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The ground-state energy of the system of impurities and conduction electrons in a metal has been obtained
in the high electron density limit. The procedure used is an extension of the Wentzel method applied to a
reduced Hamiltonian which includes an electron-impurity interaction. It is reduced in the sense that the
Coulomb interaction between electrons and the electron-impurity interaction are only effective in raising
an electron in a state below the Fermi level to one above and vice versa. The ground-state energy is then
obtained by a canonical transformation. The shift in energy of the ground state of the electron gas, due to
the introduction of the impurities, is quadratic in the electron-impurity matrix element. Higher order
processes in this matrix element do not contribute since they are represented by unlinked diagrams. Con-
sidering this shift in the ground-state energy expandable in powers of 7;, a measure of the average inter-
electronic distance, we show the leading or lowest order term in this parameter to go as (#/#.)rs"%, where # is
the impurity density and #, the electron density. Impurity locations are assumed random. All processes
omitted in the reduction of the Hamiltonian are shown to contribute to higher powers in 7,. The role of

exchange is indicated.

I. INTRODUCTION

'E consider the shift in the ground-state energy
of a metal due to the polarization of the free
electrons by substitutional impurities. For this purpose
we use a highly simplified model of a metal in which
the positively charged ions are smeared out and thereby
eliminate complications due to band structure. The
impurities are represented by point charges whose
magnitude is determined by the valence of the impurity
with respect to that of the host atom. In this model the
impurity charges destroy the uniformity of the electron
density distribution causing a local bunching of the
electrons in their neighborhood. This change from a
uniform distribution is what we have labeled the
polarization of the electrons. This local bunching serves
to shield the impurities and also to change the energy
of the system.

In Sec. IT the ground-state energy of the system is
obtained by performing a canonical transformation on
a reduced Hamiltonian. The Hamiltonian is reduced in
the sense that electron-electron and electron-impurity
interaction matrix elements connecting only states
below the Fermi level with those above are included.
There are two contributions to the ground-state energy
of the system. One is just that calculated by Wentzel!
for the electron gas proper without impurities. The
second contribution is the shift in the ground-state
energy of the electron gas due to the introduction of the
impurities. This energy shift we find to be quadratic in
the electron-impurity matrix element. With the restric-
tions in the matrix elements noted above, no higher
order terms appear. This means that only when matrix
elements of the electron-impurity interaction which
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connect states above the Fermi level are included will
terms of higher order in this interaction appear in the
ground-state energy. We do not include such terms
since in Sec. VI we show that such terms are negligible
in the high electron density limit.

In Sec. III we show the shift in energy as calculated
by a self-consistent Hartree field procedure is the same
as that given by the canonical transformation. This
shift in energy arises from three sources. One is the
change in kinetic energy of the electrons. The second is
the interaction of the impurities with the electron
bunching. Lastly there is the change in electron-electron
interaction energy due to the bunching. We emphasize
that the Hartree method does not yield the correct
energy in the absence of the impurities.

In Sec. IV we discuss the calculation of the shift in
the ground-state energy to second order in the electron-
electron interaction matrix element in terms of a formal
perturbation expansion and compare this with the result
of the canonical transformation. The two approaches
agree to the order calculated. Terms in the perturbation
expansion which include more than two powers of the
above to below (or vice versa) electron-impurity inter-
action lead to unlinked diagrams and so do not con-
tribute to the energy.2

In Sec. V we evaluate the change in energy. We find
the shift in energy per electron to vary as (n/n.)r, %,
where n is the number density of impurities, 7. the
number density of electrons and 7, is a measure of the
interelectronic spacing. In Sec. VI we show the shift in
energy to be exact in the high electron density limit by
an examination of the equations of motion for the
electron density fluctuations. Since the Wentzel result
for the electron gas proper is also a high electron density
calculation, the total result for the ground-state energy
inclusive of impurities is also exact in the limit of high
density. In conclusion we indicate the role played by
exchange.

