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effects of the several two-body forces (Figs. 3 and 4)
that will contribute when all three particles are in a
small region of space. Such corrections, however, will

give a fairly uniform spectrum to the outgoing pions,
because the momentum range in which the Z and
nucleon have a low relative momentum has no special
importance for these e6ects.

There are, nevertheless, two ways in which the three-
body effects can appreciably modify the peaked pion
spectrum. First, the interference with the A amplitude
produced by the simple conversion process depends on
the magnitude and phase of that amplitude; these
quantities vary rapidly in the critical momentum region
(near kz=0). Second, an intermediate pion-nucleon
interaction in the resonant ($,s) state can take place";
since the momentum of the pion relative to the nucleon
varies between 140 and 220 1VIev/c, a rapid variation of
this part of the A-production amplitude might be ex-
pected. A simple estimate of these eGects shows that
both can modify the A-production rate, and that the
former can also broaden the spectrum appreciably. We
are not including a quantitative discussion here because
the present experimental situation does not justify the
introduction of the many additional parameters.

If we ignore these corrections, we can turn to the
problem of relating the reaction amplitudes in deuterium
to the amplitudes in hydrogen. We therefore introduce

"WVe note that such an interaction is not possible once the h.
has been produced, since the pion-nucleon system must then have
isotopic spin ~ ~

the usual isotopic singlet and triplet amplitudes o,o and
nl for the E-nucleon interactions and their linear com-
binations

Py'= (k—)'~o+~t,

P: = (s)'~s+k~r,

1

i 2 (2r+1)IP '['=2 (21+1)[~el' i

tM

which are the amplitudes for production of a Z on one
nucleon of the I=O deuteron system such that the Z
is in the I=—,

' or I=~ state with respect to the other
nucleon. In our model the P, differ from the P, ' by the
final-state interaction. Since this diGerence will in
general depend on the Z-nucleon relative momentum,
detailed Z spectra are necessary to extract information
about no and ~~ from the present experiment. We do not
know either whether the same E E channels are
participating in hydrogen and deuterium. Thus, the
striking difference between the Z branching ratios in the
two cases"' could be due to both the occurrence of
diGerent incident channels and the Anal-state inter-
action. It is to be hoped that independent Ineasurement
of the IC-hydrogen parameters will lead to a better
understanding of the final-state interaction in this
problem.

"R. D. Tripp, Proceedings of the 1958' Annual International
Conference on High-Energy Physics at CERE, edited by B.
Ferretti (CERN, Geneva, 1958), p. 184.
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A method for the approximate construction of the nucleon Green's function is presented. The development
is such that the approximate Green's function automaticaliy has the same analytical properties as the exact
one. This method involves the symmetrical treatment of the Green's function and, ultimately, the assump-
tion that certain particles behave in an uncorrelated manner. The approximation results in a linear integral
equation for the Green's function which is completely renormalized. This equation is solved exactly through
the use of the spectral representation which, by construction, is consistent with the approximation.

i. INTRODUCTION

1
~~NK criterion that might reasonably be demanded

of an approximation method is that arly approxi-
mate solution should have the same analytical prop-
erties which the exact solution is known to possess.
Accepting this criterion, it is natural to consider the
single particle Green's function, for its analytical
properties are well known. ' Further, previous attempts

* Based in part on a Ph.D. thesis submitted to Harvard Uni-
versity, January, 1959.

J. Schwinger, Differential Equations of Ouantum Field Theory,

at approximating it have either failed at just this re-
quirement, ' or have had to artificially patch up the
approximation in order to meet it. It is clearly desir-
able to develop an approximation method which auto-

A set of lectures given at Stanford University, 1956 (unpublished);
G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann, Nuovo
cimento 11, 342 (1954).

~ Ning Hu, Phys. Rev. 80, 1109 (1950);K. A. Brueckner, Phys.
Rev. 91, 761 (1953); S. Kamefuchi and H. Umezawa, Progr.
Theoret. Phys. (Kyoto) 9, 529 (1953); G. Feldrnan, Proc. Roy.
Soc. (London) A223, 112 (1954).' P. J. Redmond, Phys. Rev. 112, 1404 (1958).
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matically satisfies this criterion, and that is the purpose
of this paper.
)~„Thebasic approximation here will be the noncorrela-
tion assumption. That is, at some point in the calcula-
tion (the point may be deferred beyond that chosen
here and higher order equations thereby developed) it
will be assumed that various particles are not correlated
with one another, but rather behave as fully interacting
particles in the absence of the other particles. Specifi-
cally, three- and four-point correlations will be neg-
lected. (For higher order equations we would neglect
five- and six-point correlations. )

