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This paper is a direct continuation of an earlier paper (I) where
an attempt was made to set up a Geld-theoretic foundation for the
theory of mean mass and lifetime of an unstable particle. It was
argued in I that the decay-time plot of a beam of unstable particles
is a concept peculiar to a single-particle theory; that from a Geld-
theoretic point of view, mass (the variable conjugate to proper
time) rather than time has the primary significance. Here we show
that the spectral function p(m') appearing in the (Geld-theoretic)
one-particle propagator has a direct signiGcance as the probability
of Gnding in production an unstable particle of mass m. This allows
us to deGne a "one-particle" state for the unstable particle as a
superposition of its outgoing decay states suitably weighted in

mass space Lwith a factor which is the square-root of p (m') g. The
proper-time propagation of this state gives the decay ampli-
tude, and its modulus is ideally the experimentally observed decay-
time plot.

The time plot is explicitly evaluated for m. decay. Insofar as the
distribution of mass values for the m- meson starts with the p, mass
(assumed stable), the time plot is not merely the conventional
decay exponential e ')"0. There are additional terms which
become important about a hundred lifetimes after the particle is
created.

Finally we compare the time plots for particle and antiparticle
decays on the basis of CTP invariance.
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1. INTRODUCTION

~ 'N a previous paper' (referred to as I) some of the
~ ~ properties of an unstable particle have been formu-
lated in a manner which is consistent with the general
requirements of relativistic quantum mechanics. This
paper is a direct continuation of I.

The main result of I was that one may associate local
relativistic field operators with unstable elementary
particles just as well as with stable particles; these fields
satisfy the causality condition and possibly also satisfy
local equations of motion. These latter may contain
parameters corresponding to (bare) ma, ss and charge.
The only difference between the stable and the unstable
case lies in the fact that fields corresponding to stable
particles possess asymptotic limits, so that "in" and
"out" fields can be defined. ' This is not true for the
unstable case. This statement is equivalent to the
following;

(1) The set of "in" sta, tes (or "out" states) exist for
stable particles only. States corresponding to unstable
"particles" can be defined (see below) but these are not
eigenstates of the mass-operator, I'„', corresponding to a
unique mass value for the unstable particle. Nor do such
states appear directly in the completeness relations

has the form

The position of the 6-function singularity defines the
physical mass, M, of the stable particle associated with
g. Equivalently A.'(p') has a real pole at 3P There is. no
such pole for the unstable case, nor does p contain a
6-function singularity of the above type.

The chief problem of the phenomenological held
theory of unstable particles, then, is that of providing a
suitable theoretical entity to be correlated with the
experimentally observed quantities like mean mass,
mean lifetime, partial lifetimes, etc. This was attempted
in I, where it was suggested that the spectral function p,
defined above, provides a suitable basis for such a
theoretical development. Here we start by substanti-
ating the claim made in I that p(a') gives the probability
of producing an unstable particle of mass I(.".This allows
us to define for such particles a one-particle state,

~
s), as

a linear superposition in mass of "out" states of its
stable decay products. In this superposition all "out"
states of mass a are weighted with a factor which is
essentially the square root of p(lr'). Clearly the state

~
s)

is not an eigenstate of the mass-operator p„'. However
its proper-time development gives the probability that
the particle has not decayed up to a certain time, thus
yielding the results of an attenuation experiment with
a beam of unstable particles. This is the quantity of
primary experimental interest for all long-lived particles
(mean lives )10 "sec).

Finally we prove the exact equality of particle and
antiparticle lifetimes on the basis of the present
formulation.

2. THE SPECTRAL FUNCTION

= 2ir ' das d', 1.3
"p(")expL P(~ 3')~ Before considering unstable particles specifically we

list some properties of spectral functions, p, for a real
Bose field p. Let ~i);„nda~i), ~ be a set of states' P. T. Matthews and Abdus Salam, Phys. Rev. 112, 283 (1958).' Lehmann, Symanzik, and Zimmermann, Nuovo cimento 1, 205

(1955). those states which are coupled to the state $ 0) through

10'?9



1080 P. T. MATTHEWS AND A. SALAM

)=(2 ) 'J l~'(p)1'*(

the interaction. The label i= 1, 2, gives the distinct niques. ' Then
type of such states; for example states congruent to
tr+I0) are states le+2), lp+t)ltr+tr'tr'), lp22), etc. of
arbitary energy and momentum. Berne

~'(p') =Z
I «Ie(0) Ii p) I'. (2.1) X& (p —k, —k2) &+(ki) &+(k2)d'kid'k2. (2.9)

