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Scattering of Phonons by Elastic Strain Fields and the Thei-mal
Resistance of Dislocations
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A theory of the scattering of phonons by static elastic strain
6elds is presented. It is found that the Fourier component of the
strain 6eld plays a role similar to that of the potential in the
external Geld approximation. All quantities (except the strain
field) in the formulas obtained refer to speci6cally atomic charac-
teristics, allowing in principle the examination of the influence or
crystal structure, interatomic potentials, etc. , and also scattering
between diferent polarization modes. A Boltzmann equation is
found.

The results of the theory are used to estimate the low tem-
perature thermal resistance (in nonconductors) due to disloca-
tions. This is done by finding a relaxation time ~; with some sim-

plifying assumptions one 6nds for an edge dislocation
=Ao Pn(ub 'a~)Pq. In this equation e is the density of disloca-
tions, n is the average number in a slip plane, b is the Burgers
vector, q is the wave vector of the phonon, A is a constant. This
result divers from that obtained previously by Klemens by
essentially the presence of the logarithm. This latter factor seems
to be essential in explaining the experimental observations of
Sproull et al. that the thermal resistance due to dislocations in
LiF is three orders of magnitude greater than predicted by
Klemens. For a screw dislocation r ' lacks the logarithm term so
that the scattering is much smaller than for an edge dislocation.

INTRODUCTION

HE extreme sensitivity of low-temperature ther-
mal conductivity to the presence of crystalline

imperfections has led to a revival of interest in thermal
conductivity as a means of investigating these imper-
fections. Klemens' ' has carried out an extensive anal-
ysis of the many factors involved. In particular he has
calculated the magnitude and temperature dependence
of the lattice resistivity due to a number of diferent
imperfections. In general Klemens' results account for
the experiments in a satisfactory way. For a survey of
the experimental situation and further references the
reader may consult the review articles of Klemens' 4 and
Herman' and also the work of Slack. '

However, recent work by Sproull, Moss, and Wein-
stock' has indicated that the thermal resistivity in
lithium Quoride is roughly 10' as great as predicted by
Klemens' theory. '' This observation motivated the
present investigation, which is devoted to a general
formulation of the problem of phonon scattering by
arbitrary static elastic strain fields; application is made
to the strain fields of dislocations and an approximate
value of the thermal conductivity coeflicient x(T) is
found.

* National Science Foundation Predoctoral Fellow.
' P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).' P. G. Klemens, Proc. Phys. Soc. (London)A68, 1113 (1955).' P. G. Klemens, HandbNch der Physik (Spinger-Verlag, Berlin,

1956), second edition, Vol. 14, Part 1, p. 198.
4 P. G. Klemens, Solid-Sfate Physics, edited by F. Seitz and

D. Turnbull (McGraw-Hill Book Company, New York, 1958),
Vol. 8, p. 1.' R. Berman, Advances sa Physscs, edited by N. F. Mott (Taylor
and Francis, Ltd. , London, 1953), Vol. 2, p. 103.

' G. A. Slack, Phys. Rev; 105, 829, 832 ('1957).
' Sproull, Moss, and Weinstock, J. Appl. Phys. (to be pub-

lished).
SThere also seems to be some question about point defects.

See A. Toxen, Phys. Rev. 110, 585 (1958). This case is not dis-
cussed here.' Klemens' has recently indicated that the anharmonicities may
be greater than previously thought. This accounts for a factor of
15.

The present calculation diGers from that of Klemens'
in the following respects. The present theory is similar
to the usual results for scattering in an external field in
that the Fourier component of the strain field displace-
ment enters into the scattering matrix elements. In
Klemens' theory the corresponding quantity is the
Fourier component of the dilatation (or rotation). In
arriving at this result Klemens made an approximation
which is in fact invalid for the logarithmic variation of
the strain Geld of an edge dislocation. "

