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In a reaction from which several strongly interacting particles emerge it is often possible to isolate the
effects of forces between two of the outgoing particles. There are many cases in which this anal-state
interaction can produce inelastic reactions. The formalism that describes this situation is developed here,
and the reaction E +d —+ m.+Z+E ~ m+A+E' is studied in detail as an example. It is found that large
h./Z branching ratios can result and can be used to restrict the Z-X and E Sinterac-tion parameters. The
gross features of the spectrum can be understood using a simple model. It does not seem possible to determine
the parities of the strange particles from the momentum spectra. When the inelastic reaction in the Gnal
state is exothermic, as in the example, high partial waves may contribute.

I. ImRODUCnam proceeding through the strong Z-X interaction, and
shall see that the method can be adapted to this case.
There are three principal differences from the con-
ventional applications:

'HE theory of final-state interactions' has been
fruitfully applied to many elementary-particle

processes. In the characteristic situation a "primary"
reaction mechanism produces a set of outgoing particles
which have strong mutual interactions. The 6nal-state
interaction concept is useful if the mutual interaction
of one pair can be isolated from all other effects in this
final state. This can happen if the relative momentum
of this special pair is low compared to all other momenta
in the state, and if the interaction of this pair with the
other emergent particles is weak. 1AThen these condi-
tions are fulfilled, the remaining particles escape
quickly from the production region and have little
eGect on the pair which is left behind. The low-
momentum pair can interact strongly for a longer time,
producing important modi6cations in the energy
spectrum and in the total reaction rate. If this final-state
interaction is attractive, for instance, a low relative
momentum will be favored and the reaction rate will
be increased. Because the eBect of other particles in
the final state can be neglected, the scattering of the
interacting pair can be related to the scattering proper-
ties of this pair when they are isolated. . The final-state
interaction concept will therefore be useful when there
is only one important interaction in the final state;
this should involve only low relative momentum and,
for convenience, only a small number of angular
momentum waves.

It is of interest to consider the application of this
method to problems in which the strong final-state
interaction can lead to inelastic processes. This can
occur, for instance, when the primary reaction, whic

produces the final state, leads to antinucleons,
mesons with negative strangeness, or Z hyperons. W
shall be particularly interested in the reaction

1. The diffuse structure of the initial state (the
deuteron) permits the separation of the primary
interaction from the final-state interaction. Since the
range of the forces is small compared to the interparticle
spacing, explicit many-particle effects involving the
simultaneous interaction of more than two particles
are expected to be small. The neglect of these e6'ects is
usually described as the "impulse approximation'" or
the "multiple-scattering approximation. " In this ap-
proximation we can describe both the primary inter-
action and the final-state interaction in our problem
by parameters which can be determined from two-
particle scattering and reaction data.

2. Even though the directly produced particles are
in states of low relative momentum, the energy released
in the inelastic process can lead to observed particle-
pa, irs with high relative momenta. Many angular
momentum waves in the 6nal state may therefore
contribute.

3. It is possible for a directly produced pair of
particles to be in a. (virtual) state such that their
relative kinetic energy is negative. An inelastic final-
state interaction can couple this state to a real final
state provided the inelastic reaction is suSciently
exothermic. This part of the final-state spectrum
cannot be directly related to free-particle reaction
data since it involves the scattering matrix in an
"unphysical" region.

IC +d ~ sr+Z+iV —& sr+A+1P, (1)
* This research was supported in part by the National Science
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' K. M. Watson, Phys. Rev. 88, 1163 (1952).

To illustrate these facets of the final-state viewpoint
E we shall consider the strange-particle reaction (1) as an
e example. To isolate the final-state interaction between

the Z and the nucleon, we must neglect the interaction
of the pion with these particles. If we do this, we have
a problem which contains all the features of this method
but in their simplest form: there are only three particles
(the minimum number for our "many-particle"

'G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952);
G. F. Chew and M. L. Goidberger, Phys. Rev. 87, 778 (1952).
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system); there are only two outgoing-particle channels;
and the large radius of the deuteron compared to the
range of the two-particle forces enables us to use the
"impulse approximation" with confidence.

Experimental evidence on this process has recently
been reported. ' Reactions following the capture of E
mesons at rest by deuterium were studied. In particular,
the spectrum of s. mesons [Fig. 1(a)] associated with
the reaction E +d ~ w +A+P has shown two peaks,
one around 250 Mev/c and another near 190 Mev/c.
These are just the momenta one would expect if the E
meson were absorbed on a single nucleon to produce
A+w or Z+w. , respectively. The high-momentum peak
can be explained by the direct production of h.+7r on a
single nucleon in the deuteron; the low peak can be
interpreted as the production of Z+w on one nucleon,
followed by the reaction X+X -+ A+/i/' on the second
nucleon. In this latter case the pion momentum is
characteristic of Z production. The conversion reaction
competes with elastic Z-V scattering; it is this com-
petition which we shall study. The directly produced
A's may suffer some elastic scattering on the remaining
nucleon, 4 but their inelastic collisions a,re of minor
importance and will not be our concern here.

In our detailed study of these reactions, we shall,
within the framework of the model discussed above,
investigate the consequences of va, rious assumptions
concerning the initial state of the K meson and the
character of the E-Ã and Z-X interactions. Since only
preliminary work on E-mesonic x-rays and on E- and
Z-particle absorption in hydrogen has been done, none
of these parameters of our problem is known at the
present time. The deuterium experiment does not seem
to permit a detailed determination of the interactions,
but its results will place restrictions upon them.

II. FINAL-STATE INTERACTION FORMALISM

To understand the final-state interaction viewpoint,
we shall examine what modifications in the exact
matrix element for the process must be made to arrive
at that forma, lism.

We first define the interactions in this problem. The
E-nucleon intera, ction which interests us here is that
part which leads to a state of Z+w and A+w; we
denote this by Vrc. (For simplicity we do not write the
interactions with the individua, l nucleons, although
this must be done in practice). We shall denote the
complete Z-S interaction, including both elastic and
inelastic parts, by Vy. This interaction vanishes if it
acts on a state in which no hyperon is present. The
remaining interactions will be denoted by V„.