The only states appearing in the sum are i-states of
total energy-momentum p. To make the de6nition more
precise, consider the case when i denotes a particular
two-particle "out" state,

If we define

I 2)out I klyk2)outq (2.2)
Xtt'(p —ki —k2)6+(ki)6+(k2)d'kid'k2, (2.10)

where k~, k~ are the four-momenta of the two particles.
The state Iki, ks)out is defined by the PrescriPtions of
Lehmann, Symanzik, and Zimmermann. ' Using the
covariant normalization

(k, Ik,)a+(k,) = (2~)2S(k,—k,),

then

u'(p2) =- (1/~) I
~.'(p') I'I'(p'). (2 11)

It is crucial for subsequent work that the b-functions
appearing in the integrand ensure that

where

a+(k) =e(k,)S(k2—~2),

Eq. (2.1) reads

i'(p2) =(2~) ' ~l(ole(0) I»,k )I2~+(k )

I(p') =0 for p'= (ki+k2)'&4222'= N p. (2.12)
(2.4)

We shall refer to M; as the threshold mass for the i
state. Define

(2.13)

From (2.6), (2.7), and (2.11),

Define

u(p') =2' u'(p') (2.6)

Xa+(k2)b(P ki k2)d—'kid—'k2 (2.5).
Equation (2.14) shows quite generally that I is the
imaginary part of (6,') ':

From the completeness relation (1.1), it is clear that 6 '=[X iI] '— (2.15)

where X is real. Using (2.7), p must have the form

p(p )= 2(22r) (ol (p(2'),p(o)) Io) exp[ip*]d"*

= (1/tr) Imh, '(P2). Rewrite

I (p')
I '(p') =

~ X'(p')+I'(p')
(2.16)

The expression above determines p in terms of 6,'.
Alternatively each p; can be expressed in terms of 3„'
and F;, where F; is the appropriate (proper) "vertex
part" allowing for a transition from a tt-state to the
state

I i). Specializing again to a particular two-particle
state,

~ (0ly(x) lki, ks) exp[ipse]d'x

= (22r)'(oltt (0) Ik„ks)8(p —k,—k,)

= (2~)'5,'(p)r;(p —k,—k,)b(p —k,—k,). (2.8)

Here F; is the "proper" vertex part defined by Dyson, '
with external lines corresponding to the p field and ki,
k2 particles. In any field theory with a local interaction,
the validity of this relation can be proved immediately

by using Schwinger s functional dift'erentiation tech-

' F. J. Dyson, Phys. Rev. 76, 1736 (1949).

X (p') =p' —Mp2 —It'. (p'), (2.17)

where cVp is the bare mass of the g field. It.'(p2) and I(p')
can now be recognized as the real and imaginary parts
of the proper self-energy part. Then

I'(p')
u'(p') =- (2.18)

~ [p2 ~ 2 g(p2)]2+[+, I .(p2)]2

(The similarity of this expression to the familiar single-
level formulas in nuclear resonance theory is clear. ) The
result is remarkable insofar as all p; have a common
denominator. This is the main result of this section.

Before concluding this section note Lehmann's mean-
mass theorem' for the bare mass,

(2.19)

4 J. Schwinger, Proc. Natl. Acad. Sci. U. S. Bi, 452 (1951).
5 H. Lehmann, Nuovo cimento 2, 34'7 (1954), where the precise

conditions for the validity of this theorem are shown.
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such that
M,2—M(P —R(M,2) =0,

Ms'&3l„'.

(2.20)

Here M, 1 is the threshold mass of the state of lowest
mass congruent to the state p l0). So defined, M', is the
physical mass of the stable p particle. For such a theory,

(p) =~(p' —M.')+ (p),

0 (p') =0 for p'~& M, i2.

This implies that an equivalent definition of the physical
mass is given by

Mst~

(P M~ )p(P )dP =0 (2.22)

which is to be compared with (2.19) for the bare mass.
This is an important definition, which is used below.

3. THE MASS PLOT

Ke now wish to specialize to the case of realistic
unstable elementary particles. All these have the charac-
teristic that the interactions through which they are
produced are stronger than those through which they
decay, and are referred to as "strong" and "weak"
interactions, respectively. If the weak interactions could
be switched oG, the particle would be stable. As dis-
cussed in I, this implies that if only the strong inter-
actions are considered, p„ the approximate expression
for p, would have the form (2.21), where M', now
denotes what we call the strong mass. The effect of the
weak interactions is to spread the 6-function into a finite
distribution, and to shift the mean somewhat from M, '.