Another difference is that all physical quantities
(except of course the strain field, which is computed
from elastic theory) of the present calculation refer to
atomic quantities, e.g. , interatomic force constants.
Further one can examine the eGect of crystal sym-
metries on the scattering. On the other hand, Klemens
uses a GrOneisen-type anharmonic potential from the
beginning. Since the anharmonic forces in most ma-
terials are rather poorly known, and. because of the

difhculty of taking into account the anharmonic coupling
of distant atoms, the more rigorous atomic approach
has at present only the slight advantage of deferring the
necessary approximations to the end of the calculation.
However, in the present formulation one may examine
the scattering between diGerent modes of polarization.
Furthermore, in the theory presented here, all phase
information is retained, so that the interference sects
of competing scattering processes may be. evaluated,
although that is not done in this paper. In Appendix 1
the efI'ect of an arbitrary array of identical scatterers
is found to be given by essentially a form factor in the
appropriate matrix elements. Such interference efI'ects
are known to exist at low temperatures.

Finally, if the atomic anharmonicities are related to
Griineisen's p as described by Klemens, 4 the essential
difference between the two theories applied to scattering

by edge dislocations (aside from a numerical factor) is

"See Eq, (30) of reference 2.
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the presence of the factor [ln(R/ra)]' in the expression
for r(q) ' in the present theory. "R is the range of the
strain field of the disloaction, ro is the radius of the dis-
location core, and r(q) is the relaxation time for a
phonon of wave number q. For screw dislocations and
other imperfections the two approaches should agree
to an order of magnitude. It should be noted that the
present approach predicts a vastly greater scattering
by edge dislocations in comparison with screw dislo-
cations [roughly the factor [1n(R/ra)1'], while Klemens'
results show that the scattering is roughly equal (to

10%) for the two cases.
It should be pointed out that the results obtained

here will need modification if the temperature is so
high that collective modes (due to the imperfections)
can be easily excited, leading to appreciable inelastic
scattering. The thermal oscillations of dislocations are
well known and, for example, seem to be the essential
feature in understanding the temperature dependence
of the yield strength of iron. "However the calculations
of Granato" for mobile dislocations yield a temperature
dependence a ~ T', while T' is roughly what is observed
in dielectric solids.

The present paper is concerned with crystalline solids
in which the conduction of heat by electrons is neg-
ligible, so that it is not necessary to consider electron-
phonon interactions. All statements concerning thermal
conductivity refer to low temperatures, i.e., tempera-
tures appreciably below the Debye temperature.

The' total displacement of an atom from its equi-
librium site in the unstrained lattice is the sum of the
static strain field displacement v (as computed from
elastic theory) and the running-wave phonondisplace-
ment u '. For the latter it is supposed that there is
only one atom per unit cell since only the general
features of the problem are of interest. "Then we have

(
&2pn~q)),

XLaqi, exP(itl m)+aqz* exP( —iq m) jean, . (2)

Here p is the density, 0 is the volume of the crystal,
q the wave vector of the phonon, A, its polarization
index, &aqi, the frequency, each, the (unit) polarization
vector. aqz*(aqi, ) creates (destroys) a phonon of wave
vector q and polarization A. In the following the
polarization index P will often be omitted, with the
understanding that the sum over q (without the vector
symbol) includes the sum over li, etc. The operators
Qq)I & cq), are characterized by

a,*% (n,) = (n,+1)i% (n,+1),
a,4(n, )= (n,)W(n, —1),

(3a)

(3b)

where %(na) is the phonon wave function.
Expanding the elastic strain field in Fourier series we

have
v~ Pq vq exP(zql'm)~

I. GENERAL FORMULATION

The potential energy of a crystal can be written as a
Taylor series in the relative displacements of the atoms.
In the case of scattering by static strain fields the
phonon energy is conserved, so that the lowest order
term in the expansion that contributes is cubic in the
displacements. Higher order terms are neglected as
small.

The anharmonic potential is chosen to be

V,= (3!)—' g „B .'&'(n ' I,')—
X (I —n„)(N "—n„'). (1)

The summation convention is used for the indices
i,j,k=x,y,s. The sum m, n proceeds over all pairs of
atoms in the crystal. The coefficients 8 '&~ depend on
the difference of the position vectors m —n. This form
explicitly emphasizes the dependence of the potential
on the relative displacements of the atoms, which fact
must be considered when a nonuniform strain field is
present. This potential was also used by Pomeranchuk. "

"See Eq. (50) and (51).
'a A. Cottrell and B. A. Bilhy, Proc. Phys. Soc. (Londonl A62,

49 (1949).
'3 A. Granato, Phys. Rev. 111, 740 (1958)."I. Pomeranchuk, J. Phys. U.S,S.R. 4, 259 (1941); 6, 237

(1942).

vq=Q ' t v exp( —iq m)d'an.