The exact matrix element for K absorption can be
written in terms of p;, the initial sta, te of a deuteron

3 N. Horwitz et al. , Bull. Am. Phys. Soc. 3, 363 (1958}.The
theory for this process in the absence of final state interactions
has been discussed by A. Fujii and R. E. Marshek, Nuovo cimento
8, 643 (1958).

4 F. Crawford et al, , Phys. Rev. Letters 2, 174 (1959).
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Fro. 1. Spectrum of It +d —+ s +A+p: (a) as a function of the
pion momentum and (h) as a function of ks Lsee text, Eq. (11)].
Arrow denotes value of p for which kg=0 (p =188 Mev/c).
The kg region depicted in Fig. 1(b) corresponds to 120&P &240
(Mev/c).

and a K meson bound in a Coulomb orbit, and Prf i,
the ingoing wave solution of the total Hamiltonian.
ityt & is a solution of the integral equation

sty' '=dr+Go' '(l'x+i'r+l', gy' ', (2)

where pr is a free plane wave of the final nucleon, pion,
and either A. or Z hyperon, and Go'—& is the free-particle
Green's function for total energy Ex+Md satisfying
ingoing-wave boundary conditions. In terms of these
functions, the matrix element is'

m, ,=(if, f-&) V )y). (3)

To relate this matrix element to other observable
qua, ntities, it is convenient to replace all potentials V;
by free-particle scattering operators" ' defined by the
integral equation

(4)
5M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398

(1953).' K. M. Watson, Phys. Rev. 89, 575 (1953); 105, 1388 (1957).
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where
P»(—& =y~+Go( &Q—2'.

t'ai,
.(—&

j&x
(6)

with similar equations for the other P, & & (j=F, E,
and r). (The adjoint of 2"; enters here because'»& & is
the ingoing-wave solution. ) The use of the scattering
operator greatly reduces the number of terms which
need be included to obtain an accurate result.

In this form f»& & has replaced f~& & as the wave
function describing the final state. As we see, it divers
by the removal of the most direct effects of the E-
absorption mechanism. In our work we want to
approximate this function by a wave function which
includes only the eGect of the Z-S interaction. This
function will be

The matrix elements of the operators T, between
plane-wave states are the exact scattering amplitudes
for the corresponding two-body problem. The inter-
action between each pair of particles is described by
the appropriate scattering operator.

If we perform this replacement, we find'

The remaining terms in Eq. (8) represent higher
order scattering corrections. ' The second term contains
"re-productive" processes in which the primary Z is
scattered, reabsorbed to yield a E+X, then must be
reproduced; it is thus at least of third order in the
production mechanism T~. Figure 3 illustrates an
example of such a process. These complicated processes
are highly improbable, and we shall neglect them. The
simplest contributions of the third term involve
scattering of the pion by the Z and the nucleon. These
are obtained by letting P»& &=xr& &. Examples are
shown in Fig. 4(a) and 4(b).

III. FORMULATION OF X —A. CONVERSION
PROBLEM

We now direct our attention toward the wave
function yY( ) which contains the final state interaction.
In a coordinate representation it has the form (with
the 3-particle center of mass at rest and units A=c= 1)

xr& '(r,R,r) =- expI ip (r —R)fg' '(r), (10)
(2tr) o

rx 4'f+Go l rex 4'f+~o 2 r @f (~)

It is the product of a plane wave representing the pion
and a two-body wave function describing the relative
motion of the Z-N system.

We can easily re-express P»~ & in terms of this
function. Using the definition of f»i & and fr& & from
Eq. (6), we have

P»( &= pl+Go( —&—2'rt(elf+Go( —
& Q 2'.tP. (—&)

AY
yG (—&2' tp (—&

=xr(—&+Go(—&2"rtgo(—&2'»tP»( —
&

+(1+G (—&2'rt)G (-&2' tel, (—&

Inserted into Eq. (5), this yields

~r'=&xr' 'I 2'»Iy')+(4»' 'I 2'»Go&+»rGo'+»»I y')
+(4.' 'I 2'.Go'+'(1+2'rGo'+') l4') (g)

The 6rst term includes the sects of the primary
production mechanism and the Z-N interaction. In
the Anal-state interaction approach it is considered to
be the dominant term

This expression can be represented by Fig. 2.

Fzo. 2. Schematic
representation of the
process E +d~m-+
Z+N2-+ m+2'+%2'
or ~+A.+N2'.

FIG. 3. Schematic representation of the process E +d ~ m.

+&+N'2 ~ x+2'+N2' ~ E'+N3+N2' ~ m.'+&+N3.

where R= (mrrr+m»r»)((mr+m~) is the center-of-
mass coordinate of the hyperon-nucleon system and
r = rY—r~ is the baryon relative coordinate. The
momentum of the outgoing pion is y .

The energy of the 6nal state is given by

+.(p~o+m o) t

2pr» 2(mr+ m») =E»+md m» mr Qr (11)— — ——

for either hyperon in the final state. kr'/2pr» is the
center-of-mass energy of the hyperon-nucleon system.
The function g' & (r) which describes the internal
properties of the hyperon-nucleon system is a solution
of the Schrodinger equation

(~'+~r' 2&»I'r)g' '(—r) =o

Since the interaction VY can change the identity of the
hyperon (X~A), it is convenient to represent g~ &(r)

~ Not all many-body effects are included in this formulation.
We have assumed that all interactions can be represented by
two-body potentials. In a correct 6eld-theoretic description there
are explicit three-body corrections arising from the exchange of
virtual particles; such eAects are not included in the present
formulation. Consequently, any computation of the higher-order
corrections within the framework presented here (which includes
only those three-body processes which are successions of two-body
cGects) would necessarily be incomplete.
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by a two-coiiiponent wave function, one component
being the Z-E state and the other, the A.-X state. In
this notation Vy is a 2X2 matrix, and ky and py~ are
diagonal matrices.

