

The physical properties of the pair states are deter-
mined by the solution ¢ (k) of the variational integral
Eq. (1.24), which approaches ¢o(k)=—L; as the
interaction® »(k) — 0; here L; is Bogoliubov’s function?

Li=[o (D) T RER+pr(B) == pr(R)}. (1)

The next approximation is obtained by replacing ¢ (k)
by ¢o(k) in po, 11, and I in (I1.23) or (1.24); one there-
fore replaces po, I1, and I, in these equations by po©@,
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3 We assume that »(r), and hence »(k) =»(k), are spherically
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I,9) and I,© defined by

2

’

p—po®= (2r) d3E

J 1—L2
=37 %4 (0)[14+0(p*A) ],

(= L)

1—L?

=[1+0(p* ) ](2m) 7

(2.1)

k'

L9 (k)= (2r) f v([k—K)

(2.2)

Ly
1—Ly?
= (p=po@)r (R)[1+0(p*\) ],

where p* and M\ are, respectively, the dimensionless
density and coupling constant defined, e.g., by p*=pa®
and A=a"'»(0), where @ is the range of the potential
9(r); we use units such that Z=m=1, and assume that
9(r) is repulsive “on the average” in the sense that
»(0)>0. The results (2.1) and (2.3) were obtained by
noting that the dominant contribution to these integrals
comes from 0<%’ < p#r(0), so that » (k") can be replaced
by »(0) in L, and the resulting integrals evaluated
exactly; (2.2) was obtained by noting that the dominant
contribution comes from %">>p#*(0), where the factor
(—Lw)/(1—Ly?) can be replaced by pv(k)/E2 A
necessary condition for validity of the Bogoliubov
approximation is that the first approximation for ¢ (k)
differ from ¢o(k) only by an amount <1 ; putting k=0,
one obtains from (I.25) and (2) the necessary condition

a’k'

1.0 =0 [ (k=K )

(2.3)

0

e=11(0)/por(0)2[ 21%(0) f P(R)dRLL. (3)

0

For any “reasonable” interaction, e differs from the
previously-defined dimensionless coupling constant A
only by a factor of order unity. We shall find that
AK1 is also a sufficient condition that the Bogoliubov
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ground-state energy be a good approximation to the
true energy.

3. GROUND-STATE ENERGY

The pair-theory expression (I.21) for the ground-state
energy per particle can be rewritten in the form

Eo/n=3ov(0)—[1,(0)— 1,(0)]
p

3 \—1| | 122 ¢ (k) 3
—+ (8%p) [ffk 1—¢2(k)d k

¢ (k)
+f111( ™

—I-f 2()

In this section we shall calculate the approximate value
of E¢/n by replacing ¢(k) by ¢o(k)=—Ls in (4). It is
shown in Appendix A that this introduces only an
error of order \7/? into Eo/n, and in Appendix B that
our neglect of “nonpair’ contributions also introduces
only an error of order A7/2.

To obtain a result for E,/# correct to order A3 it is
necessary to evaluate some of the integrals (2) and (4)
more accurately than was done in obtaining (2).
Consider first the contribution of 7;(0). One has by
(1) and (2.2)

where k. is defined by
1k2=p(0). (6)

We introduce only an error a=20(p*5/2\7/2) if we replace
v(k) by »(0) in evaluating JSo*¢, which can then be
evaluated exactly. To evaluate f%.°, we separate out
explicitly the first two terms in the expansion of the
integrand in powers of 4pv(k)/E?:

¢* (k)

e ok ] @

1 p® kov?(k) o r®
— ) ————dk=—1 v (k)dk
2k, 2[1k2+pv (k) H 202 ks
% (k)dk 1 ”{ kpv? (k)
I B2 2a2J . 2[%k2+pv(k)]%
o? 3( )
—pvz(k)‘f- ] ()
Then the integrand of the last integral in (7) is of the
form
pi(k)  p'vi(R)
B .-
k4 kﬁ
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where A, B, --- are numerical coefficients of order
unity, and it is easy to see that we make only an error
a20(p*5/2\712) in the integral if we replace »(k) by
»(0). The final result for 7, (0) is of course independent
of the precise value of k., the value (6) having been
chosen only for convenience; the essential point is that
k.~ p*(0). The method of evaluation of the remaining
integrals in (4) is the same; the last integral is of order
At and need not be considered. The final result for
Eo/n is