2 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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II. CANONICAL TRANSFORMATION

Gell-Mann and Brueckner? develop the energy of the
ground state of an electron gas in a perturbation series
expansion. The kinetic energy of the electrons is con-
sidered to be the unperturbed part of the Hamiltonian
and the Coulomb interaction energy between electrons
is considered the perturbation. The unperturbed energy
is just that for a system of N noninteracting electrons.
The first-order correction is due to exchange. The
nonexchange first-order contribution to the energy is
canceled against the contribution to the energy from
the smeared-out lattice. The second- and higher-order
contributions diverge. Gell-Mann and Brueckner meet
this difficulty by summing all order processes in which
electrons hand the same momentum on successively to
others before falling back into the Fermi sea. It is
only these processes which contribute to the ground-
state energy in the high density limit. Other processes
such as the scattering of electrons above the Fermi
level become important at lower densities; that is to
say, they contribute to terms in the energy of higher
order in 7.

Yo Q
Ys=—,
Qg %7!'7’0

=N, (2.1)

3

where gy is the Bohr radius and Q is the normalization
volume.

The energy of the system is written in powers of 7;.
The Gell-Mann—Brueckner procedure is an exact calcu-
lation of the constant term in this series. The unper-
turbed energy or kinetic energy of the electrons goes as
7% and the exchange contribution as 7,7

Sawada*! writes a Hamiltonian in the language of
second quantization which includes a reduced Coulomb
interaction between electrons. This reduced interaction
includes no exchange interaction of excited electrons,
no exchange interactions of holes and no interactions
with an odd number of creation operators. The ground-
state energy is then obtained by a procedure similar to
that introduced by Wentzel.5 The result is the same as
that obtained by Gell-Mann and Brueckner. In a
subsequent paper Wentzel' shows how an effective
kinetic energy operator may be defined for the electrons
so that the ground-state energy may be solved for in
a manner formally equivalent to that described in his
earlier paper. This is a simplification of the Sawada
procedure.

We will add the interaction between the impurities
and electrons to the Sawada Hamiltonian. This inter-
action will be reduced in a manner we will describe.
The Hamiltonian will then be written in the Wentzel
coordinates and transformed to normal form by a
canonical transformation.

3 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

4K. Sawada, Phys. Rev. 106, 372 (1957).
8 G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
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Sawada writes the Hamiltonian

HszHo‘f‘Hc:Z EkAk*Ak+ Z Ek+qu+q*Ak+q
k

kt+q

+3 X A * At At Ay)
q

k,k’/,

X (Aw-q* A+ A i), (2.2)

where |k+q|>%r; | k| <kr, N\ ;=4mwe?/Qg% The Ay and
Ay* are the usual destruction and creation operators.
The electron-impurity interaction is written

Hi:% Z tiAk*Ak+q+% Z V——in~k*A~k—qy (2-3)
k,q k,q

where V% is the gth Fourier component of the electron-
impurity potential.

The above sums are over all k and q. To be able to
make the transition to Wentzel’s notation we must
restrict the interaction to give rise to those virtual
processes in which electrons below the Fermi level are
raised above and those above are returned below.
Imposing this restriction we may write

Hi=% 3 [Vo{A* A o+ (A-x*Ax—9)*} Fcc ] (2.4)
k.q

The total Hamiltonian of the system may be written

H=H+H. (2.5)

At this step the effective kinetic energy operator of
Wentzel is introduced and the Hamiltonian is written in
the Wentzel coordinates

1
‘P—k,—q*z—_‘*(ck, q"l"C—k,-q*))

Pk, ¢ = )
(2w, o)*

Wk, b
Wk,q=7r~k.~q*='(“*2*q) (Cr, *—C_x,—q), (2.6)

where

Ck, q=Ak*Ak+q§ wx, ¢= Exyq— Ex,

(Tk, *Tk, ot @k, 2@k, * K, g — Wk, o)
k.q

+X M(Z Wk, q%ﬁl’k, q*) (Z ‘Uk’q%¢k’ q)
q k

+3 2 Qok, ) (Vlex otcc). (2.7)

k,q

This Hamiltonian may be diagonalized by transforming
to a new set of coordinates, the origins of which are
displaced with respect to those of the old coordinates.
The new coordinates Q, P are related to the old coordi-
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nates ¢, m by the relations

ox=2_ dxxQx+bx,
K’ .

m=2_ dxx* Py, (2.8)
k'

where the dii and the by are constants and satisfy the
relations

S =2_ duwdiwx™®; 2 widbx
k// k
2iV i*zk l/wk,
R  X)
1+2A 2k 1wk, o

The by are determined in this way in order to eliminate
terms linear in Q. After the transformation the Hamil-
tonian is written as

