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Green's Function Approximation Method. II. The Polaron*
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A method previously derived for the approximate construction of the nucleon Green's function is here
applied to that of the polaron. After making an arbitrary translation of the phonon variables, a linear in-
tegral equation for the Green's function is derived by means of a symmetrical treatment and a noncorrelation
assumption, in complete analogy to the nucleon problem. This equation is solved through the introduction
of a spectral representation in the special case of zero total momentum. The lowest energy state of the system
is calculated in terms of the arbitrary translations and then minimized with respect to them, Using the
simplest nontrivial cutoff procedure to obtain the variational equation and its solution, results are obtained
for values of the coupling parameter n~&3, and are compared with those of Feynman.

&. INTRODUCTION slightly different notation) the Hamiltonian

'HIS paper will be another application of an
approximation method that was derived for the

case of a nucleon in interaction with its meson field. '
As in that case, we shall concern ourselves with a
Green's function with a known spectral representation
and, by operating on it symmetrically, derive an in-
tegral equation for it. A noncorrelation assumption will
be used to reduce this to a linear equation consistent
with the spectral form, which form will then be used
to obtain the solution. To suit this specific problem, the
technique will be modified to include a variational
calculation for the purpose of obtaining the lowest
energy state of the system.

The situation here considered is an electron moving
slowly in a crystal lattice. The physical assumptions are
that the one-electron and perfect crystal approxima-
tions are valid (i.e., no correlations between electrons
and no imperfections in the crystal lattice), but that
there is a large dipole moment per unit volume, due to
the longitudinal optical modes of vibration, with which
the electron interacts. The frequency, co, of these
vibrations will be taken independent of their wave
vector k. All other electron-lattice interactions will be
neglected (i.e., transverse optical and acoustical modes
of vibration). Electrons bound to individual ions will

be assumed to move with them without inertia. Elec-
trical isotropy will be assumed and the crystal will be
taken as a continuum. Finally, the effect of the periodic
potential of the ions in their mean positions and the
other electrons will be assumed to be entirely ac-
counted for by an effective mass, en*. Ke use units
such that k=co=2m*=1. These approximations are
discussed in detail by Schultz' who then derives (with

1- (dk)a= P—,I krt(k, t)r(k, t)
(2~)'

t (dk) 1
y(4 )-'* ~ -1 rr(k, t)+r(k, t)7

(2~)' k

r (dk)
r'(k, t) r (k,t)+M, (1)"(2)'

(2)t r(k, t),r'(k', t)7=8(k—k').

The constant M has been introduced so that the lowest
energy state will have E=O. It is analogous to the mass
renormalizetion in I in that the uncoupled system
(a=0, M=O) has lowest energy Ee——0 and M repre-
sents the shift in the origin necessary for the lowest
energy state to be unchanged when the coupling, o., is
"switched on." In this case, however, 3f is finite and
will be the ultimate object of our calculation. It is to
be noted that P is a constant of the motion and may be
taken as just a number.

2. DERIVATION OF THE EQUATION

Were it not for the cubic term in (1), the problem
could be solved exactly by means of a translation of the
phonon variables. In order to suit the treatment to this
situation, an as yet undetermined translation will be
introduced and will eventually be determined by a
variational principle. Thus, let

*Based in part on a Ph.D. thesis submitted to Harvard Uni-
versity, January, 1959.' D. S. Falk, preceding paper LPhys. Rev. 115, 1069 (1959)g.
Hereafter to be referred to as I.

~ T. D. Schultz, Massachusetts Institute of Technology Solid-
State and Molecular Theory Group, Technical Report Qo. 9,
1956 (unpublished). See also H. I'rohlich, Advances in Phys.
325 (1954).

r(k, t) =u(k, t)+ (4~~)1A(k),
r'(k, t)=a'( kt)+( m4n)i At(k), (&)

3
i.e., A (k) is a real numerica, l function of k.
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where P is the total momentum of the system, rr

measures the strength of the coupling between the elec-
tron (whose coordinates have been eliminated) and the
phonons, k= k ~, the integrations are three-dimen-
sional, and 7. " and ~ are the phonon creation and
annihilation operators obeying
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Introduce states (ot I and ~ot') such the, t

a (k, t') i
Ot') =0= (Ot i

a' (k, t).