There are two independent solutions of Eq. (12),
corresponding to ingoing waves plus either Z-particle
plane waves or A-particle plane waves. Using Fqs. (7)
and (12), these two solutions are

(gzz' '(r) ) (gzA' '(r) )
g" '(r)=I I andg" '(r)=l I, (»)

(g„&-&(r)) l.ga~&-~(r)&
'

where
2py~ f'

gzz~
—

&(r) =exp(ikz r) — dr'dr"
4x

N 77

(a)

gK

exp( —ikz
I
r—r' I)

T zzt (r', r")
fr —r'I

yexp(ikz r"), (14a)

2p~ p exp( —1k'(r —r I)
g~z&-&(r) =- dr'dr"

Ir —r'[

&& Tqzt(r', r") exp(ikz r"), (14b)

(b)

FIG. 4. Schematic representation of 6nal-state
interactions of the pion.

observed matrix element for free-particle scattering:

T,, (k, ,k,) = dr'dr" e 'a~ rT,;(r'', r")e'"~ r" ('16)

2pzN t exp( —ikzI r—r I)
gzg~

—
&(r) = —

I
dr'dr"

I
r r'I—

Tzgt(r', r") exp(ikg r"), (15a)

2pAN
gag&

—
&(r) =exp(ikg r)— dr dr

exp( —ikg
I
r—r' I)

X — Tad (r', r")

&& exp(ikg r"). (15b)

The Z component in the first solution contains a free
Z wave and an ingoing wave of Z particles; the Z
component of the second solution also contains an
ingoing Z wave. These components represent a 2
converging on the nucleon to yield either a Z or a A.

with amplitudes given by Tzz and Tzz, in addition to
the free Z wave. Similarly the A. components represent
the final-state interaction of a A particle converging on
the nucleon to scatter or convert to a Z.

In the particular problem under consideration it is
possible to distinguish experimentally between A. 's

which are produced directly and those produced in-
directly (except in a small region of overlap in momen-
tum space). Directly produced A's do not induce many
inelastic reactions (very few of them are suKciently
energetic to produce Z's) and we shall henceforth ignore
them and the interaction T~q which produces them.
We shall concentrate on the fate of Z's which are pro-
duced by the primary interaction Tzz, their subsequent
motion is described by gzz& ~(r) and gzq& &(r).

The matrix T„,(r', r") is directly related to the

f,,(k, ,k;) = —(p,/2~) T,;(k;,k,)
(17)

is the usual scattering amplitude on the "energy shell, "
and

d~;~/dfl = (e;/e;) If;;(k;,k;) I

is the diGerential cross section. The generalization of
Eq. (17) to many-channel problems and to include the
spin degree of freedom is straightforward. It may be
used to obtain the usual phase shift expansion. If the
forces are spin-independent, one can obtain the

' R. Glauber and V. Schomaker, Phys. Rev. 89, 667 (1953).

where k, and k; are the corresponding center-of-mass
momenta. A spin matrix element is also implied here.
Since each T,;(k,,k,) represents the amplitude of an
individual outgoing scattered wave at t= ~, it must
satisfy certain requirements in order that the total
outgoing current shall equal the total ingoing current.
These conditions can be obtained from the general
principles of unitarity or by imposing current conserva-
tion on Eq. (14) and (15). Time-reversal invariance
implies that T;;(k;,k,)=T,,(—k;,—k~); parity conser-
vation implies that T,;(k,,k,)= T;, (—k;,—k;). Together
they yield T,, (k, ,k,)=T;;(k;,k;). Using this and the
Hermiticity of Vr (which implies that both the diagonal
and nondiagonal matrix elements of the current operator
vanish on a surface at infinity, i.e., that the eigenstates
of this Hamiltonian carry no net current), we obtain
the following result:s

t dQ
Imf, , (k, ,k;) =P k, ' f,J(k, ,k„)f;(k,k;);
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expansion

with f; i"=f;;«& and

Imf;,"~=Z„f; «~'f, . (19)

P~'/2(~z+irix)+ (P '+~ ')'&Qz (P &188 Mev/c),

both Z's and A's may be produced. When

P.'/2(~z+~&)+ (P.'+~.')» Q, (P.&188 Mev/~),

only A's may emerge from the deuteron. The pion may
be emitted with such large momentum that not enough
energy remains to produce a real Z. It is still possible,
however, for a virtual Z to be created by the primary
mechanism and to convert into a A through the final-
state interaction. Such a virtual Z can be considered to
have negative kinetic energy and imaginary momentum
through Eq. (11):

kz'/2pz~ ——Qz —p.'/2 (mz+m~) —(p.'+ vs„')l &O.

If there are only two states, as in the present example,
these equations can be solved:

f;,"'= (1/2i) (X„exp(2ib, i")—1),
(20)

f', "'= l(1—X ')' pL (~""+~;"')3

X~ is a real parameter between zero and one; 6;") is the
real phase shift.

YVith these restrictions, one can insure that the wave
function of Eqs. (13)—(15) satisfy the conservation
laws. In general this is not easy to do since the unitarity
restriction, while relatively simple in momentum space,
becomes complicated when applied to the spatial
representation T,, (r', r"). We have avoided this difFi-

culty by assuming zero-range interactions, for which
the connection between coordinate space and momen-
tum space is especially simple.

If spin dependences are inserted, the possibility of
different structures for T~g depending on the Z-A

parity must be considered. In general the spectrum,
angular correlations, and polarizations will depend on
this parity. We are here going to examine only the
spectrum and in our case this has only a weak depend-
ence on the Z-A. parity. The Z-A mass diRerence is so
large that the A always has a large momentum which
does not vary greatly over the width of the peaks in
the spectra. It is only from a detailed knowledge of the
incident Z-S partial waves and a high experimental
resolution that information on the parity could be
obtained. In the absence of these conditions we shall
assume that the parity is even and that the interaction
is primarily spin independent.

Another characteristic of the inelastic final-state
interaction problem is well illustrated in our example.
Ke may distinguish two regions of pion momentum.
When

I'I 12
y, = tx~, r~ —

j q.(ri —r ) (21)

in the rest frame of the system. qz(ri —r2) is the internal
wave function of the deuteron; Prr(rrr (ri+r2)/2—) is
the orbital wave function of the E meson relative to
the center of the deuteron.