Eo/n="}ov(0)—} (2m)~ f

v(B)v(|k—K'|)v(F
Sy L L

v ()

d3k+—1r“2p*w (0)

()d3k+ PO(p* ), (8)

L (@2n)F f

where the symbol F before the last integral means that
the “finite part” of this divergent integral is to be taken
according to the following prescription : One renders the
integral finite by excluding from the domain of inte-
gration a small sphere of radius k. about the origin,
imagines the resulting finite integral expanded as a
Laurent series in k., and picks out the constant term
in this series.*

There is clearly a close correspondence between the
weak-coupling expansion (8) and the lowest-order terms
of the formal Rayleigh-Schrodinger perturbation ex-
pansion for Eo/n, which diverges in third order. In
fact, one finds that the terms in Eq/# which are con-
vergent when calculated by perturbation theory agree
with the corresponding terms in the correct weak-
coupling expansion (8), and that the lowest order in
which perturbation theory diverges is the integral order
immediately following the lowest nonintegral order
in the correct weak-coupling expansion; the divergence
is the result of trying to represent a nonanalytic function
of A (here represented by terms involving N3/2 A7/2 .. .)
by the perturbation series of integral powers of A. This
seems to be a rather general property of perturbation
theory®; e.g., it also occurs in the many-electron
problem, where the divergence of perturbation theory
in second order® is associated with a nonanalytic term
proportional to A2In\ (X is the square of the electron
charge in dimensionless units) which is the term of next

4 The origin of the term F /- - - is best illustrated by an example.
Consider an interaction »(%) that is constant for 0<k<a¢™! and
vanishes for 2>a™1. Then

©v3 (k) ,, _»*(0)
f;, k=7,
The term »%(0)/k. has already been included in the term involving
»52(0) in (8), while the term —a3(0) is the “finite part”
F So°[v3(k)/k2]dk.

5] am indebted to C. N. Yang for this observation.

6 See, e.g., W. Macke, Z. Naturforsch. 5a, 192 (1950); M.
Gell-Mann and K. A. Brueckner Phys. Rev. 106 364 (1957).

av3(0).



1092

lower order than A? in the correct weak-coupling (or
equivalently, high-density) expansion. A further feature
of the many-boson problem that emerges from (8) is
that even the third-order term, which is divergent in the
formal perturbation series, can be obtained from this
series provided that only the “finite part” of the
divergent perturbation integral is retained.

Although the weak-coupling expansion (8) is not
directly applicable to a strongly-coupled system such as
the hard-sphere Bose gas, Lee, Huang, and Yang"?®
have shown that at low density the hard-sphere inter-
action can be replaced by an equivalent pseudopotential
of finite strength. Upon substituting the lowest-order
approximation »(k)=24ma to the LHY pseudopotential
into the first and third terms of (8), one obtains the
LHY expression®

2mpa[ 1+ (128/15)n4(pa®)*] )

for the first two terms of the low-density expansion of
the ground-state energy per particle; similarly, substi-
tution of »(k)=24ma into (2.1) leads to the LHY expres-
sion [Eq. (40b) of reference 8] for the number poV of
condensed particles. The second term of (8) does not
contribute to the ground-state energy because, as
shown by LHY, its omission is equivalent to replace-
ment of the approximate pseudopotential »(r)=24rad(r)
in codrdinate space by the correct [to the lowest few
orders in (pa?)#] pseudopotential v(r)=4mad(r)(8/dr)r.
The fourth and fifth terms of (8) depend sensitively
upon the high-momentum behavior of »(k), whereas the
pseudopotential »(k)=24wa is only correct for k<<a™;
hence these terms do not shed any light on the higher-
order terms in the low-density expansion of Eo/# for the
hard-sphere Bose gas.