The field equations are then given by

(4)

the equation for G becomes
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As only the domain of small I' is of interest, expand M'
in a Taylor series as

M 'M=0+M)P2+ (11)

a,nd (10) becomes
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Finally, the equation ansjogous to (I-10) is
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Ke now introduce the noncorrelation assumption in
a manner completely analogous to (I-22, 23, etc.).
Thus, matrix elements of the form (Ot~at(k, t') ~ot'),
{Ot~at(k, t')at(k', t') ~ot'), etc. , are neglected; the 3IIO'

term is deferred to a higher order; and the noncorrelation
is written as

3. THE SPECTRAL COEFFICIENTS

The Green's function may be written as

(22)

i(ot
~
a(k, t)at(k', t')

~

ot')e(t —t')
= —iG(t, t') g(k, k', t, t') (14)

where the p are non-negative, as they represent the
squares of the absolute values of matrix elements. In-
serting this in (21), multiplying by e'"'&' '&, integrating
with respect to (t—t') from —~ to ~, and noting that'

i(ot
~
a(k, t)a(k', t)a'(k", t')at(k"', t')

~

Ot')8(t —t')
=—G(t, t') g'(k, k', k",k'"; t, t'). (15)

The phonon Green's functions, g and g', are then re-
placed by their free-field values, i.e., their values when

n, and thus A(k), is set equal to zero. Under these
circumstances the phonon vacuum states become time-
independent and

8
i—(0

~
a(k, t)ut(k', t')

j 0)
Bt

= (1—2P k+k')(0~ a(k, t)a'(k', t') ~0). (16)

From (2) it follows that

(o~ ~(k, t)at(k', t)
~
o)=~(k—k').

Hence, the free-field value of g, written with the delta
function removed, is
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In a similar manner, g' is replaced by
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The imaginary part of (24) is
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With all this, the approximate equation here becomes Xp(P' cu —k' —k"+2(k+k') P—2), (25)

and the real part, in conjunction with (25), yields
8

'P(1+3f ) —i—G(t, t') —5(t—t') 'P(1+& )ii——
83

t (dk)= —M,3(t—t') —i(4~~) ~l U'(k)G(t, t') gko(t, t')
(2~)'
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(27)

XG(t,t') g~~ "(t,t'). (21)

This is the equation analogous to (I-17, 27). There the
technique of solution involved the use of the spectral
form of 6, and we shall follow the same procedure here.

Equation (27) then determines the change in energy
and effective mass once the p are determined from (25)
and normalized by (26).

' J. Schwinger, Phys. Rev. 82, 664 (1951).
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4. THE SOLUTION FOR P2=0

For simplicity, only the case I =0 will be con-
sidered. This will be sufficient for the calculation of the
lowest energy shift, M. Thus, for I-=0,
A (k) —=A'(k') U(h) —= U'(k') .

p(0,ol)—=p(ol); M'=Mo. (28)

since for 1. ~&co&2, it follows that co —k' —1&1. In a
similar manner, for 2&~ol&3, the results (36) may be
utilized to yield

(ol —1)i
p(~) =-pi[U'(~ —1)]'

p(~—2)&2
+—a'pi

"p
dk k'[U'(k')]'[Uo(ol —2 —k')]'

(ol —2 —k') *'
(ol —2 —k') ''

+—', k4 [A'(k')]'
ol2(ol —k' —1) ol'

U'(k') = (1+k')A'(k')+1/k, (29) x

The functions 2' and U' depend only on k', as that is
the only scalar that can be constructed from li with
E'=0. Some of the integrals in (8) and (9) then vanish

by symmetry, leaving

r~ (dk) 2
M o

=M+ (47ra) (1+k')Ao(k')+ —Ao(k') (30)
(2lr)'. k X[A'( —2 —')]' oo& . ( )

Equations (26) and (27) become

) p(ol)d( =1,

olp (ol) dol = Mo

(31)

(32)

This process may be carried on to yield the value of

p(ol) for any value of ol. This method of solution is the
same inductive method used in obtaining the solution

(I-43). The physical basis is also the same, unity here

being the energy necessary to create a phonon, and

consequently the analog of the meson mass p.

Upon performing the angular integrations in (25), we

get
5. THE VARIATIONAL PRINCIPLE

2
p(ol) =—n

~

dk k'[Uo(k')]'p(ol —k' —1)
p

24
+——n' dkdk' k'k'4[A'(k')]'

X[A (k')]'p( —k —k"—2). (33)

It is to be recalled that, by the definition of M, the
lowest energy state is taken as zero. This is equivalent
to the statement

p(P' ol) =0, ol&0. (34)

Now, in {33), choose co&1. The right-hand side then
vanishes, yielding

ol'p(ol) =0, ol&1. (35)

The only solution of (35) compatible with (30) and (32)
may be seen to be' (--1)-:

(36a) 1 =pl+ —pl d(d[U (ol —1)]
GP

p{ol)=pl5(ol), ol & 1.