In Sec. 2 an exact integral equation for the nucleon
Green's function, involving more complicated Green's

functions, will be derived by means of a symmetrical
treatment of the two space-time points involved. This
symmetry is basic to the method, as an unsymmetrical
treatment will lead to previously examined approxima
tions." Conditions sufficient for the approximate
Green's function to have the correct analytic properties
will then be examined. In Sec. 3 an approximation which

meets these conditions will be developed from the non-
correlation assumption. A linear integral equation in-

volving the (presumed known) meson Green's function
will result. For simplicity, the meson Green s function
will be taken as the free-field propagator, but this is
not necessary to obtain a nucleon Green's function with

the proper analytical behavior. A completely renor-
malized equation for the spectral coe%cients will then
be obtained. Section 4 will be devoted to the exact
solution of this equation, and in Sec. 5 an asymptotic
solution for large values of the mass parameter will be
obtained and examined with regard to existence of the
renormalized Green s function in this approximation.

2. THE SPECTRAL FORMS

o(gtg )= 1 f01' gp) Xp

foi sp (sp, (6)

(A (x)B(x'))+=A (x)B(x') for xo) gp'

=B(x')A (x) for xp(xp',

These may be written in the form'

G(x x') = t (dp)e'&&' —"&G(p),

1
g;, (x,g') = 8;; t(dk)e""t —*'i g(k'),

(27r)'
where

( A, (,) A(,) )
G(p) +—(' d

I
+

'7P+ow ~g~+o E'rP+K op '7P K+go)

(10)

and
e~0+ (11)

t B()t')dl'
g(ko)= ~, . 0+.

& k'+X' io—
[The abbreviated form

A (Ir)
lK

pp+ir
(13)

will sometimes be used for the right-hand side of (11)
and similar structures. ] The' A's and the B's are real
and non-negative, corresponding to their physical in-
terpretation as probabilities, and

The single particle Green's functions are defined by4

G(x,x') =i((f(x)it(x'))p)o(x, x'),
where

The field operators for the nucleon, it (g), and for
the meson, P(x), obey the field equations A o-+ j~da A (I~) = 1 (14)

(vp+~)0(g) =[(~—~o)—gonzo '0'(x)74(g) =x(*), (1)
(k'+~')4 '(x) = ( '—~o')4'(g) —pap[A(x), d'or V(g)7, (2)

where ns and p are the masses of the nucleon and the
meson, respectively, and the subscript 0 refers to the
unrenormalized quantity. The renormalized value of
the coupling constant is determined by g'/4or = 10. The
field operators also obey the usual commutation rela-

tions, i.e., the only nonvanishing commutators (or
anticommutators) are

(3)

These spectral forms exhibit the analytical properties
of the Green's functions and we should like to develop
an approximation that maintains these forms.

Equations (1), (3), and (5) imply that

(yp+m)G(x, g') =8(g—x')

+ ((x(*)a(*')).) (*,*'). (»)
Hence

[(yp+ m) G (x,x') —8 (x—x')7 (Vp+ m)
= (m —riop) 5 (x—x')+i((x (x)x (x'))~)e (g,g')

==(os—oooo)5(x —x')+P(x,x'). (16)

r)y'(g)i, y~(x') =8;,S(x—x'), (xo=xo').
Bt

By means of the Fourier transform, (16) may be written

4 J. Schwinger, Proc. Nati. Acad. Sci. (U. S.) 37, 452 (1951).
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C(»)
F(p)=g d»-

pp+»
(18)

in momentum space as

Ap 1—+
Vp+m Vp+m

)& L(m mp)+ (1 A p) (pp+m)+F (p)]
Vp+m

Ap
+ F.(p)

'y p+ m 'y p +m 'yp+ m

Now, F(x,x') is of the same form as G(x,x'). Hence it
may be shown, in the same manner as (11)was derived, '
that J also has a spectral form, but without the pole
at yp= —m as that has a,lrea, dy been removed. Thus

since

9'( )&=0
Finally the term

(m m—p)'s(( p)(x))p(x'))+&c(x,x') = (m —mp)'G(x, x') (25)

is neglected as being a higher order term, The motiva-
tion for this is that, in momentum space, this term has
a pole at yp= —m while F(p) does not. Its inclusion
would therefore be a bad approximation for F(p) and
would lead to a G(p) with the wrong analytical prop-
erties. Further, the requirement that the approximate
equation be renormalizable also demands that this term
be deferred to the higher order equation. It is, of course,
necessary to verify that, in higher order, this term is
joined by other higher order terms, producing a con-
sistent renormalizable equation. This is indeed the case, '

With these simplifications, and noting that

where the C's are real and non-negative. This may be
rewritten in the form

we may write

v-'v 5"=3

C(»)
F(p)=) d» —(yp+m)) d»

K m

C(»)

(»—m)'

3lgp
F(p) = — - (dk)ysG(p —k)ps'(k').