Note that the expansion of Eq. (1) involves a sum
over four types of terms. The first is a sum over cubic
terms in v, i.e., a constant shift in the energy which we

ignore. Secondly there are terms linear in a, and a,*.
Such terms cannot conserve energy and give zero
contribution. The terms quadratic in the creation and
annihilation operators contain the scattering processes
of primary interest. Finally, the terms cubic in a„a,
are present in the unstrained crystal and are responsible
for ordinary 3-phonon processes (important in estab-
lishing thermal equilibrium) and Vmklapp processes. "
Therefore the effective perturbstion due to the presence
of the strain field is (omitting 2 terms not conserving
energy):

(aaarda') 't'q" ea'ea'
qq'q"

X {iiaiia' Zmn +mn Fq"FqFq'

+aa*a; P „8 „""Fq"Fq*Fq.], (6)
"In more complicated crystals (2) will be adequate at low

temperatures since only the lowest branch of the phonon spectrum
is excited."R.E. Peierls, QNantsws Theory of Solids (Oxford University
Press, Oxford, 1954), Chap. 2.
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where

F,=—exp(iq m) —exp(iq n).

Consider the functions b, ,&(q, q', q") defined by

f&sjk =Ems+ms Fq"FqF q'

f& '~'& =ZmnBmn Fq"Fq

(8a)

I'q (m, n) —=F,(m+ a, n+ a), (10')

one finds the relations

I et a be some arbitrary lattice vector. From the
equalities

ijk Q ijk~m+a n+a ~mn

F; F,F» *=exp[i(q" +q —q') ajF» F»F, *, (10)

where

This equation has a very simple meaning; for ex-
ample the first term in Eq. (16) may be read as follows:
a phonon of wave number q interacts (a,) with the
Fourier component ~, ~ of the strain field displacement
and is scattered (a, *) to a state with wave vector q',
giving up an amount of wave vector q' —q to the
strain field.

This physical result shows that, once having chosen
running wave phonons, the most natural way to
represent the transfer of wave vector to the lattice is
indeed to expand v in a Fourier series, since this gives
directly the "conservation" laws represented by Eq.
(12).

The matrix elements corresponding to the change in

the number of phonons due to scattering by the strain
field are, using Eq. (3),

f&,,&"& ——exp[i(q"+ q —q') ajb, ,& "&,

f&, &
i'&=exp[i(q"+q' —q) a]b,,s "&.

(11a)

(11b)

f (&r,+1)e, ) -'*

K,, ,= c„ i

4pQ ( o&so&q'

(»a)

Thus it follows that

&,,& "'(q,q', q")=~(q"+q —q') f&' s"'(q q', q").

D(q) is defined by'

t'ii, (ri, .+1)y::

4pQ 0 (oso&q'

Cqs'=Z~i s r&q' q'es'eq' b—'y& (q» q ~ q q)

(17b)

A(q) =0, q WG
=1, q=G, (12)

where G is a reciprocal lattice vector. The processes
with G WO correspond to the usual TJmklapp processes. "
Since wave vector is already not conserved for G=O
(in contrast to the normal 3-phonon processes) and
since p's large enough for Umklapp-type processes
decrease exponentially at low temperatures" (and also
for most strain fields Vq decreases with increasing q)
we consider only the case G=O for the present, re-
membering that one can always include the terms G AO
if necessary, by inserting the appropriate factors in
b, ,&(q, q', q") and summing over G. Summing over q"
Eq. (6) becomes

(B~q& & 1

R ~ collision 64&r P 0 +

r b(o& —
o& )

X
i
C„.

i
'(e, .—ri,). (19)