H=3 Z (Px, q*Pk, a8, ¢*Ox, q*Qk, q T W, q)
k,q

|V 2T
-2 ——— (2.10)
T (1427,T)

where T=)_ |k|<kr 1/w, o

The second term on the right, is the shift in the
ground-state energy due to the introduction of the im-
purities. The same result can be obtained by the
self-consistent Hartree field or a Nakajima type pro-
cedure. The first term on the right gives the high
density ground-state energy of the electron gas without
impurities. The exchange term e? must be added to
this result (see Gell-Mann and Brueckner?). The Q 4
satisfy the dispersion relation as derived by Wentzel.
We again make note of the fact that the shift in the
ground-state energy is quadratic in the electron-im-
purity matrix element. It should also be remarked that
- the change in electron density due to the introduction
of the impurities as calculated by this method is the
same as that derived from the self-consistent field
calculation.

III. SELF-CONSISTENT HARTREE FIELD®

We perform a one-electron perturbation calculation
with the Hamiltonian

(HotV)y=Ey, 3.1

where H, is the kinetic energy operator for a given
electron and V is the potential experienced by the elec-
tron. V will be treated as a perturbation. In the absence
of the potential V, the wave function for an electron
of momentum %k is just

1
¢k”=§ exp(ik- 1), (3.2)

6 P, R. Weiss, Lectures in Theoretical Solid State, 1957 (unpub-
lished) ; J. Quinn and R. Ferrell, Bull. Am. Phys. Soc. Ser. II, 3,
53 (1958); J. Bardeen, Phys. Rev. 52, 688 (1937).
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where @ is the normalization volume and ¢ satisfies
Hopd= Ex. 3.3)

The first order correction to the wave function may be
written

1
Y=o+ ———(V—E)¥;
(Eo—H)

El = f 1//k0*VI//k0dT, (34)

and expanding V.0 in plane waves we may write

Vq
Y=+

—_—i
4 (Ek_EHq) !

(3.5)

We now impose the self-consistency requirement that
the potential an electron experiences is determined by
the charge density through Poisson’s equation

V2Ve=—dmep; V=Ve4V? (3.6)

where V¢ is the potential an electron experiences due to

the other electrons and V¢ that due to the test charges.
The change in electron density at any point due to

introduction of the impurities R; may be written

p=e¢ 2 (Ui~

| k|<kp

Vq exp(ig-1)

(3.7)

R; is any impurity location. Expanding V¢ in plane
waves and using (3.6) we get
4me?

@PVe=—V, 2
! Q ! k Ek—Ek+q

(3.8)

From the Fourier transform of (3.6) and the use of
(3.8) we get

1
Vq=ti/(1+z>\q 5 ___) (3.9)
| k|<kr Ek+q_Ek

Note that the impurity potential is screened; this is
the meaning of the second term in the denominator.

We now calculate the change in energy of the system
from the energy of the system before the point charges
are added. There are three contributions to this change
in energy. One arises from the change in kinetic energy
of the electrons. Another results from the interaction
of the impurities with the electron bunching. The third
is the change in the electron-electron interaction energy
of the system due to the bunching.
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Fi16. 1. (a) Processes contributing to the energy from the zeroth
order electron-electron interaction. (b) Process contributing to
the energy from the first-order electron-electron interaction.

These may be written

flpk*Holl/k(lT—f IﬁkO*Hm//kodT

AEKz Z

| k|<kF

f Y

S VT (3.10)

T+t

zep(1) |V i|*T
= T =2y BRNERE
a8 Zf Jr—Rj|d 22 (1+27,T) (1)
p(r)p(r') No| V[ 2T

0=% T'—_—”Z — 312
Ak ff lr—r'| z (1422, T) (31

where 2z is the impurity charge above that of the
host ion.
For the total change we obtain

AE=AEx+AE+AE,

==Y V2 T/A+2\,T). (3.13)

IV. PERTURBATION EXPANSION

An alternative procedure is to consider the electron-
electron and electron-impurity interactions as perturba-
tions and to use a formal perturbation theory. The nth
order correction to the energy may be written” as