(2~)4~
(27)

With

+()p+m) Jl d

C(»)
(m —mp) =— "d»

C(«)
(yp+m),

(»—m)'(yp+»)
If (11) and (12) are inserted in (27), then, except for
the» and X integrations, (27) becomes identical (to
within a constant) to the second order perturbation
theory mass operator for a nucleon of mass» interacting
with a meson of mass lt. This is known to have the
spectral form'

(1—Ap) = d»
C(»)

(m —»)'

D(K )K)X )
dK

yp+»'
(28)

Eq. (17) may be written as

Ap l C(»)
+ d»

~p+m ~ (. m)'(~p—+»)
G(p) = (22)

3. THE APPROXIMATE EQUATION

To achieve such an approximate F(p), we return to
the definition of F(x,x') and insert the definition of x
in it. The assumption of noncorrelation is then invoked,
and the correlations between boson and fermion vari-
ables are neglected in the following manner:

Z X S X ~ X + 6 $~$

=-'r'(r~( )~(")],& (,")]L'(~~'( )~ (*)],&]
=—sG(x,x') Pg(x, x'). (22)

Similarly

s((4 '(x)k(x)lt(x'))+&e(x, x')

=s(4'(x)&((f(x)0(x'))+&e(x,*')=o, (23)

This is precisely the form (11) with non-negative A s,
and (14) is automatically satisfied. Thus, the spectral
form (11) will be maintained if the approximate F has
the form (18).

with non-negative D's, as may be verified directly (the
k integration is quite straightforward'). Consequently

(4 ~i' D D(» )K)A)

F(p) =)t d»'
'yp+»

(29)

This is the desired form (18) and hence the approximate

G(p) calculated from (17) will have the spectral repre-
sentation (11) with non-negative A s (or, in their re-
normalized form, rr's). We may therefore make the
simplifying assumption

8(l~') =)IgP —p,'), (30)

and still maintain the form of G(p), i.e., g(k ) will be
taken as the free-6eld propagator. This assumption is
not really restrictive as any B(l).') may be constructed

by summing a large number of terms of the form (30)
with diG'erent values of p' and appropriate weight fac-

s D. S. Falir, Ph.D. thesis, Harvard University, 1959 (un-
published).' Karplus, Kivelson, and Martin, Phys. Rev. 90, 1072 (1953').
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tors. Equations (11), (12), (27), and (30) yield where

F(p) =

—K 3g~
3igo' I. I- A(») 1 f(»,»') =

(dk), I d»ys— (31) I»I 16m' (»—m)'
(2&r)'J ~ p(p k)+—» k'+p'

»' —-I 1+2E»' )

From the definitions (17), (20), and (21), it is evident
that F„is of the form

K4

F.(p) = (~p+m)~(~p) hp+m).

Then (11), (17), and (32) yield

(32)
for all » and»' with I»I & I»'I+y, . (40)

4. SOLUTION OF THE EQUATION

It is convenient to introduce the notation
A~(») A (»)

R(pp) = d» +
-'rp+» 'IE 'rp»+zE

(33)

For any real eigenvalue of pp we may take the imaginary
part of (33) and obtain, for»)~m+p,

t
I&I

f(x)dx=— f(x)dx+
4 l.nl

Then (39) may be written in the form

f(x)dx (41)

1 —1
(») = ——ImR(») =

I ImF, (p)] „=.,
x(»+m) 2

(34)
f I ~l —~k

n(») =f(»,m)+) d»' f(»,»')n(»'). (42)
fm+p J

A+(») =—ImR( —») = —LImF„(p)g, „

7l 7l K SE

The solution to (42) is then written down by inspec-
tion in the following manner. Consider 0 & I»I (m+p.
Hy definition

The renormalized Green's function, G, , is given by' n(.)=o for o&I.I&m+/. (43a)

A (»)/Ao
G„=—= '

dK

Ap J pp+»

n(»)
dK

J yp+

Now consider m+p& I»I &m+2p, . In this region the
integral in (42) doesn't contribute since I»I —p&m+/i.
Hence

To this order of the approximation it is evident that
go' ——g', i.e., there is no coupling constant renormaliza-

tion here. The subscript 0 will therefore be dropped.
In accordance with (36), the renormalized spectral

coefficients, n(»), are defined by

n(») =A~()/—»oAmor») m+ii
0 for m+ y)»& —(m+/i) (3/)

—=A (—»)/Ao for —(m+p))».

With this definition, Eqs. (34) and (35) may be com-

bined to form

n(»)= f(»,m) for m+p( I»I (m+2' (43b.)