One can now write down the rate of change of the
number of phonons in state q due to the scattering by
the strain field. For the moment other scattering proc-
esses are ignored. It should be noted that the equations
are valid even when there are diferent types of imper-
fections present in the crystal, since the displacements
are additive. Using the standard formula of time-

dependent perturbation theory' it is found that

Zqq'(o&qo&q') 'eq'eq'
4pQ

X(a,a, *n ' 'b, ,&:"&(q, q', q' —q)

+a,*a, »&q—q 'b;;& "&(q, q', q —q') ) . (13)

Equation (19) is easily converted to a Boltzmann
equation. ' "The problem is then reduced to that of
the solution of an integral equation of e, . One can also

easily write Eq. (19) in the form of a surface integral
in q' space owing to the delta function.

We observe that

&'ii"'(q, q', q —q') = f&'&'"'*(q, q', q' —q), (14)

Vq=V q

It is then found that the perturbation takes the form

II. SCATTERING BY DISLOCATIONS

Using the results of the preceding sections we inves-

tigate the scattering of phonons by dislocations, and
derive an approximate expression for the thermal con-

ductivity. For screw and edge dislocations the strain
field displacements in elastically isotropic crystals are
given by'"

qg MqMg 6g Eg Sq q

4pQ W. T. Read, Jr. , Dislocation in Crystals (McGraw-Hill Book
Xb,,i "&(q, q', q' —q)a,a, *+H.c. (16) Company, New York, 1953), Chap. 8.
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edge dislocation:

b t' sin28
v.=—

! e+
2ir 0 4(1—v))

b ((1—2v) cos28 )
!ln(r/r p) +

2ir (2(1—v) 4(1—v) )

v, =o,

screw dislocation:

(20)

(21)

(22)

In order to make further progress one must make an
estimate of the term C«. This is difficult primarily
because the anharmonic forces in crystals are rather
poorly known. (For example, a measure of the anhar-
monicity such as GrCineisen's 7 is not necessarily an
accurate reAection of the coe%cients 8 „'j~, except in
an average sort of way. )

In view of this situation we adopt the simplest pos-
sible model consistent with reality: a central force,
nearest neighbor interactions only. For such forces

v, = N/2ir, (23)

(24)

& jj=
~~s~~ j~~k

(29)

In these expressions r,e are plane polar coordinates,
b is the Burgers vector, v is Poisson s ration and ro is
the radius of the core of the dislocation ( =b)

The required Fourier components are given by

(ln(r/rp)), = (2ir/x'){xJi(x) ln(R/rp)

+Jo(*)—1)~(q*), (25)

(cos28),= (cosp/x') {xJi (x)
+2[Jp(1)—1])6(q ), (26)

(sin28), = (sing/x') {xJi(x)
+2[Jp(x) —1jja(q.), (27)

~,=(2~'/x') {xJ,(x) )~(q.). (28)

ir+p is the angle made by q with the x axis. The x and

y axis are perpendicular to the dislocation line, The x
axis lies in the direction of the Burgers vector; the
origin is chosen in the center of the dislocation. Jo and
J~ are the zeroth and first order Bessel functions;
x=qR, R=Q&. In Eq. (25) note the presence of the
factor ln(R/rp). When applying the theory to a real
crystal, one must take for R a distance representing
the range of the strain field; for example R will be the
order of the diameter of a single slip band. Thus in
most cases of practical interest Eq. (25) is very much
larger than Eqs. (26), (27), or (28). Equation (25)
arises from the y component of the displacement in the
strain field of an edge dislocation. Observing that the
coefficients in Eq. (20) to (23) are all roughly equal,
one concludes that: (1) edge dislocations are much
better scatterers than screw dislocations; (2) the scat-
tering by an edge dislocation proceeds almost entirely
by the y-component of the displacement. Both results
are plausible from consideration of the nature of the
distortion of a crystal due to the presence of edge or
screw dislocations. (Actually conclusion (1) is rein-
forced by consideration of the factor C« for the two
cases. ) It seems unlikely that a more detailed model of
the atomic arrangement in the core of the dislocation
would change these conclusions, since most of the scat-
tering occurs at long distances from the core, where the
elastic theory results are quite good. We ignore com-
pletely the scattering of the core.'