4. EXCITATION ENERGIES

In contrast to the ground-state energy, the phonon
energy E(k) given by Eq. (1.37) is incorrect at low
momentum k even to lowest nonvanishing order in the
coupling constant A, since there is a gap E(0) which
is given by (1.38), (I1.25), and (2.2) as

E(0)=2é}pow(0)=a7*0(p"\Y), (10)

whereas one knows on physical grounds that the true
phonon energy is linear in % at low %. Since the pair
theory gives the best (in the sense of the variational
theorem) approximation to the low-lying spectrum
which can be obtained by states having a pair structure,
the incorrect low-momentum behavior (10) must be due
to neglect of “triad” and ‘“quartet” effects generated
by Hr and Hq [Egs. (B.2) and (B.3)]. It can in fact be
shown that the lowest-order triad correction to E(0)

7K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).

8 Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957), hereafter
denoted by LHY.

9 The expression (9) differs from the LHY expression [Eq. (25)
of reference 87 by a factor of two because they use units such that
2m=1, whereas we require m=1.
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is given by )
5TE(0) = _?12’130(27?)—3] Mdsk, (11)
with oK)
h<k>=[1—¢2<0>1—%[v<o>[s¢<o>—zjl—_—(-ﬁ;(—k—)
14-¢(0)¢ (k)
2v(k)————+t, (12
® 1+¢(k) I =

and the expression (11) can be shown by methods
similar to those used in estimating (B.9) to be of the
same order of magnitude as the gap (10) itself, so that
one can hope that an adequate treatment of triad and
quartet effects would exactly cancel the gap. Since the
ground-state energy of the pair theory is obtained by a
variational method, it is insensitive to the detailed
structure of the ground-state wave function in mo-
mentum space. On the other hand, the excitation
energies are intimately related to this detailed structure.
It is therefore not surprising that the ground-state
energy given by the pair theory is quite accurate for
weak coupling, whereas the corresponding phonon
energy is incorrect at low momentum. The inaccurate
phonon energy is the price one pays (so long as one
restricts oneself to states having a pair structure) for
the more accurate ground-state energy obtained by the
variational method.
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APPENDIX A

We shall show in this Appendix that the errors
introduced into Eo/# by the replacement ¢ (k) — ¢o(k)
in (4) are of order A7/2, The first approximation to the
solution ¢(k) of the variational integral equation is
obtained by replacing po, I1, and Iz by po®, I:@, and
I,® in (1.23) and solving for ¢ (k). The result is

¢ (k)= o (k) +¢1(k) = — Li-t+1(k), (A1)

where ¢1 (&) is found with the aid of (1) and (2) to have
the following behavior for various values of k:

o1(B)=— {4+ (n+3em?)* P —n— b},

EZph3(0), (A2)
$1(k)=0(e), k~ph*(0), (A3)
1R — 21,0 (k), ESph*(0).  (A4)
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The parameter € is given by (3) and differs from the
dimensionless coupling constant A only by a factor of
order unity; the dimensionless variable # in (A.2) is
defined by

k=[epr(0)J.

To find the contribution of ¢; to E¢/# we substitute
(A.1) into the various integrals in (4). The factor

[1—¢*R)'=[1—Li*+2Lip1(k)—¢*(R) I (A.6)

which occurs in all of the integrands can be expanded
in powers of

(A—=LAH[2Lwp1(k)— 12 (k)]

for k> ko, where ko is defined by the requirement that
the quantity (A.7) be unity for k=Fk¢; one finds
ko~a"1p*\. The contributions to E¢/# from the interval
(0,ko) are all of order A\7/2 or higher so that aside from
such terms one has

Eo/n=(Eo/n)O+8(Exin/n)+3(Epot/m),  (A.8)

where (Eo/n)©® is the result (8) obtained by neglect
of ¢1, and 8§ (Exin/n) and §(E,0t/7) are, respectively, the
contribution of ¢; to the ground-state kinetic and
potential energies per particle, given by