£~ W), (@)

where P designates the taking of a principal value and
only contributions from linked diagrams are included.
We have to go from ground state to ground state by way
of intermediate states. Three kinds of terms appear in
the perturbation expansion. There are terms which in-
clude only processes by way of H., terms which include
only processes by way of H;, and terms which include
processes due to a mixture of both H. and H;. A certain
subset of those terms containing only powers of H. give

P n—1
(H.+H,) {'(;—*(HC‘FHT) }

o—Eo)

7W. Kohn, Phys. Rev. 110, 857 (1958).
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rise to the first term in Eq. (2.10). This is just the
Wentzel result. There are no terms containing only a
single power of H;. This is so since the ground state
could not be reached again. Terms in the second power
of H; are of two types; in the first each H; connects
states below the Fermi level with those above. The
second type includes other possibilities. We have calcu-
lated the contributions of the first type out to the
second power in H..

We expand the energy shift from Eq. (2.10) to
second power in H..

_Zﬂqin Z_Z IV [2T+22)\ IV [sz
T (1420,7) S !

—A TN VT

(4.2)

The contribution from the zeroth order Coulomb
interaction may be written down immediately

—<¢o 2NV 2 A* Ay Ay A '//o>
k.q (Ho— Ev)
=—2 V& T. (4.3)
q
This is illustrated diagrammatically in Fig. 1(a).

Processes contributing to the first order in the Coulomb
interaction matrix element are illustrated in Fig. 1(b).
A cross at the end of a dashed line represents the
scattering of an electron from below the Fermi level to
above or vice versa via the electron-impurity inter-
action. A dashed line without a cross represents the
Coulomb scattering of two electrons from below the
Fermi level to above or vice versa. Those processes
contributing to the energy to second order in the
electron-electron Coulomb interaction matrix element
are not illustrated in Fig. 1. There are eighteen such
terms and we have summed them all. The result is
precisely the third term on the right of Eq. (4.2). The
higher order terms in H, have not been evaluated but
we feel confident that they also will agree with the
corresponding terms in Eq. (4.2).

Goldstone? has shown in general that all order con-
tributions to the energy arising from unlinked diagrams
are zero. The reason that the shift in energy is quadratic
in the electron-impurity matrix element is that all
higher order processes in this matrix element considered
in the treatment of Sec. II are unlinked. A few of these
processes are illustrated in Fig. 2.

V. CHANGE IN THE GROUND-STATE ENERGY

We will evaluate

l til ’T ’ ti‘ *Tdq
AE=—Y — = — [ (51)
« (1422,7) 8ms (1422,
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where .
1 4m Q dk
r= —=-no- | —
k wyq #°8mY (ktq)2—k?
dm Q [ . (ke 5] go—kr ] (5.2)
—_—— q F— F —'q n . .
i® 16m% o P

This integration (5.2) can be performed most easily by
making use of cylindrical coordinates.

We consider impurity locations distributed randomly
and average over them in a suitable manner.® The
result of this averaging yields

- 167%%'n
[Vl _—Qq"—’

(5.3)

where 7 is the number density of impurities. Using

(5.3) in (5.1) one can calculate the energy density..

An examination of the integral shows that as the elec-
tron density is increased, the major contribution to
this energy shift comes from smaller and smaller q
values (with respect to kp). That is, in the high-
density limit only the long-range response of the system
is important.

We have integrated Eq. (5.1) by an expansion of the
logarithm and find in the high-density limit

AE=—— ——p} (5.4)

where o= (4/97)% Equation (5.4) is the energy shift
per particle in Rydberg units. The screened impurity
potential is obtained by considering

V4

=, 5.5
(1425,T) 9

q

We again expand the logarithm and take the Fourier
transform of ¥4 to obtain the screened one-electron
impurity potential. The result is

2

T R

g Rl Ryl

(5.6)
where k2=4kr/mao.

VI. HIGH ELECTRON DENSITY LIMIT—EXCHANGE

First we show that the behavior of the system in the
limit of high electron density is completely described by
virtual processes connecting only states below the Fermi
level with those above.