B;p, —ga;a, a~/a'.

Comparing Eqs. (31), (A-S), and (18) one finds

(31)

C, , i, = (Rig/2a')P(v, , a)(e,i a)(e, &,'a)
X(q a)(q' a)(q' —q) a. (32)

where the sum is taken over nearest neighbors; sV is
the number of atoms in the crystal. a represents the
position vectors of the neighbor atoms with respect to
the chosen atom.

In order to evaluate Eq. (32) for an edge dislocation
a further simplification is made; it is supposed that
the lattice is simple cubic. It is then seen that the pre-
dominance of Eq. (25) greatly simplifies the evaluation
of Eq. (32). Further, take the Z axis of the edge dis-
location to lie along a cube edge. For the time being
also suppose that the phonons are incident perpen-
dicularly in the dislocation. Note from the calculation
of the Fourier components [Eqs. (20)—(23)j that the
component of wave vector along the dislocation (q,) is
conserved. From this one can conclude that there is
no scattering of phonons incident in the s direction
along the dislocation line between the same potarisatiort
modes However . scattering between diferent modes may
be allowed. For instance, energy and q, are conserved
as in the transition (long. —+ transverse). [In the Debye
approximation the perpendicular component of the
scattered (transverse) phonon is q, '= ((Ci/C~)' —1)'q.j.
Similarly a transverse phonon incident along the s
direction cannot be scattered by the dislocation, except
in Umklapp type processes [see Eqs. (25)—(28)].

G. Leibfried, Handbuch der Physik (Springer-Verlag, Berlin,
1955), second edition, Vol, 7, Part I, p. 299,

where P(r) is the interatomic potential and the right-
hand side of Eq. (29) is evaluated at the equilibrium
position. Then it is found that"

B;,i, (g' 3f——/a)—a,a,ai,/a'

+ (f/a') (&,,a~+b,sa, +~,~a'), (3o)

'g=y"'( )a, f=p" (a); a is the interatomic
spacing, a;, etc. being the appropriate Cartesian com-
ponents. g'a/f is small" so that only the first term is
retained: g =g' 3f/a —=g',
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Maximum scattering is expected for phonons incident.
perpendicular to the dislocation, since all possible
scattering processes can occur and also because of the
angular dependence of the geometrical factor C«.

The rest of the calculation is made assuming the
phonons to be incident perpendicular to the dislocation,
both to simplify the calculation and to make comparison
with Klemens results' ' more direct. (Klemens makes
the same assumption. )

Equation (32) is now evaluated for an edge disloca-
tion, under the stated assumptions. As discussed
previously only the large term (Eq. (25)) is considered,
keeping only the part containing ln(R/rs). Thus

X X'

I
I
t l
t t

I cd, 'q'x'
I

A (q, q') cos48 cos'8'(cos8 —cos8')'
-',A (q8 q') g~ cos'8 sin'8' cos'8'(cos8 —g cos8')'
-,'A (q, q')t'sin'8 cos'8 cos'8'(cos8 f—cos8')'
—,'A (q, q') sin'8 cos'8 sin'8' cos'8' (cos8—cos8')'

current is of the form

exp (ken/k T)

kT [exp(kate/kT) —1]'
0'q

TasLF. I. Dependence of the structure factor ~Cqx, q ) ~
~

on the polarization indices X,) '.

(35)

v, ,=rrb ln(R/rs)[Jr(x)/x]j,
n= (1—2r)/2(1 —v),

(33)

with x= R~ q —q~; j is a unit vector in the y direction.
8+2r is defined as that angle which q makes with the
positive y axis, similarly for 8 . The polarization vectors
are chosen to bees~

——q/ ~ q~ for longitudinal phonons and
as~= g q/ ~ q ~, where g is some unit vector perpendicular
to q. s«, in general, lies out of the plane of x and y. The
projection in the y direction contains a factor sin8 sing,
where q is some azimuthal angle about g. When C«
is squared there appears a factor of sin'p for each
transverse phonon under consideration. Averaging over

p, one can uplace each sin'p by a factor of -,'. Table I
for ~Csz, s z ~' is found in this way.