(A.5)

(A7)

1 = Lipi(k)
8 (Bxin/m) = — f — Rk
27l'2p ko (1 - Lk2)2
1 p* (14+3L2)d 2 (k
] f ( #)b1%( )k4dk+- ., (A9)
2209k 2(1—Li2)?
1 p2v(k)pi(k
5(Epot/%) = z(_)_L(__).kzdk
27 ko (1—Lk)2
1 pr*v(k)el(k
S Mk%ik-}— <o (A10)

2m2Jgy (1—Ly)®

The contributions to all these integrals from the interval
(ko,k.) are of order A72 or higher (we recall that
~ap*\ and k.~ap*\}) so that we need only
consider the contributions from (k). For 2>k, one
can use (A.4) for ¢1(%) and can write, according to (1)’

Li—Fk2pp(k), 1—L221, (A.11)

and we introduce only errors of order A7/2 if we use these
approximations even for A~£%. One finds in this way
that the integrals in (A.9) and (A.10) involving ¢, are
of orders A and N2, respectively, while those involving
o1 give

10 The kinetic energy per particle is given by
, 82 (k)
1—¢*(k)

all other terms in (4) represent potential energy.

(8x%0)* | 3 a&k;
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1 -]
8(Exin/m)=—— | v(B)I[,©(k)dk
2wz,
+a20(p*¥2\7?), (A.12)
1 0
§(Epot/m)=—"1 v(B)[19(k)dk
2w2J k.
+a20(p*¥2\72).  (A.13)

Both of these integrals are of order A3 and hence of the
same order of magnitude as other non-negligible terms
in (8), but these contributions differ only in sign: the
lowest-order contribution of ¢1 to Eo/# cancels between
the kinetic and potential energies, leaving only a
negligible term of order A\7/2. This result is to be expected
on the basis of the variational theorem, and hence
serves as a check on the calculation.

APPENDIX B

In this Appendix we shall show that the error
introduced into (8) by our neglect of “nonpair”
contributions is of order A"/2. The total Hamiltonian
(I.2) can be written in the form

H=Hp+Hr+H, (B.1)

where Hp is the pair Hamiltonian (1.6) whose ground-
state energy per particle is (8), and the “triad” and
“quartet” Hamiltonians Hy and Hg are defined by

Hr=V"1 3 1’ v(k) (adt o oottt ol axeao),
(B.2)

HQ=‘%V—1 Zkk’k”, V(k)aku_ *akffakr_kakn, (B3)

where the summation in (B.2) excludes k=0, k'=0,
and k=K, while that in (B.3) excludes all values of
k, K, and k” which give a term already contained in
Hr or Hp [see Eq. (I.5)]. We shall estimate the
“‘nonpair” corrections to Eq/# by perturbation theory,
taking (Hr+Hg) as the perturbation and Hp as
unperturbed Hamiltonian; the ‘“unperturbed” eigen-
states and energies are then the pair eigenstates
(I.B.6) and their energies (I.44). The calculations are
simplified, however, by noting that matrix elements and
excitation energies involving low-lying pair eigenstates
(I.B.6) differ from those involving the corresponding
low-lying variational states (I1.33) only by terms of
order #7; one has

Ep(qmz--)—Ep(00- - -)=3u' i E(k)+0 (), (B.4)
M (ni'ng’ - ), Al (numa- - -))
=(@(m'ny--+), A2(qms- - - ))[1+0(n)], (B.5)

where 4 is any operator involving only a finite number
of annihilation and creation operators. Equation (B.4)
follows from (I.44), while (B.5) is a consequence of
(I.B.6) provided that the pair eigenstates II are
normalized. Finally, it will be convenient to work in the
free-particle representation; we therefore write (B.5)
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in the form

(H(ﬂllnzl' . '), AH(’NN' : ))
=(mn -+ [A |nme- - )[A+0m™)], (B.6)

where the free-particle states [nms---) and the trans-
form A’ of A are given by (7.33) and (I.19), respectively.