In coordinate space the hyperon production inter-
action has the form

Trr (r,rr, r~,r, ) =b(R2 —R,)T~(t'ai, g,),
where

piirrrr+ 18~ri

5$rc+ Bl+

Blrlr+rN r~
and R2=

are the center-of-mass coordinates, and the 8-function
arises from the Galilean invariance and translation
invariance of the interaction (the latter leads to
conservation of total momentum in momentum space).

$ See reference $ in Sec. VlI.

The correct analytic continuation to this unphysical
region is obtained by requiring that the wave function
Eq. (13) remain finite for all r, which implies that
kz ~ i~z(irz=

~ kz) in this function. (In more familiar
applications one deals with outgoing waves, for which
the correct continuation is kz —+ iaz).

The possibility of obtaining A's in a momentum
range where Z production is impossible shows another
feature of this type of problem: The number of observed
conversion A's is not simply related to the number of
Z's produced by the primary interaction. The unitarity
conditions imply only that there is no net current
carried out of the interaction volume; there are still
local currents within the region of interaction. The
behavior of these currents is described by the familiar
remark that while real particles can propagate to
infinite distances, virtual particles are constrained to
remain in the region of interaction. These local virtual
currents can, however, give real eRects if they are
intercepted by a scattering center and converted into
real waves. Thus, while unitarity assures that one
hyperon is produced for each K meson absorbed, the
number of K mesons reacting per meit time depends not
only on the energy-conserving transitions induced by
t/'&& and observed in E-hydrogen experiments, but also
on the additional reaction channels made possible by
the final-state interaction. The production of A particles,
the scattering of 2 particles from virtual to real states,
and the complicated interference eRects between the
primary and scattered Z's affect the reaction rates and
modify the branching ratios.

IV. EVALUATION OF MATRIX ELEMENTS:
8-WAVE CASE)

There are two remaining functions in the matrix
element of Eq. (9) which must be specified. The general
form of the initial state is
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y~=r~ —r~ and g2=r —ry are the relative coordinates.
Tx(ys, p,) is related to the production cross section for
E mesons on free nucleons in the same way as T;,(r', r")
is related to the cross section for hyperons on nucleons
LEq. (16) and succeeding discussion].

Inserting Eqs. (10), (21), and (22) into Eq. (9),
we obtain

function:
(26)pd(r) =Ng(e "—e e")/r,

with
(np(n+p) ) 1,

& 2~(n —p)')
n= (bee)-'=m„/3, p=7n

Mg; ——

(2a)' ~

mio.

&&exp —iy
~

ps+ r
(

g& &*(r)
mal+mr &

Txz(ps ei) =Aes5(ps)5(ei). (27)

In practice we find that p may be permitted to become
arbitrarily large without modifying our results. The

dSdrdgId P2
short-range or high-momentum behavior of the deuteron
function is important only when the Z-E momentum
k~ is large or when the Anal-state wave function
becomes highly singular for small r.

To compute the probability of nuclear capture we
must have a specific form for the E-X interaction. In

mrc m this section we shall consider capture through the
Pi+ P~ I Tx(P»oi) S-wave E Nchann-el. Making a zero-range approxima-

tion and assuming here a pseudoscalar E meson, we

@fan(9,+-', s) &.,(s). (23)

The 6-function links the four relative coordinates which
are most convenient in this problem. The extra depend-
ences on p& and p2 which occur because of this 8-function
simply enforce the requirement that the matrix element
can depend on r2, the position of the "spectator"
nucleon, only through the relative coordinate r2 —r&.

The "recoil" corrections which they generate can give
angular correlations but do not appear to modify the
spectra or conversion probabilities. For this reason we
shall simplify the subsequent discussion by neglecting
these corrections. Hfdf, then takes the form

M~,=," drdpidp, e—"'o'g&—~*(r)
(2m)s ~

/exp( —iy„.po)Trc(po, pi)pic(pi+', r) pz(r), (24)

where q= t ms&/(m~+mi)5y. .
For nuclear capture from a bound atomic orbit, the

E meson wave function is a hydrogenic Coulomb
function about the center of mass of the deuteron.
This latter condition follows from the fact that the
nuclear motion is very much faster than the motion of
a particle in a Coulomb orbit (so that any charge
asymmetries are averaged out) and is consistent with
the observed charge independence of the reaction. By
analogy with the quite similar calculation of Brueckner,
Serber, and Watson, ' we assume that nuclear capture
takes place from a low-lying atomic level since radiative
and Auger-electron processes are expected to dominate
for the higher levels. Since the Bohr radius ax= 1/axe'
is nearly fifteen times the deuteron radius, we can
approximate the wave function by its amplitude near
the origin. For an eS orbit this gives

pic(pi+-', s)—N 8= (1/ere'gxo)'. (25)

We use a Hulthen form for the deuteron wave

' Brueckner, Serber, and Watson, Phys. Rev. 81, 575 (1951).

Using Eq. (24) for the S-orbit, S-channel case, we find

Mr;= $1/(2m-)'5NgN„eAeeSEg, e,
with

(2g)

(29)

+ifzz&o'Ioo,
(kz+ q) '+n'

5Ri, =4m i(kzMz/ki Mii)'fz Ioo,
where

(31)

I00
6 0

rdr ho&" (kzr) jo(qr) e

1 kz+q+in
ln

2kzq kz —q+in
(32)

Here jo(qr) and ko&i'(kzr) are the sPherical Bessel
function and spherical Hanl~el function of the first
kind, respectwely. "

' P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p, 1465.

We must now specify the form of the Z-X interaction.
In this section we shall study the properties of an
5-wave interaction (both absorption and scattering);
the case of higher partial waves is discussed later. We
have assumed that the interaction has zero range,
since estimates of the effect of a finite range indicate
modifications of the order of 10% or less.

For this case Eqs. (14a) and (15a) become

gzz&
—

&(r) = exp(ikz r)

+fzz&o&t(rkz) 'exp( —ik—zr), (30a)

gzz& &(r)= fzz&o&t(rkz) '(zz/sz)&exp( —ikzr). (30b)

Inserting these into Eq. (29), we obtain
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From the viewpoint of the final-state interaction, it
is clear that the interesting momentum is not the pion
momentum but is k~, the relative momentum of the
colliding Z-E system. In fact, it seems most convenient
and illuminating to consider both the Z spectrum and
the A spectrum as functions of this variable. The
transition rates that we consider are then

1(a) is displayed in this way in Fig. 1(b). I'he spectra
diGer most strikingly in the region of k~=0; the k~
spectrum must vanish at this point due to the phase
space factor.