A (q, q') = (tVgu'q's ~ &»)2 (34)

2), f are equal to q'/q for their respective cases. q' and

q are related by ~,z ——~, ), in all calculations. Thus for
instance in the Debye approximation 2)= Q'=c&/c&.

We now assume the validity of the Debye approxi-
mation, and also put c&=c&——c=velocity of sound, so
that 2)= f'=1. In view of the approximations made in

evaluating C« there is nothing to be gained by keeping
the more general expressions. In order to calculate the
thermal current rigorously one should erst solve the
Boltzmann integral equation [resulting from Eq. (19)]
for e,. We shall only do this assuming a relaxation time
approximation. The thermal conductivity then follows
from knowledge of' ' r(q). This will also allow a more
direct comparison with the results of Klemens. ' ' It
must be pointed out that the following calculation
assumes the scattering by dislocations to be the domi-
nant scattering mechanism, so that further considera-
tions are necessary when there are competing mechan-
isms. The observations of Sproull et ul. 7 of the great
decrease of thermal conductivity due to the introduction
of dislocations into LiF indicate that this approximation
may be quite realistic. It is assumed that other processes
(especially ordinary 3-phonon processes which in them-
selves cause no resistivity)" act only to maintain the
steady state conditions. 4

Following Klemens, 4 the deviation from equilibrium
of the phonon distribution in the presence of a heat

where 0 is a vector in the direction, of the heat current
and k is Boltzmann's constant. We suppose X to be
essentially independent of polarization; if it were not
there would be some process to erase the difference in
anisotropy.

From Eq. (19) one can write the rate of change of the
number of phonons of wave number q for each polari-
zation X in detail. Then

res res[+ 2Bqp i

r (q)-'= —n, /2s, .

(36)

(37)

For economy of writing it is now stated that the
processes of Table I (X,'A')= (l,t), (t,t) are negligible.
This is found by numerical integration of integrals
similar to (40). Then, noting that the 2 associated with
the transverse modes cancels the —', arising from the
average, transforming Eq. (19) yields

r(q)
—' =Dq' cos8I(2qR, 8);

D = [gbn 1n(R/rs)]2/(962rp'c'),

p2w
' r (8~ 8)-

I(x,8) = d8'Jrs x sin~
2

(39)

(8'+8 ~

Xcos'8' sin'
I I (cos8—cos8'). (40)

In deriving Eq. (38) Eqs. (33)—(37) have been used,
and also the relations

I
q' —q I

= 2q sin-,' (8' —8),

cos8—cos8' = 2 sin sr (8'+8) sins (8'—8),

(41)

(42)

(43)

Equations (38)—(40) represent the special case in which
the phonon current parameter 2 is in the y direction.
Later a factor of the order of unity will be introduced
to account for a random orientation of the dislocation
with respect to X. Note that with regard to the phonon
current, the dependence of the integrand of I(X,8) on X

is contained in the factor (cos8—cos8'), which removes
the contribution for 8=8'. This factor is largest for
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backwards scattering of the phonons. The factor cos'0'
enhances the peaking about the backwards direction.

The integral (40) was evaluated numerically, for
8=0', 30' and 60'. It was found that I(x,8) does not
vary rapidly with 8. A good average value of I(x,0) is

I(x)= I(x,0). In the region of interest x) 2 (i.e.,
q) R '; the minimum q that corresponds to a phonon
is =R ') a good approximation is I(x)=2/x'. This
variation really arises from the Bessel function, which
for large x gives x ' cos'[x sins(8' —ll) —3s./4]. The
oscillations (as well as the angular dependence of the
rest of the integrand) cut this down to approximately
x '. The exact I(x) periodically decreases to zero;
however this is due to the idealized model employed.
The collision frequency ~ ' is never equal to zero.
Other processes, the fact that dislocations will never be
perfectly straight, etc. all combine to smooth out the
curve near its minima. Thus we take

series of concentric loops from a Frank-Read source;
we have seen that the screw components of the loops
do not scatter much, so that effectively the scattering
is done by a line of roughly parallel edge dislocations.
Further suppose that e is small enough so that the
effective phonon wave length is less than the inter-dis-
location spacing. " Then the scattering probability is
just proportional to rs. (Cf. the previous discussion. )
R is given by eR '= o-= dislocation density; we have'4:

G(ts) = o [gbn ln(R/b)]'/(48~p'c'). (47)

Now it is necessary to make some estimate of the
anharmonicity term g. In order to compare expression
Eq. (47) directly with that of Klemens' it is necessary
to relate g to Griineisen's y, using the results of
Klemens' analysis. ' Examining Eq. (35) and trans-
forming Klemens' expression (5.20) in reference 4 to
our notation (putting the lattice constant a= b), we find

I(x)= 2/x'.

Then Eq. (38) becomes

(44)
or

gbs=24Mpc'/X

g —24p+c .

(48)

(49)
r(q)

—'= Gq
~
cos8 ~;

G—:[gbn 1n (R/re) ]/(p R 48' cs).

(45)

(46)

"Note that the elastic strain energy in a crystal due to a dis-
location is proportional to ln(R/r0).

'0 Recall the integration over g, in obtaining (38).
2I p =const, As=R.
'2See reference 16 for a justi6cation of substituting v ave

packets for plane wave phonons.

It is worthwhile to consider the meaning of the quan-
tities entering into Eq. (46). First consider the loga-
rithmic dependence on the size of the domain. " (We
set the core radius equal to b.) This term arises from
the Fourier transform of the strain field displacement.
Next note the factor of R ' in the denominator. This is
just the area of the cross section perpendicular to the
dislocation. " That is, the frequency ~ ' of scattering
decreases as the area increases. This is understandable
from the following considerations.

Equation (46) was calculated with the assumption
that somewhere in the volume 0 there was a phonon
incident perpendicular to the dislocation. " Thus the
s direction will not enter.

R ' is just proportional to the probability of finding
a (localized) wave packet, "in some given region. If the
scattering field were localized, the probability of scat-
tering would thus vary like R '. The factor [ln(R/b)]'
counterbalancing the R ' just rejects the long range
nature of the strain field. It is evident from the trans-
lational invariance of the Hamiltonian in the s direction
that the argument also holds for dislocations not in-
cident perpendicular to the dislocation.

The appearance of R ' is made even more perspicuous
by considering the modification of Eq. (46) when there
are e parallel dislocations in the crystal. This is made
a reasonable picture of reality: for instance, consider a

r(q) '=-s, ob'y'c[ln(R/b)]'q. (50)

It must be emphasized that the present crude argu-
ments are necessary only to compare our formula Eq.
(47) more directly with that of Klemens. ' Formula (47)
already includes the effect of the angular factors, etc.
which were averaged over in deriving Eq. (49). &~iodi-

fying Eq. 5.25 of reference (4) to describe an edge dis-
location (a factor of about 1.1) and multiplying by a
factor of =15 as indicated in reference 9, Klemens'
theory gives the result"

rrr(q) '=ob'y'cq

The ra, tio P of (50) to (51) is

0= i[in(R/b)]'

(51)

(52)

This equation says that the present theory predicts the

"See Appendix 1.
~4This R is essentially a geometrical factor; the R in the

logarithm represents the range of the strain field and must be
estimated separately Lace Eqs. (53) and (54)j.

s' It should be evident that (59) is only valid as to order oi
magnitude.

"Both (50) and (51) have assumed the temperature gradient
to be perpendicular to the dislocation line. Klemens' has shown
the effect of randomness in orientation may be accounted for by
a factor of about —,

' in (51). It is easily seen that essentially the
same factor is correct in (47).

In finding this approximate" result each angular
factor in (32) has been replaced by 1/K2; the sum over
nearest neighbors is replaced by a typical number, S.
[If this should overestimate Eq. (32), as is possible,
then the anharmonicity g will in fact be underestimated;
Eq. (48) is a rough lower bound on g.] Further, in
Eq. (47), replace the factors (2n)'= (1—2v)'/(1 —v)' by
the typical value —,'. For the present argument we
replace cos8 by 1/v2. Then
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thermal resistivity of edge dislocations to be greater
than that of Klemens by the factor P.

