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already exist in the use of de Haas-van Alphen" and
cyclotron resonance" techniques, transport property
measurements might better be used for tests of trans-
port theories for cases in which the shapes of the energy
surfaces are already known.

"For a review, see D. Shoenberg, in Progress vari Low-Tempera-
ture Physics, edited by J. C. Gorter (North Holland Publishing
Company, Amsterdam, 1957), Vol. 2, p. 226.' For a review, see B.I.ax, Revs. Modern Phys. 30, 122 (1958).
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With the Bardeen-Cooper-Schrieffer theory as a starting point, perturbation theory is used to determine
the reduction in superconducting transition temperature due to scattering by impurities dissolved in the
superconductor. Two cases are discussed: scattering due to a localized exchange interaction between the
spins of the conduction electrons and impurity spins, and purely orbital scattering by nonmagnetic im-
purities. In the former case good quantitative agreement with observations is obtained. In the latter case
numerical agreement is less good, but the qualitative feature, that the initial reduction in T, is a universal
function of residual resistivity is made evident. It is further shown that indiscriminate application of per-
turbation theory of B.C.S. states leads to the wrong result in predicting the transition temperature, if the
transition is of second order.

1. INTRODUCTION

' 'T has been known for some time that the addition of
~ ~ impurities to a superconductor can have a major
effect on its transition temperature. "The difficulty in

the interpretation of most such results is that t.he im-

purities will change several characteristics of the ma-
terial at the same time, and it is not always clear which
change is the most important. Thus, if host and solute
atoms have different. numbers of valence electrons,
there may be a modification in the electron concentra-
tion upon which, according to t.he current theory, ' the
criterion for superconductivity sensitively depends.
Alternatively, there might be a change in the effective
electron-electron interaction due to the solute, and this
interaction enters current theory in a similarly critical
way. Finally at the larger concentrations, there might
be some upset in the phonon spect. rum.

To overcome such objections, and at the same time
to investigate relationships between superconductivity
and ferromagnetism, Matthias and co-workers4 studied
solutions of the various rare earths in lanthanum. The
rare earths differ from lanthanum only in the number
of inner-shell, f, electrons. Hence changes in the con-

' Lynton, Serin, and Zucker, J.Phys. Chem. Solids 3, 165 (1957).
2B. Serin, International Conference on Electronic Properties

of Metals at Low Temperatures, Geneva, 1958 (unpublished).
Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

Hereafter referred to as B.C.S.
4 Matthias, Suhl, and Corenzwit, Phys. Rev. I.etters I, 93 (1958).

duction-electron density should be minimal in this
case. Also the field near an impurity should not be too
different, from that near a lanthanum atom. No very
large, purely orbital, scattering effects are therefore to
be expected.

Yet it turned out. that the reduction in transition
temperature was surprisingly large: just over one atomic
percent of gadolinium reduced it almost to zero. Further-
more the reduction depended more nearly on the spin,
rather than on the magnetic moment, of the solute,
being largest by far for gadolinium, which has the largest
spin (5=—,') and much smaller for holmium and dys-
prosium whose ions have the largest magnetic moments.
(We assume here that the rare earths are present in
their trivalent form, the outer electrons having joined
the sea of conduction electrons. ) This led Herring' to
suggest that an exchange interaction between the con-
duction electrons and the f-shell spins is responsible for
the reduction in transition temperature, and his rough
estimate showed that with an exchange constant of
about 0.2 volt one would indeed obtain the observed
reduction in T,. Part of this paper is concerned with a
calculation of this effect. That the magnetic dipole
fields of the solute ions are too weak to account for the
observations is demonstrated in Appendix I.

~ C. Herring, Kamerlingh Onnes Memorial Conference on Low-
Temperature Physics, I.eiden, Holland, 1958 )Suppl. Physica 24,
(September, 1958lg.
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Other experiments, by Lynton, Serin, and Zucker'
and by Serin, Lynton, and Chanin, using nonmagnetic
impurities, yielded results amenable to a similar in-
terpretation for suKciently small impurity concentra-
tions. They found that their initial reduction in T,
seemed to be a universal function of the residual re-
sistance of the specimen, rather than of the particular
impurity introduced. However, as the concentration
increased, other effects rapidly became dominant. The
critical concentration above which this occurred was
extremely small ((0.1 jo). Thus this case is not as
unequivocally related to scattering as the spin exchange
mechanism. In either case a reduction of the transition
temperature can come about in the manner already
outlined by Herring. ' In second-order perturbation
theory, the free energies of both the normal and the
superconducting state are depressed; however, the de-
crease is slightly greater for the normal than for the
superconducting state. Consequently the transition
from the superconducting to the normal state will occur
at a lower temperature than in the absence of impuri-
ties. The perturbation causes an electron to be scattered
from one plane-wave state to another (with or without
possible spin reversal according to whether the inter-
action is spin dependent or not). In second order each
such scattering contributes to the lowering of the free
energy an amount depending on the reciprocal diRer-
ence between the energies of the final and initial mo-
mentum states. For electrons whose initial and final
energies are remote from the Fermi energy, this con-
tribution is about the same in the normal and super-
conducting states, but when both initial and final
states are within a neighborhood eo of the Fermi surface
(where eo is the energy gap of the B.C.S. theory) the
reduction of the free energy is greater for the normal
state. The reason is that in the normal condition, the
energy denominator can go to zero; in the supercon-
ducting state it cannot become smaller than 2&0. When
only one or other of the initial or final states falls within
the gap region no simple estimate of this kind is possible;
and a detailed analysis becomes necessary.