The transforms of the annihilation and creation
operators in Hr and Hg with nonzero momentum
indices are given directly by (I.19), but a, and a¢f in
H; must be treated by an indirect method. The
simplest procedure, and one that is sufficiently accurate
for our purposes, is to make the replacement!

@y — no*Bot

(B.7)

in Hr; here ny is a c¢-number determined by the
requirement

n0+ Zkl (Nk)=n, (BS)

where the expectation values are evaluated in the
perturbed ground state.

The simplest process generated by Hr is a three-

phonon ‘‘vacuum fluctuation” process. The contri-

bution of this process to E¢/# is found from (B.2),
(B.4), (B.6), (B.7), and (1.33) to be

po ' g*(kk’)
—_— 27I" —6
p( ) ff Ek)+EK)+Ek+K)

PkdE, (B.9)

where

g(kk') = {[1—¢*(k) [1—¢*(k') J[1—¢*(k+k') [}~
X2LawA(aq' kK)o (@)[v(9)¢(a+q)—»(¢)], (B.10)

and A(qq’|kK’) is defined to be unity if the ordered set
{q,d’, —q—q’} is any permutation of the ordered set
{k, k', —k—k'}, and zero otherwise. The integral /* /'
in (B.9) is restricted so that each unordered set
{k, X', —k—X'} of phonon momenta appears only once.
In order to estimate its order of magnitude we note
that the dominant contribution to one of the k-space
integrations comes from 0<kZp*#(0); hence this

U 'This is a minor refinement of Bogoliubov’s replacement
ao—>n09.
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integration gives a factor [p»(0) J¢. The other integration
receives sizable contributions from all values of £ which
are not >>a; hence this integration gives a factor a—3.
Finally, there are dimensional factors »%(0) from
g2(kk’) and @® from the energy denominator. One
therefore concludes that the contribution (B.9) to the
ground-state energy per particle is of order a—2p*3/2A7/2,
By similar analysis one concludes that the contributions
of all other connected diagrams generated by Hr and
H g are of higher order than A\7/2;e.g., thesimplest process
generated by Hgq gives a contribution of order a—2p*2\%.

In conclusion, a few words seem to be in order
concerning the validity of the replacement (B.7) and
our implicit restriction to conmecled perturbation
diagrams. Although the linked-cluster form of many-
body perturbation theory,? which has been so useful
in the treatment of many-fermion systems, is not valid®
in unmodified form for the many-boson problem due to
the effects of “depletion of the ground state,” there
does exist a modified form!*!® of the linked-cluster
theorem which is valid for many-boson systems. The
method of Pines and Hugenholtz!® involves replacement
of the Hamiltonian H of the system by the statistical
operator H—uN, where N is the total particle-number
operator and u the chemical potential. The replacement
ao— not, aot — ne? is then made in H—uN. In the
resultant “reduced” Hilbert space the unperturbed
ground state is the true vacuum state |0) rather than
the state [#) where all # particles have zero mo-
mentum, so that the usual linked-cluster theorem
becomes applicable. Since the ‘“nonpair” part of
H—pN is the same as the “nonpair” part of H, this
furnishes a justification of our neglect of ‘“unlinked”
diagrams in estimating the ground-state energy correc-
tions due to Hy and Hyg.

12 K. A. Brueckner, Phys. Rev. 100, 36 (1955); J. Goldstone,
Proc. Roy. Soc. (London) A239, 267 (1957); N. M. Hugenholtz,
Physica 23, 481 (1957); J. Hubbard, Proc. Roy. Soc. (London)
A240, 539 (1957); C. Bloch, Nuclear Phys. 7, 451 (1958); F.
Coester, Nuclear Phys. 7, 421 (1958).

13T am indebted to D. Pines and N. M. Hugenholtz for empha-
sizing this fact.

14 S, T, Beliaev, J. Exptl. Theoret. Phys. 34, 417 (1958) [trans-
lation: Soviet Phys. JETP 34, 289 (1958) 7.

15 D, Pines and N. M. Hugenholtz (to be published).