In estimating E. two cases must be considered. How-
ever, due to the slow variation of the logarithm there
is little numerical diGerence between the two cases. For
a random array of dislocations

(53)

0 being the dislocation density. If e dislocations are
lying in the same slip plane, the appropriate choice is"

R—ea:.
Since o. &«b in general, and since e is typically 30 to
1000, the order of magnitude of P is usually given by
Eq. (53). t However, systematic experiments might be
able to check Eq. (54).j

The factor Eq. (52) is suflicient to explain the ob-
servations of Sproull et al.~ mentioned. in the intro-
duction. In these experiments a-=10' cm '; for I.iF
b 4A. Fo—r random dislocations this gives P=28. If
there are I=50 (500) dislocations in an average slip
plane then the resistivity is doubled (quadrupled):
P = 60 (120). Recalling that the experiments were
compared to Eq. (51) before it had been multiplied by
15, we see that indeed the factor of 10' is accounted for,
if it is assumed that the dislocations lie in slip planes
in groups of about 50 or more. This number is reasonable
from the results of the careful investigation of Gilman
and Johnston ss

For screw dislocations it is evident that the present
theory gives roughly the same resistivity as Klemens
formula. ' This follows from comparison of Eq. (25)
and Eq. (28) and the final result, Eq. (50). The angular
factors in C«will probably make the numerical coef-
6cient slightly diGerent.
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APPENDIX 1. EFFECT OF A VOLUME
DISTRIBUTION OF SCATTERERS

The displacement of the point m is the sum of the
displacements due to the various imperfections at
positions n:

v'(m)=gn v (m —n ). (A-1)
"Pote added ~n proof. —A better value of R is probably

R=(n„e/o)&, where n„ is the number of slip planes per cm."J.J. Gilman and W. C. Johnston, in Dislocations and 3fechan-
ica/ Properties of Crystals (John Wiley and Sons, Inc. , New York,
1957), p. 116.

The index n in v indicates that v, (m —n ) niay depend
on the orientation of n. Expanding (20) in Fourier
series:

In the latter expression one must be careful in defining
v(m) as a periodic function of R= (0)&, since a change
of variable has occurred in evaluating the right-hand
side. On the other hand, if the strain 6eld is short-range
(e.g. , as for point defects but rot for dislocations) then
this restriction may be neglected. For the important
special cases of isotropic strain fields, and parallel
straight dislocations with Burgers' vectors in the same
direction (21) reduces to

v, '=v, Qn exp(iq n ), (A-2')

so that (19) is changed by the insertion of a factor

h(q' —q) = I+ exp[i(q' —q) n.$~' (A-3)

under the integral sign in (19).
In particular, for an array of straight parallel equi-

distant dislocations lying in the same slip plane (a
crude model of the distribution of dislocations in many
crystals) then one has a diffraction grating for phonons,
which will be effective for phonons of wavelength com-
parable with the distance between dislocations. If the
density of dislocations in a substance is such that the
average spacing between dislocations in a slip plane is
less than the effective wavelength of the phonons
involved in heat transport, then one can expect such
effects to be important. Thus the longest wavelength
phonons see essentially the total Burgers vector of the
array. The importance of such effects must be evaluated
separately for each experimental situation.

APPENDIX 2. FORM OF THE COEFFICEINTS
b';""(e,e' e' —e)

Using the definition (7) one finds that (8a) can be
written as

b,;a&" (q, q', q' —q)
=2i P „8 ""{sin[q' (m —n)]

—sin[q (m —n)]—sin[(q' —q) . (m —n)]}. (A-4)

8 ""will be large only for ~m —n~ ~u, where u is
the lattice constant. For the temperatures of interest
qa(&1 so that it is a very good approximation to expand
the sines. The terms linear in q cancel; collecting terms
in the next higher order gives

bus"&(q, q', q' —q) =i Q, 8,'J'q (m —n)
Xq' (m —n)(q' —q) (m —n). (A-5)

This is accurate to terms of order (qa) s.

Q, v, 'exp(iq m)

=Ps{Pa v (q) exp(iq n )}exp(iq m) .(A-2)