We now show that for unstable elementary particles
with weak and strong interactions, the spectral func-
tions p, (~'), for all i such that M;(M„give to a good
approximation the probability of the particle being
produced with a mass ~ and decaying through the i
mode. Here M; is the threshold mass for the i decay
mode and

p, (z') =0 for K'(M, 2. (3 1)

Suppose that the matrix element for the production
of the unstable particle, four-momentum p, in a certain
process, is F(p'). If the particle subsequently decays via
the mode "i"into ki and k, using Schwinger's method,
it is easy to show that the amplitude for the whole
process is

Ii(p'-') a.'(p) 1';(p,k„k,)b(p —k, —k,), (3.2)

provided one can neglect the effect of other (virtual)
particles which in graphical language link the factor F
to the vertex j',;. The probability of observing decay
products corresponding to a particular value of p' for the

This applies to all particles (stable or unstable). A
stable theory is one for which X(p'), (2.17), has a real
zero M, ',

unstable particle is then proportional to

I'(P') = lF (P')~.'(P)i''(P, k,k ) I'

~(P')=~(M') p'(P'), (3 4)

which establishes the result. The approximation em-

ployed implies that we are neglecting the effects of the
production mechanism on the properties of the unstable
particle.

This is the stage to introduce a number of conventions
to conform to experimental practice. I.et us define weak
thresholds to be those threshold masses M, which
satisfy 3E„,M„&M, &M„, (3.5)

where M, 1 is now the threshold mass of the state of
least mass which is congruent to the state via the strong
interactions. Define

and
p~ (P') =p (P')e(M. i' P'), —(3.6)

pD(P') = 2» (P')
j=1

(3.7)

Ke now define the mean ma, ss of the unstable particle
and the mass shift in terms of these expressions. From
(2.19) and (2.21), which may be rewritten, in an obvious
notation for the strong mass, as

~(P' M') p D(P')dP'—=o, (3 g)

it seems reasonable to adopt as the definition for the
mean mass, M, of an unstable particle the relation

(p' M') pg)(p')dp'=0—. (3 9)

This definition of mean mass, in terms of the truncated
spectral function, pL, conforms precisely to experimental
Iirocedure. As is clear from (2.18) and (2.12), this

' If there are any thresholds lying between 3II, and LV,1, these
should ideally be included as weak thresholds. It is experimental
practice, however, not to associate these with the decay of a p
particle. A specific example is ~+ ~ p++~+m'. On the basis of the
ideas presented here, one particle in 10'2 of the so called x+
structures would be produced with enough energy to decay in this
fashion. However, to simplify the discussion we neglect all such
cases.

)&5(p—ki —k2) 6+(ki) 5+(k2)d4kid4k2. (3.3)

We call this the mass plot. If it is assumed that F varies
slowly with (p') compared to the remaining factor,
which is sharply peaked about the mean mass M (~M, )
of the unstable particle (to be defined below more
precisely), it can be factored out from this expression.
The probability of mass p' for a given production
process and i decay mode is then, by (2.11),
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isolates from the complete p function the peak in the
neighborhood of M, , (see Fig. 2 of I), with width given

by the I;, corresponding to what are conventionally
regarded as the physically possible decay modes of the
particle.

It is to be noticed also from (2.18) that in the limit. of
the weak coupling tending to zero (I -+ 0), pD becomes
a 8-function with argument equal to the real part of the
denominator. Thus, by (2.20), (3.8) is a restatement of
the usual definition of the renormalized mass, when only
strong interactions are considered.

The mass shift due to weak interactions is then defined
to be IM—M, I. The best example of such a mass
shift is the case of E1 and E~ mesons. These have the
same strong interactions and consequently the same
strong mass. But the decay channels, and consequently
the weak contributions to p~& and p~2, are different,
leading to diGerent lifetimes and a small difference in
the mean mass values.

4. THE STATE VECTOR

Turning now to the problem of finding a suitable
theoretical expression for the decay time plot, we first
set up a state vector describing the unstable particle.