Ke shall represent the absorption and scattering
amplitudes by a scattering length formula

tanBz~ ' = —kz(ap —
imp), (34)

Rz(kz) =
dwz

=~ ~m,
~

p(k, )dV, ,
dk~

RK(kz) =
dkg

dkK
I

dkK
=RK(kK) = ~3fK~'P(kK) ding, (33)

dkp ~ dkg

dkp,(k,)=S k, p. ~

—+
EE Bt,+Pl~~ dkz

80

It is convenient also to plot the A spectrum as a
function of k~, even though this variable becomes
imaginary for values of p such that Z production is
forbidden; part of the experimental spectrum of Fig.

where b~") is the complex S-wave Z-lV phase shift
{fzz"'=$1/2ijfexp(2i8z&") —1g, etc.). In this approxi-
mation

fzz(P) =
—kzap+iLkzrlp(1+kzgp)+ (kzap)'j

(1+kzgp)'+ (kzap)'

kgqp

(
fzK"')'=

(1+kzgp)'+ (kzap)'

In the region in which only A's may be produced, we
use ethe assumption that the amplitudes f,, ~'&

analytic functions of the energy in the upper ha o
the complex energy plane and can thus be analytically
continued from the region in which k~ is real to that in
which k~=i~g. The result is that

60—
CTOR OF 5 j

&zgp

(
fzK"' ['=

(1—Kzap)'+ (Kzgp)'
(36)

C3

+- 40
JD

20—

l 20 I40 I 60 l80 & 200 220 240

p~ (Mevlc)

(a)

260 280

80—

80&l60
0

80 0 l60i 240i240
k~ (Mev/c)

(b)

FIG. 5. h. spectrum as a function of the S-wave Z-E interaction
parameters for the "5-wave" case. tanbg(') = —kg(ep —imp) is use .

d measured in units of (Mev/c) '. The labels on t e. the curves incurves in the imaginary region denote the sign of gp
Ulc real region o,rc lnclcpcndcnt of tlMS sign.

Ke now have all the material needed to compute the
A and Z spectra. The numerical results are presented
in Fig. 5 and 6 and in Table I. They illustrate the
dependence of the conversion ratio (8=wK/wz and the

t shape on the Z-S interaction parameters.
To compute the ratio we must integrate over t e
spectrum and the conversion —A spectrum. In doing
this we have defined conversion A's to be those for
which kz') —(200 Mev/c)'.

VJhen ap is negative, representing an attractive Z-E
force, R is less than one but can still be quite large.
Making ap more negative (increasing the attraction)
increases the rate for producing Z's but does not
greatly aGect the A rate, since this depends primarily
on gp."On the other hand, when ap is positive, R can
be quite large, and the A spectrum takes on a char-
acteristic shape: it rises sharply in the "unphysical"
region. po

' '
p. A positive ap corresponds to the existence of a

1 2 gbound state with binding energy E~ (1/2pz~)( /ao)
in the Z-E system. Because of the coupling to the A,
this state decays quickly and has a width bKz 1/gp or
"pE (ap/qp)E~. For ap) 0.005(Mev/c) ', corresponding
to a binding energy E~&20 Mev, there will be a pea
in this region.

» From the point of view of a fundamental theory, this distinc-
tion is of course not physically meaningful, since both pp and Qp

are determined simultaneously from the equations of motion.
If there is a net attraction, the Z-S wave function will be increased
for small r with the consequence that inelastic processes will be
correspondingly larger.
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V. DEPENCENCE ON EC-NUCLEON ENTERACTION
PARAMETERS

There is a large probability for nuclear capture of
the E meson from a I' orbit. Capture from this orbit can
take place through the S-wave E-N channel because
of the finite size of the deuteron. Even though the
E meson is in a I' orbit with respect to the center of
mass of the deuteron, it has an S-wave component
with respect to either nucleon when that nucleon is
displaced from the center of mass. At the same time
there will be considerable I' wave present, so that if
there is a I'-wave interaction it will lead to capture
as well.

%e assume that there is an interaction in the S- and
I'-wave incident channels

—I 20—

C3
L-

80—

0
240 160 80 0

kg (Mev/q)

——- 0
O.OI——0.002

Cp

0
+ O.OI
+- 0.005

80i l60i 240i

Trrx(ps, pr) =A (p2 pr)+B (ps, pr') .pl. (37)

TABLE I. Conversion ratio (R=reA/rer for the "S-wave" case
(see text, Sec. IV) as a function of S-wave Z Jt/ interactio-n
parameters. Scattering iengths are in units of (Mev/c) '.

Q0

0.01
0.005
0.002
0.002
0.01
0.005
0.002
0.002

ao

—0.01—0.005—0.005—0.001
+0.01
+0.005
+0.005
+0.001

0.60
0.53
0.22
0.38
3.0
2,0

0.57

which we write

y~ denotes the gradient operator on g~, and the functions
A(ps, p12) and B(ps,z12) depend on the intrinsic parity
of the E-N-Z system. If E is pseudoscalar relative to
Ã-Z, then 3 must be a scalar and 8 a polar vector

FIG. 6. Z spectrum as a function of the S-wave Z-X interaction
parameters for the "S-wave" case. tan&y( ) = —kg(ap —imp) is used.
q2 and ao are measured in units of (Mev/c) '. The labels on the
curves denote the sign of ap. gp=ap=0 represents no anal-state
interaction.

This momentum changes little over this spectrum and
the dependence on it, which distinguishes the two cases,
is dificult to determine. Only polarization measure-
ments seem capable of deciding the E parity in this
experiment.