From the Hamiltonian

2

P;
H=Z —+3 > )‘qpqpﬂq_zl Agp—o? g (61)
j q

2m q

8 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
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where

pa=2_je Uiy ro=z3 ;e iR
we get for the equation of motion for the ¢th density
fluctuation

d’p q 2N
__(_1.2_2 {_. (P]_*_—)] e 1]
dt? i lm 2

7
q-q L
~ X Ng——py I ei0
q’ m 7
’

q-q
3 Ny ¥ €0 (6.2)
q’ m 7

Primes indicate that the ¢’=0 term is excluded from
the summation. The first term on the right is the elec-
tron thermal motion contribution to d2%,./d#?. The
second and third terms arise, respectively, from the
electron-electron and electron-impurity interaction.
From these two terms we separate out the terms for
which ¢'=q and transpose them to the left side of the
equation. We get

d% q Z AN
et pimpi)==L | (P ) [ e
dit? i lm 2

aq
-2 Ng——Pq Pa—q’
a’'7q m

!

q-q
+ 2 Np—rqpg-a, (6.3)
q'5%q m
where
4arn.e?
w?= 5 pd=Tg.
m

In the high electron density limit an analysis similar
to that by Bohm and Pines® shows the terms on the
right of Eq. (6.3) small compared with those on the
left. We see that the impurities just shift the zero of
each density fluctuation by the amount r,. Evaluating
changes in the electron density by the procedure in
Sec. II yields in the high electron density limit

(6.4)

The shift in the zero of the density fluctuation shows up
as a change in electron density. Fluctuations about the
shift average out. We therefore see that the high
electron density response of the system to the impurities

gth Fourier component of A(y*y)=r,.

9 D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
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is determined solely by processes included in the treat-
ment of Sec. II. Processes connecting states above the
Fermi level therefore contribute to higher powers in 7,
than 7, in the expansion of the ground-state energy
shift.

Gell-Mann and Brueckner consider the ground-state
energy of the electron gas as expanded in powers of the
dimensionless parameter 7, The expansion of the
ground-state energy of the electron gas with impurities
must be considered to contain another dimensionless
parameter, i.e., the ratio of the impurity density to
electron density. We define this ratio as

R=un/n,. (6.5)

In Sec. V we showed the leading term of the energy
shift to go as Rr,~*. We are able to establish from an
analysis of terms in the perturbation expansion dis-
cussed in Sec. IV that all higher order terms not
explicitly evaluated there make contributions to this
same order in 7,. This is proved as follows. Each term
in the perturbation expansion included in the treatment
of Sec. IT is considered written as a constant multiplied
by an integration over dimensionless vectors. The
constant involves R multiplied by some power of 7. In
the Gell-Mann and Brueckner calculation the second
order electron-electron interaction contribution to the
ground-state energy is written as 7 multiplied by an
integral over dimensionless vectors. The third order
contribution is written as 7, multiplied by an integral
over dimensionless vectors and so on. It is easily verified
that the second order contribution to the shift in ground
state energy can be written as Ry multiplied by an
integral over dimensionless vectors. The integration
over the dimensionless vectors gives rise to the diver-
gence lim ,0(1/¢). For the higher orders we have

3rd order Rr,— divergence,
q3

4th order Rrs2—5 divergence,
q
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Sth order Rr,— divergence,

(17

We see that the sum of such terms will contribute at
most to the Rr,~* dependence as calculated in Sec. V if
the electron-impurity and electron-electron interactions
are cut off at g,~7. This is just the electron-electron
interaction momentum transfer cutoff as calculated by
Bohm and Pines.?

An exchange interaction in any order reduces the
divergence by a factor of ¢ Therefore one exchange
interaction in third order gives rise to a divergent term
Rr,(1/g) and therefore contributes at most to the Rz}
dependence in the series expansion. The same may be
said for all other higher order processes involving one
exchange interaction. We see that as for contributions
from diagrams not including an electron-impurity inter-
action, exchange contributions increase in importance
as the density of the electron gas is decreased.!!

We should also remark that AE as calculated by the
collective method?!? is

|Vei*T

AE=— —_ -
la<ae (142X,T) 1a>ac

‘ ti‘ 2T:

where ¢, is the collective momentum transfer cutoff. In
the high-density limit this result is the same as we
calculate since ¢, —.

Note: ¢, (dimensionless) =g,/kp~r}; kp~1/7,.
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