In I, the function p& was used to define a density
matrix, and the mean mass and lifetime were determined
in terms of the mean value of the mass operator and its
second moment for this density distribution. Since how-
ever pD defines a density which is diagonal in the
representation in which the operator I"is diagonal, it is
possible to define a state (or more precisely states, one
for each decay channel), which leads to the same expecta-
tion values of functions of I"as the corresponding mean
values of pD. The required state corresponding to
channel j is~

(»I I"I»)=
) P'I o(P')dP' ~o(P')dP' (4.5)

To get the (proper) time plot we must study the
propagation of this state in (proper) time. The single-
particle approximation has implicit in it the hypothesis
that a single proper-time parameter can be attached to
the decaying particle up to the instant of its decay.
Writings

~l~ (r)& = (~.')'I ~ (r)), (4.6)

we get

~s())= d, exp[a, ]f~k„a)„„,

pi), (K2) exp[ —-2K(r —rp)]dK2, (4.8)

and the partial decay probability for channel j is given
by Ig, I'. It is satisfactory that since, by (2.18), the
main ~ dependence of pD; comes from the denominator
which is the same for all j, essentially the same time
plot is obtained if one studies a, particular decay mode
rather than all possible decay modes.

It is conventional to assume that &~ has exponential
form. The relation of this assumption to the present
theory is examined in the next section.

X~+(k,)~+(k,).„,(k„k, I y(0) I
0)

X6((ki+k2)' —K')0(M. i—K)d'kid'k2. (4.'/)

The decay amplitude is

o, ( —
o) =(;( ) I;( o))

I s;)= dK
I ki, k2).U)h+(ki) 6+(k2).„,(ki, k2 I 4 (0) I 0) S. THE DECAY TIME PLOT

Consider, to be specific, the decay of a m meson into a
Xf)((ki+k2) —K )0(Msi K)d'kid'k2 (4 1) p meson and a, neutrino. By (2.18) and (4.8), we have to

evaluate
It is easy to verify that

(4.2)

S~ = 5
j=1

(4 3)

The state Is,) is thus an appropria, tely weighted linear
superposition of the states into which the P particle can
decay. Define

pMs12 I(K') exP[ 2K']—
(r) = dK' (51)

s [K2 M 2 g (K2) 8 (K2) ]2+I2(K2)

where p is the p-meson mass, R,, and R denote contribu-
tions arising from strong and weak interactions, re-
spectively, and I is the imaginary part of the x-meson
self-energy due to virtual decay into a p meson. The
square bracket can be closely approximated by

&-2D I-~D) =-
~

"»(P')dP', (4 4)

7 States similar to these have been considered previously by
R. I'. Streater (private communication).

where m' is the strong mass' (including electromagnetic
self-energy effects). Since the integrand is sharply

' This is the "single-particle" equation for a particle in its own
rest frame.' The mass m' corresponds to what is denoted by M,' in Sec. 3.
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peaked about this value, we may approximate by the
expression"

t
" I(m') expL —i~r]

g(r) da'.
q

I
g2 ~2]2+$2(~2)

(5.2)

The integral can be evaluated on the assumption that

(5.3)

If the contour is closed in the first quadrant the enclosed
pole gives rise to the usual exponential term. The
integral from p to @+i~,which has to be subtracted, is
a Laplace transform. The result for large ~ is

the stable particles, the "in" states and the "out"
states. It is one of the assumptions of the theory that
each of these sets is complete. Thus

1=+
I ri&;„;„(~

I

=P
I n&.„ i.„,(n I. (4 I)

Q P 0 ~ ~I I

If n, P, . are a complete commuting set of operators,
which commute with the 5 matrix, they can be used as
labels to identify all the states in both these summations.
Thus

2i J expLi(p —m)7]
. (5.4) Q P 0 ~ ~I I

OUt' 01IC +
y p

~ (4.2)

According to the conventional method of calculating
lifetimes, the mean life ro is given by

I/m= I/ro. (5.5)

The probability that the particle has not decayed after
time r is

I g(r) I' which besides the usual exponential
contains additional corrections.

The appearance of correction terms is not a special
feature of the approximations we have made, but an
example of a general theorem, that the Fourier trans-
form of any function which vanishes for all values of
the argument less than some finite value, behaves for
large ~ like some power of r. Thus the appearance of
such a term in the time graph is a very speci6c predic-
tion of our theory. " It arises directly from the very
general property that the mass spectrum of the unstable
particle is certainly zero for values of ~' less than the
squared rest mass of the lightest decay products.

It is reasonable to assume that the correction terms
are given correctly in order of magnitude by the above
expressions for any particle. For most observed unstable
particles the correction terms are only significant after
a period of about one hundred lifetimes. I'or Z, vr, and
Be' it may be as short as twenty to thirty life times. For
these cases there may be effects of comparable magni-
tude which have been neglected in the derivation
of (5.4).