For an 5 orbit we expect the I' channel contribution
to be extremely small since the E-mesonic Bohr radius,
which determines the variation in the Coulomb wave
function, is very much larger than the range of the
absorptive interaction. The calculation in the previous
section will then be nearly independent of the E-
nucleon interaction —as long as there is some S-wave
E-N absorption, as seems to be indicated by ex-
periment. "

For an nI' orbit, we write the wave function as

(39)
A-(p2, pi') =A sS&"SS(p2',pP),
B (y2)pl ) = f3PPI" PP(p2 )pl ) p2

++so+so(P2 )pl )rrX p2.

where cV P=L(N2 —1)/32r22'err'j& and e, specifies the
(38—) orientation of the P orbit. If we insert this into Eq. (24),

we And

If E is scalar, then A must be a pseudoscalar and 8 an
axial vector:

A+(g2&pl ) ApSf pS(p2 &pl )&'p2&

B+(p2,pl ) +sp+Sp(p2, pl )&+I3Dp+Dp(ps pl ) (38+)
XLP '~—3(~ p2)p23.

In the zero-range limit which we shall use, all the
scalar functions become products of b-functions,
&,, (P2',pi') ~&(p2)&(pi). The detailed structure of these
functions is unimportant for this problem since the
actual range is small compared to the deuteron size.

As with the Z-A parity, it seems to be impossible to
determine the E parity simply from a study of the
conversion-A spectrum. When these forms are inserted
into Eq. (24), p2 is replaced by the pion momentum p .

where
~
—ur

sit~,P= dr e '&'g' —&*(r)
r

(r e,),

and A =A ss, B=Bppp +Bso&Xp for a pseudoscalar
K; A=APsrr'p. , B ~sPrr+73DP[pw rr 3( pr)rp j
for a scalar E.

To study the effect of the E-N parameters, we have
considered the model of a zero-range S-wave Z-N
interaction, as before. The results for absorption in
other partial waves are similar.

"M. F. Kaplon, P'roceedings of the 1958 Annlgg Interngtiong)
Conference on High-Energy Physics at CERÃ, edited by 3.
Ferretti {CERN, Geneva, 1958).
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—l20—

80

40

0
240 l60

// ',

, r

80 0
k& (Mev/c)

(a)

80 i , l60i 240i,

from the primary production center is largely 5-wave;
it wool&3 bc pure 5-wave lf thc Z rccoH, rcpicscnted by—q, were zero. The ".I'-wave" case, when the Z-N wave
is largely P-wave, occurs for 5-channel capture from a
.I' orbit.

The numerical results obtained using the above
formulas are presented in Fig. 7 and Table II. The
calculations were performed for the case of a pseudo-
scalar E meson. %re have set 880=0 since only the
corn»nations l~ ssl', B»~»"', »d lB»l'+2IBaol'
enter into the spectrum and conversion rat;io.

In the model considered here, there is only 5-wave
2-E absorption, so that the I-'-wave case yields a small
conversion ratio. As Table II shows, a significant con-
tribution of the 5 channel to capture from the I' orbit
decreases (R.

J60—

—l20-
+

CI
L

80—

40—

/

e

/

/
i

/
I

VI. X-N ABSORPTION IN HIGHER PARTIAL WAVES

We have seen that capture from a I' orbit can lead to
an intermediate Z-E state which has only a small
amount of 5 wave. There must therefore be a consider-
able amount of I' and higher partial waves present in
this state. Hence it is important to consider the e6ect of
Z-E absorption through higher partial waves. The
various partial waves do not interfere in the total
reaction rate, so we may consider them separately.

For absorption in the /th partial wave through a zero-
range interaction, Eq. (15a) becomes

0
240 !60 80 0

k, (Mev/c)

(b)

80 i, ) 60 i 240i.

In this case

2(kz+q) e; (q e,)
BR'"= —4~i +zfzz"'

L(4+&)'+ '3'

, (q e')
9Rg+ =4zr(kzMz/kgMp) *fzp(o1— Jot

g
where

(42)

FIG. 7. A. spectrum for capture from a P orbit as a function of
the J Einteraction param-eters with go ——o, o

———0.01iMev/o) '.
The ratio of the 5- and P-channel amplitudes is: (a) Ags/Bpp
=-2e'&; (b) Asg/Bpp=e'&; the units are (p c)'. In the imaginary
region, Rg{kg) is independent of Im{Aqg/Bpp).

gzs&
—

& (r; i) = (1/i'+') k fzgtk(&'~ (k -r)P, (kg r/kyar), (44)

where, from Eq. (18),

kz fz~= (pzr;kz/p~r ko) '(2t+ 1)fzd".
Consider the dependence of the reaction rate Eq(kz)

on the momentum k~ near kg=0. For a short-range
interaction fzo. behaves as kz' for kz~0. This de-
pendence comes from the fact that the scattering
amplitude is the plane-wave ma, trix element Eq. (16) of
the interaction and hence contains the usual angular
momentum barrier associated with the fact that

TABLE II. Conversion ratio (8=- zp/wz for capture from aI' orbit as a function of IC-S interaction parameters.
tanbg( ) = —hy(a0 —F0) with g0

———a0=0.01(Mev/c) '. Define
Hag/Bpp=xe'@ with x in units of (p c)'.

r
Jo,—— r'dr ho"'(kzr) jr(qr)t: ™r

1 1 kz+icr
=-Ioo— . (43)

q kzq (kz+zn)' —q'

The integral 5E~,~ which first occured for 5 capture
from an 5 orbit; enters here also for P capture l the terms
multiplied by B in Eq (40)$ from. a P orbit; these both
belong to a general "S-wave" case. In this case the
relative angular momentum of the Z-A wave emerging

0
s/2

3s/2
0

m-/2

0.40

0.42

0.60

0.23

0.24

0.45

0.005
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kg e,
,
t' &~ p-)(p- e')q

W2 kg ( kgp. ' )