Now, let 1&~ol&2, then (33) becomes

The value of p(oo) given by (36c) contains the first

example of the contribution from the "two-phonon
term" in (33), i.e., the n' term. As an extremely simple-

minded approximation, let it be assumed that (36c) is

valid for all values of co~&2, i.e., neglect the iteration
of these terms in (33).This is the most elementary non-

trivial assumption one might make, since if the series

were terminated at (36b) the results would simply be
lowest order perturbation theory. This approximation

may be expected to be poorest for large o. since it is

just the higher powers of n that are here neglected.

Granting this, to evaluate 3f, we first determine p~

from (31), and then M from (32) and (30). Still to be

determined, of course, are the translations A'(k'). Thus,

inserting (30) and (36) in (31) and (32),

2 1
p(ol) =—npi— dk k'[U'(k')]'5(ol —k' —1)

7l CO ~p

a (ol —1)l
[Uo(~—1)]', 1&~~&» (36b)

7l CO

'It should be noted that for I'~/0 one obtains, in lace of
(36a), for 1&1—~ & P'& 0 p(P' co) =p1(P')8{co—P'(1+&1 ).Thus
the effective mass is & (1+M1) '.

+—~'pi ~~
dk k'[Uo(k')]'

(ol —2 —k')
Uo(ol —2 —k')

ol'(ol —k' —1)

((o—2 —k') l

+-', k4— —[A'(k') ]'[Ao (ol —2 —k')]' (37)
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and
2 f 2

3II= ——n I dk ko (1+k')Lgo(k'))'+ —go(ko)
k

n (~-1)& 2
d~ LU (cu 1)$ + n plJ, CO 7l

oo (~—2) ~

&(Jt doo $ dk k2LUo(k)j LU (u —2—k)]
2 0

(a)—2 —k') i 2 k4(co —2 —k') '
X pAo(ko) jo

M(M k 1) 3 M

TAsLE I. Self-energy, 3f, as a function of coupling, e, with So=1.

0.100 0.500 1.00 i,50 2.00 2.50 3.00 3.50

3II 0.1003 0.506 1.02 1.54 2.06 2.58 3.09 3.59
Feynman's result 0.1001 0.503 1.01 1.52 2.05 2.59 3.13 3.69

As the crudest approximation to (40), assume that
the terms involving A'(k')LA'(oo —2—k')g' are negli-
gible, i.e., neglect the two-phonon terms in (40). The
solution is then simply

o(~ —2 —k'))' . (38) A'(k') =
k(1+k')

(41)

The determination of 2' is now accomplished by which im lies b (29)
means of the variational principle which minimizes the
lowest energy state, vis. , U'(k') =0. (42)

8M/ado�(k')

=0. (39)

This results in an integral equation for Ao(k') which,
noting that (37) makes p~ a functional of Ao, we find
to be

2
Ao(k') —n(1 —pg) k (1+k')

Again, this sort of approximation may be expected to
be especially bad for large o, .

6. THE ENERGY SHIFT

If these results are now used in (37) and (38), one
obtains

2——n (1—p,)k (1+k)'
k(1+k') .~
2 k((v —2 —k') *

+ n' d„Uo(k')LUo(~ 2 k
J„,„(-k —1)

4 k'(co —2—k') I
~o(ko) L~o(~—2-k )j

3 co

01

1/p) ——1+ (0.175)n'

M =n+ (0.0253)pgn'

(O.O253) n&

M=n+
1+(0.175)n'

(43)

(45)

2 k 2—pP —n U'(k') +—n'
1+k2 ~2 J kmy2

I k(ar —2—k')'*

X Uo(k)t Uo(~ —2 —k')g'
I. a)((u —k' —1)

4 k'(co —2 —k')-**

+— Ao(k')
C

Ao(rv —2 —k')g'
3 co

n I" ((o—1)l
&&

— d(v Uo(u& —1)
71 ] CO

oo ~ (I—2)~

+—n' de dk k'LUo(k') I'
"o

(o)—2 —k') l

)& LUo(co —2—k') j'
(u(M —k' —1)

(a&
—2 —k') &

+-'O'— PA'(k') j'fA'(ro —2 —k')i' (40)

In Table I we compare the result (45) with those ob-
tained by Feynman. ' It will be seen that, despite the
crudeness of (41) and the approximation which ter-
minates at (36c), our results do not appreciably depart
from those of Feynman's until as large a value as a|=3.
For large values of n, Eq. (45) is expected to be invalid
due to the nature of these approximations, not neces-

sarily because of the basic approximations leading to
(33). It would seem quite likely that a more adequate
solution of (40), or the termination of the solution of
(33) at a point somewhat later than (36c) would yield
correspondingly better results.
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