In the region m+2&&i &
I
»

I
&m+3ii, the integral in (42)

contributes only for values of I»'I such that m+p
& I»'I &m+2@. But the value of n(»') in this region is

just given by (43b). Hence

pfl~l —s J

n(») =f(»&m)+
' d»' f(»,»') f(»'&m)

~ {m+p)

for m+2'& I»I (m+3/i. (43c)

K

K 7l K m

F.(p)
Im—

Similarly, for m+3p, & I» I
(m+4&ti the results (43b) and

(3g) (43c) are all that is required, yielding

Equation (38), in conjunction with the results of

performing the k integration in (31),6 provides the

desired integral equation for the renormalized spectral
coefficients:

n (») =f(»,m)

+
~ f»&+»I

p {m+2@) {i~! —ul
d»' f(»,»')f(»', m)+

I+ {m+2@,J

d»' f(»,»')

n(») =f(» m)+ ~ d» f(»&» )n(» )„"-I.I+.
' J. Schvringer, see reference 1.

(39)
t

fI~'I —
& I

X f(»'&m)+ ~ d» f(»,»')f(» &m)
~ fm+p J

(43d)
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This inductive method of solution may be continued
indefinitely. It is made possible by the fact that, for
any va, lue of lK l, only values of n(K') with

l
K'l at most

l
K

l

—}3 occur under the integral. Since the n will have
already been evaluated for these

l
K'l at the previous

stages, the function under the integral sign is known
and hence so is n(K).

Physically, this solution in steps of p, corresponds to
the successive possibility of emitting more and more
mesons as the "mass" gets larger and larger. Thus, the
upper limit of the integral in (42), which is so crucial
to this method of solution, is simply the statement that
if a particle of initial mass

l
K

l
emits a meson of mass )(z,

the resulting particle can have a mass of at most

l
K

l
—g. The energy is conserved in this process since we

deal only with the imaginary part of (33).
The results of (43) may be written in general as

this will not affect the form of the results. Then (39)
becomes

p
—

1 (z}

n(K) = 1+ (K 2K K +2KK K )n(K )dK'
2lKl K4~( }

(46)

It is evident that n(—K) also satisfies (46), and since
the solution of (46) must be unique,

0! K =0! K

Equation (46) may then be rewritten, for K) 0, as

p
n(K) =—1+—

} (K' K")n—(K')dK' .
2K K

Differentiation of (48) yields the differential equation

v
l

fl~l —s I

n(K) =p
n=o 6 (m+}z I

t tl~tl —~1

dKy
~ (m+pJ

K2 ~ ~ ~

p ( l ~~-11 —s l

dK„
d2o. dn

+7K +(5—4p)n—=0,
dK

(49)

)(f(K Kl)f(K1,K2) ' ' 'f(K 1K )—f(K,m), (44)

5. THE ASYMPTOTIC SOLUTION

It is clear that for sufficiently large
l

K l, (44) becomes
unwieldy. For this reason, and also to understand what
conditions are necessary for the renormalized Green's
function to exist, the asymptotic solution, for large

l
K l, of Eq. (39) will now be investigated. To this end let

p—=3g2/16m-2, (45)

and take lKl))m. For simplicity we will also set }(3=0;

where S is the largest integer contained in

l IKI —(m+&)7/I and

n(K) =—o

It must be emphasized that. (44) is a finite series; for
a given mass K, X corresponds to the maximum number
of mesons that can be emitted. This solution includes
all those phenomena in which the nucleon emits a series
of mesons and absorbs them in the inverse order to
that of emission. It is also to be emphasized that (44)
is an exact solution to (39). Further, since f(K,K') )&0

Lsee (40)7, n(K) is manifestly non-negative, as it must
be7 and as anticipated in the discussion following (29).
Hence any non-negative choice of B(}(2) will result in
this property, and indeed the solution may be obtained
in the same manner since the above discussion may
simply be carried over with p replaced by the more
general X.

with the solution

n(K) g K
—3+2(1+t))zz+g K

—3—2(1+(2)2 (50)

where the A's are constants which may be determined
by inserting (50) in (48). Upon evaluating the 3's and
taking only the leading term in K, we obtain finally:

PD+(1+P)&71 pl li-" ""'
0! K

4(1+P)-' m & m )
(51)

From (36) it is easily seen that for the renormalized
Green's function to exist, it is necessary that

n(K) }
l" } n(K)(K —yp)

dK= —dK
~} (ZZZ+Zz} pp+K ~ }ZZZ+Zz} K +p

(52)

exist. Since, when
l

K
l

is large, n(K) is even, it is evident
that the renormalized Green's function exists provided
only

n(K)- IKI' &&1 IKI))m (53)

Equations (51) and (53) then yield, as a limit of validity
of Eq. (39),

P(3 or g2/42r&42r.
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