TABLE III. Conversion ratio (R=zp/nr~ for tAg

1 th 't f M
o -wave — interaction aram

0.01
0.007
0.005
0.0035
0.01

—0.01—0.007—0.005—0.0035
0.01

0.70
0,38
0.24
0.03
0.91

'3 see M.
(195(j) where this barrier effect is

. Ruderman and R. Karplus, Ph s. Re .
tu

0

tion cross-section Eq. (17) is then proportions, l to kz" '.
In our problem, however, the Z-S
notb as h

e - wave is represented,
no y a spherical Bessel function but by th h 1

el function k)&-''(kzr) of Eq. (44). The Hankel
y e sp erical

function behaves as (1/kzr) '+' with h

Equation (33) ff. shows that p(kq)dk /dkp p opo-

inte ralK
o ~. ince Afar is proportional to th 1

g q. (24), and hence to gzg(
—) (r; 1), we 6nd that

e over ap

Eq(kz) is proportional to kz for all values of /

E k
y ontrast, fzz is proportional to k"

z( z) behaves as kz"+' for sma, ll k . Th
'

h
o g, so that
at is, the an u-

lar momentum barrier does limit th 1lar imi e e astic scattering in
t e nal state to low partial waves. " In the

'

channel of the
n e inelastic

energy A particle, for which the angular momentum
barrier does not become significant until l is very large.
The important feature here is that there is no

barrier in the intermediate state. If the

y partial waves can make significant contributions.

do ~

T is act has an interesting 1 t' '
hre a ion wit our earlier

iscussion. The real part of the s herical H
ni e or small kz, and is in fact simply the

gu arity is ispherical Bessel function (k ) Th
e imaginary part, the same imaginary part that

generates the "virtual" currents we d
ousl . It is th

s we iscussed previ-
y. is these currents which are responsible for the

contribution of hi h
state.

o ig partial waves in the intermed' to i
' eiae

Let us noww consider I-wave absorption. The most
favorable conditions for P-wave A

w a we called the 'P-wave" case: S-channel E-g
a sorption from a P orbit [Eq. (40) with 8=0~
emer esfro

wi =Op~. The 2

with
g m the first center predominantl Py in a wave

we find ne
respect to the second nucleon. For thor ese conditions

we n (neglecting spin-dependent effects)

OZgp ———(47r/3) kz fz~(+o&or+~&+sJrs),
wheie

O, OI ~ O.OI——0.005 +0005

40—

0
240 160 i, 240i.80 0 80i

k, (Mev/c)

FIG. 8. A. 8. A spectrum as a function of the I'-w
t . t s&»= —k'( o-z z ur' iq~') —is used. gr and ar are in

160

-wave pion, respectively.
The integrals which enter here are

Jrs= (3/q)Irr —Jro,

kz'+g'+rrs kz+in
11 ~00

2kgg 2k', 'q
(46)

[1+(kznr)'$'+ (kz~r) s

(~zrir)'

[1—(lazar) s]'+ (Irzri, ) '

for real kz, (47)

fol ky. =1K'.

The results of calculations using these forms
. Comparison of these with Fig. 5

a e, the results for S-wave Z--wave Z-S absorption,
a t e -wave conversion ratio is

e -wave ratio when the int
t s(th c tt '

1

expected h
a ering en ths ag g ~ are comparable. As

e, t ere is no tendenc ty oward suppression of
omenta, as one would ex ect for

b
' '

h h g omentum state. Thein a ig an ular m
ra s apes are in fact quite similar with

ences arising from th
r, wi t ediGer-

f tio ndsc tt
m e stronger de enden

ig er partial waves. The more ra i f

tio fo th h 1 ift d i
nific ant.

e ski t, an is probably not sig-

Jlo Iso+
kz kz (kz+in)' —q'

The scatterin 1

becomes
g length approximation

' th'1
'

in is case

tan5z('~ = —kz'(a ' —'
rs),gl 2'g 1 )
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The higher partial waves yield similar results and can
make significant contributions. There will eventually be
a cutoff due to the limited angular momentum carried
by the outgoing w-meson, represented by jt(gr) in the
overlap integrals, and due to the angular-momentum
barrier encountered by the outgoing A particle (this
effect appears in frx"&).

It should be possible to determine the most important
partial waves in the Z-iV absorption process by examin-

ing the angular correlation between kg and p . For
instance, if the 2-A parity is even and there is no spin-
orbit force, Eq. (45) yields a A-vr correlation in the P
wave case of the form

1——cos'(ks, y.).

TABLE IV. Interaction channels leading to a large
conversion ratio (R.

Orbit of Z meson &+N ~&+m Z+N -+ Jt +N'

S S
P S
5 P

and it would not be possible to define a "conversion
ratio" unambiguously. In terms of the two amplitudes

P;(p ) and P*,(p ) that refer to the two possib1e states,
the branching ratios as functions of p, are

UII. COMPARISON WITH EXPERIMENT

In this section we shall discuss the available experi-
mental information to show that the theory we have
described does seem capable of accounting for several
features of the observations on deuterium: the large
conversion ratio for 2 —+ A and the shape of the
spectrum.

To apply the results of our calculation, we must first
identify the atomic orbit from which capture takes
place. Day and Snow" have pointed out that the
nuclear capture rate from the 2E' orbit exceeds the
radiation rate by a factor of ten even in the absence of
final state interactions. Nuclear capture from a D orbit
proceeds too slowly to result in appreciable competition
with radiation. Auger transitions are negligible. Un-

fortunately the observation of the mesic x-ray yield
from light elements is inconsistent with this simple

picture of the atomic processes and suggests that the 2I'
orbit is not occupied as frequently as one would expect
from the calculated transition rates. We have, therefore,
described the theory for both 5-orbit and P-orbit
capture. f

Next, we must recognize that many of the capture
processes will result in 2-nucleon systems in the isotopic
spin I=-,' state. Since the A conversion can take place
only from the I=-', state, it is necessary to make an
isotopic spin analysis of the observed branching ratios. "
Kigenstates of the baryon isotopic spin are useful only
in our model, in which final-state interactions other than
those within the two-baryon system are neglected.
Otherwise this variable is not a constant of the motion

"T.B. Day and G. A. Snow, Phys. Rev. Letters 2, 59 (1959).
/Note added crt proof. Day, Snow, and Snche—r )Phys. Rev.

Letters 3, 61 (1959)g have shown that the K-meson orbital wave
function in liquid hydrogen and deuterium has a significant 5-wave
component that leads to the observed nuclear captures. For com-
parison with experiment, therefore, we must use a wave function
Pz PEq. i21)g which does not vanish at the origin. Except for a
constant factor that determines the absolute capture rate, the
observed situation is the one treated in Sec. IV and in the first
line of Table IV.