6. EQUALITY OF PARTICLE AND
ANTIPARTICLE LIFETIMES

If we take the (n'I. In'& matrix element of these
equations, we obtain two alternative forms of the unit
matrix in the subspace of all states corresponding to the
eigenvalue a' of 0.. We denote this by

P1, ~ ~

P 1 ~ ~

(4.3)

where the summation is over all those states with a
given value of a. In particular, taking n to be the total
energy-momentum of the state,

u -(p') =u-i(p') (4.4)

Now consider a non-Hermitian field p representing an
unstable particle and corresponding antiparticle. If we
write symbolically for the particle

(4.5)

the "in" and "out" states corresponding to this value
give two alternative forms of the unit matrix for all
states of this energy and momentum. From this it
follows that p(p') could equivalently have been defined
in terms of the "in" states, or, in an obvious notation,

By the procedure developed by Lehmann, Symanzik,
and Zimmermann, ' two sets of states can be formed for

then for the antiparticle

(4.6)
'0 We remark that in this approximation the time plot corre-

sponding to a particular decay mode is, according to (2.18),
I;(m')

g~(r) = B(r),
5{m'}

as in the conventional treatment.
"Such inverse powers of 7 in the decay amplitude were first

discovered by M. Levy in connection with calculations on the Lee
model. Ke are greatly indebted to Professor Levy for informing us
of his results prior to publication, and also for pointing out the
existence of the general theorem. See also G. Hohler, Z. Phys. 152,
546 (1958).

where 8 denotes the same state as ~, but with all particles
replaced by antiparticles. If the theory is invariant
under change conjugation, C, these two expressions are
equal. Even if the theory is not invariant under C but
only under CTP, then

(4.7)
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Thus

Hence, by (4.4),
p .(p') =p..~(p').

p(p') = p(p').

(4 g)

Thus the time plots, as well as the mean mass and life-
time of particle and antiparticle, are the same.

Let us now consider partial lifetimes. Suppose that a
particle has two alternative decay modes to be denoted
by a and b. De6ne

P'-(o) = I(o I e(o) I o& I'

Sy the argument given above, it then follows that

P'. (~) = P=~(&),

where p(a) refers to the decay of the antiparticle into the
corresponding antiparticle states. However the states a
and b are clearly coupled through the weak interactions,
which we write symbolically as

la)—= lb) via weak.

That is to say, the partial lifetimes of particle and anti-
particle are equal to first order in the weak interactions,
provided the final states of the alternative decay modes
are not coupled by strong interactions. A good example
of this is the 2~ and 3m decay modes of E+ and E .
These states are not coupled by the strong interaction
since they have opposite G-parity (extended charge
conjugation). Thus the 2n/3m. branching ratio should be
the same for E+ and E to this approximation. However
the 2m and 3m- states are coupled through the electro-
magnetic interaction, and this coupling produces an
inequality between the two branching ratios.

Finally we consider the partial lifetimes for the decay
of a self-conjugate particle into two modes which are the
particle conjugates of each other (for example assuming
CI' invariance X9s ~ m'+e++ p+). This is a special case
of the partial lifetimes for particle and antiparticle con-
sidered above. From CTI' invariance, the partial life-
times are only equal to the extent that the final states are
not coupled by strong or electromagnetic interactions. "
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It then follows that

so that
(o)+po &(o)

The authors are indebted to Professor M. Levy for
very interesting and stimulating discussions, particu-
larly on the question of the decay-time plot.

p -(o)&p'-(~);

partial lifetimes of particle and antiparticle are not
necessarily equal. However, if

l a)g l b) via strong,

the unit matrix can again be split, if weak interactions
are neglected, into a part containing la) and another
part containing lb) and to first order in the weak
interaction

p (o) =po &(o). '

Hence

p*-(o) = p* (o)

Vote added irs proof. It has been po—inted out to us
by Professor Schwinger that the form of the correction
terms given above is highly idealized since further re-
strictions on the mass plot are imposed by the experi-
menter, through the limitations of his measuring device.
See the report of the 1959 International Conference on
High Energy Physics, Kiev.

"These results are identical with those obtained by G. Liiders
and B.Znnnno (Phys Rev. 106., 385 (1957)g, who, however, base
their definition of lifetime on the assumption of complex poles on
the "unphysical sheet" of the propagator. This requires an
analytic continuation which has not yet been de6ned. If such poles
exist, they would provide a basis for alternative and equivalent
definitions to those presented here. We would like to thank Dr.
Zumino for a private communication on this point.