'~ The branching ratios of the reaction X +d into the various
allowed final states are consistent with the requirements of
isotopic spin conservation. We shall therefore assume that I is
conserved in the reaction.

We must: also introduce the amplitude Pg for the produc-
tion of A particles by the indirect process. The branching
ratio for the two A channels is

(or Ap): (7r'Art) = s I ps I

'. s I pz I
. (49)

The ratio (R of converted A. particles to observed Z-27
systems in the I=-,' state is

It is found experimentally to be (R=0,6+0.1.
In Tables I—III there are a number of cases in which

this ratio is attained. If we consider the observed
spectral distribution in Fig. 1, it is possible to eliminate
those cases in which the real scattering length is positive
(bound state) because they give rise to a spectrum
substantially displaced towards higher pion momenta
(Fig. 5). We see that in the remaining alternatives a
combination of several favorable factors must enter
involving the orbit from which the E particle is cap-
tured, the mechanism of the E-nucleon interaction, and
the mechanism of the Z-nucleon interaction. This con-
clusion is summarized in Table IV.

We note that there is no evidence for contributions of
bound Z-A hyperfragments to A production. "As Day
and Snow" have pointed out, this does not imply that
such hyperfragments do not exist, since the Z-27 system
may be primarily in a partial wave that does not have a
bound state.

We still must discuss the nature of the approximations
that have been made. The hyperon-nucleon final-state
interaction which has been studied in the previous sec-
tions is only the most important of many effects that
enter into our three-body problem. There are field-
theoretic three-body forces as well as multiple-scattering

"It has been pointed out by G. Chew (private communication)
that a Z-X hyperfragment with I=23 could contribute to the
A-production process. Such a state is not stationary because of
the Z mass differences. After about 10~' sec the isotopic spin
would change to I=-', and permit the conversion reaction to take
place rapidly.



INELASTIC FINAL-STATE INTERACTIONS 1069

effects of the several two-body forces (Figs. 3 and 4)
that will contribute when all three particles are in a
small region of space. Such corrections, however, will

give a fairly uniform spectrum to the outgoing pions,
because the momentum range in which the Z and
nucleon have a low relative momentum has no special
importance for these e6ects.

There are, nevertheless, two ways in which the three-
body effects can appreciably modify the peaked pion
spectrum. First, the interference with the A amplitude
produced by the simple conversion process depends on
the magnitude and phase of that amplitude; these
quantities vary rapidly in the critical momentum region
(near kz=0). Second, an intermediate pion-nucleon
interaction in the resonant ($,s) state can take place";
since the momentum of the pion relative to the nucleon
varies between 140 and 220 1VIev/c, a rapid variation of
this part of the A-production amplitude might be ex-
pected. A simple estimate of these eGects shows that
both can modify the A-production rate, and that the
former can also broaden the spectrum appreciably. We
are not including a quantitative discussion here because
the present experimental situation does not justify the
introduction of the many additional parameters.

If we ignore these corrections, we can turn to the
problem of relating the reaction amplitudes in deuterium
to the amplitudes in hydrogen. We therefore introduce

"WVe note that such an interaction is not possible once the h.
has been produced, since the pion-nucleon system must then have
isotopic spin ~ ~

the usual isotopic singlet and triplet amplitudes o,o and
nl for the E-nucleon interactions and their linear com-
binations

Py'= (k—)'~o+~t,

P: = (s)'~s+k~r,

1

i 2 (2r+1)IP '['=2 (21+1)[~el' i

tM

which are the amplitudes for production of a Z on one
nucleon of the I=O deuteron system such that the Z
is in the I=—,

' or I=~ state with respect to the other
nucleon. In our model the P, differ from the P, ' by the
final-state interaction. Since this diGerence will in
general depend on the Z-nucleon relative momentum,
detailed Z spectra are necessary to extract information
about no and ~~ from the present experiment. We do not
know either whether the same E E channels are
participating in hydrogen and deuterium. Thus, the
striking difference between the Z branching ratios in the
two cases"' could be due to both the occurrence of
diGerent incident channels and the Anal-state inter-
action. It is to be hoped that independent Ineasurement
of the IC-hydrogen parameters will lead to a better
understanding of the final-state interaction in this
problem.

"R. D. Tripp, Proceedings of the 1958' Annual International
Conference on High-Energy Physics at CERE, edited by B.
Ferretti (CERN, Geneva, 1958), p. 184.
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Green's Function Approximation Method. I. The Nucleon~
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A method for the approximate construction of the nucleon Green's function is presented. The development
is such that the approximate Green's function automaticaliy has the same analytical properties as the exact
one. This method involves the symmetrical treatment of the Green's function and, ultimately, the assump-
tion that certain particles behave in an uncorrelated manner. The approximation results in a linear integral
equation for the Green's function which is completely renormalized. This equation is solved exactly through
the use of the spectral representation which, by construction, is consistent with the approximation.

i. INTRODUCTION

1
~~NK criterion that might reasonably be demanded

of an approximation method is that arly approxi-
mate solution should have the same analytical prop-
erties which the exact solution is known to possess.
Accepting this criterion, it is natural to consider the
single particle Green's function, for its analytical
properties are well known. ' Further, previous attempts

* Based in part on a Ph.D. thesis submitted to Harvard Uni-
versity, January, 1959.

J. Schwinger, Differential Equations of Ouantum Field Theory,

at approximating it have either failed at just this re-
quirement, ' or have had to artificially patch up the
approximation in order to meet it. It is clearly desir-
able to develop an approximation method which auto-

A set of lectures given at Stanford University, 1956 (unpublished);
G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann, Nuovo
cimento 11, 342 (1954).

~ Ning Hu, Phys. Rev. 80, 1109 (1950);K. A. Brueckner, Phys.
Rev. 91, 761 (1953); S. Kamefuchi and H. Umezawa, Progr.
Theoret. Phys. (Kyoto) 9, 529 (1953); G. Feldrnan, Proc. Roy.
Soc. (London) A223, 112 (1954).' P. J. Redmond, Phys. Rev. 112, 1404 (1958).