Though such a procedure seems perfectly straight-
forward, it is subject to a serious weakness. Let $=EI/E
be the impurity concentration. One might suppose that,
in order to relate the value of $ required to reduce the
transition temperature from T, to T.*, one may simply
calculate the free energies, F„(T,*) gF (T,*) of the-
normal, and F,(T,*) gF, (T,*) of the sup—erconducting
state, and equate the two, ' giving

F„(T,*)—F,.(T,*)

SF„(T,*)—SF,(T,*)

If to evaluate 8F, (T) in this formula one uses a set of
states appropriate to the unperturbed sample, featuring

6 That the shift in the free energies is linear in the concentration
for small concentration will become apparent later, but is in any
case obvious on general grounds.

the energy gap at temperature T,* of the pure sample;
that is to say, if one follows the perturbation theory of
the B.C.S. paper to the letter, this formula fails to pre-
dict the linear behavior observed for the initial decline
of T, versus P in the case of nonmagnetic scattering. In
fact for both exchange and nonmagnetic scattering it
predicts dTjd$~0 as $ —&0, contrary to reference

The reason for this di%culty could be the
following: If we take the view that the impure super-
conductor behaves in essentially the same way as a
pure superconductor, then its energy gap must go to
zero at T,*. Thus, arbitrarily close to T,*, the actual
state of the medium is one with an arbitrarily small
energy gap. To reach this state from the unperturbed
state of the pure sample, which at T,* has a finite
energy gap, would require carrying perturbation theory
to extremely high order, certainly higher than second.
There are two ways out of this dilemma. One is to re-
vert to a very much earlier point in superconductivity
theory, and to determine what eRect the impurities
have on the electron-phonon interaction which, in
turn, leads to a modification in the eRective electron-
electron interaction. ' Thereby one will arrive at the
correctly modified energy gap, and hence at the new
transition temperature. This approach will form the
subject of a later communication. The other way out is
that taken by Herring in his original calculation. The
essence of this view is to calculate the change in transi-
tion temperature "from a safe distance, " assuming the
impure substance to obey the law of corresponding
states. This law gives a universal proportionality be-
tween the energy gap at absolute sero, and the transition
temperature. Let us assume that P is not sufficient to
reduce T, to zero. Then we may calculate the difference
in the free energy shifts at absolute sero for the impure
and pure sample on the one hand by perturbation
theory (which at T=0 should now be more reliable), and
on the other hand by a rigorous theory. This would
give Lsee B.C.S. Eq. (2.42)j

—tL»-(0) —~F.(o)l=lL o'(E0) —o'(00)j-~'(0),

where E(0) is the number of states per unit energy range
near the Fermi surface, and ~0($,0) the energy gap
which a rigorous theory would predict at concentration
t and temperature zero. Ivtore generally, we may im-
agine that we start with a sample at concentra, tion f,

7 This modiGcation is not to be confused with the addhtional
effective electron-electron interaction via virtual excited states of
the scatterers. For scatterers that are assumed structureless such
virtual states do not exist at all, and so no extra electron inter-
action can arise. This is presumably the case for nonmagnetic
scattering. In the case of exchange scattering it is true that the
ionic spins have different states; however, a further requirement
for electron interaction via these is that they be nondegenerate in
energy. For gadolinium in lanthanum, different spin states differ
only very slightly in energy as the result of weak spin-orbit plus
crystal Geld effects, and the extra electron interaction is therefore
quite negligible. For other rare earths, with nonzero orbital angu-
lar momentum, it may be slightly greater; however, the continuity
of the data with those for gadolinium suggest that there, too, the
effect can be neglected.
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with energy gap eo($,0) and add a small concentration
dP. Then the analog of the last equation is

or

d—t[~F (k,0) 8—F.(5 0)j= «(k 0)&(0)d«

d«8F „($,0)—8F, ($,0)

d$ cV(0)eo(&,0)

which is a differential equation for «($,0), and thus, by
the law of corresponding states, for T,*($).Since 8F„,on
the right-hand side is not explicitly dependent on con-
centration, while OF, depends on it only through 6p,

this equation is readily integrated. For exchange scat-
tering, the right-hand side is independent of ep, so that
a linear relation between T,* and P is obtained. For the
nonmagnetic case, too, T, wersms P is initially linear, but
T,* approaches zero with steadily diminishing slope.

To summarize, if the perturbation is of a kind that
brings about a first-order phase change, with the energy
gap remaining finite at the transition, the perturbation
theory as given by B.C.S. may safely be applied right
up to T=T,*. But when the perturbation changes T,
without changing the order of the transition, that is to
say when cp goes to zero at T,~, one cannot apply it
directly nea, r T,*.Then one must either recalculate the
interaction in the presence of the perturbation or use a
special artifice like the above. In this paper we shall
first calculate the various P's at arbitrary temperature
T (since this is no harder than at T=0) and demonstrate
in a little more detail why this leads the trouble near
T,*.Finally we set T=0, and use the law of correspond-
ing states to determine T,* on the a,ssumption that
«(T.*)=0.

Present evidence, in reference 4 and in another paper
being submitted for publication, somewhat favors the
view that the gap is finite at T,* in the magnetic case.
dT*/d$ seems to increase as T —+0, and by and large
the T* versls $ curves have a tandency to convexity.
Evidence in the nonmagnetic case' favors the view that
the gap vanishes at T,*.

2. THE UNPERTURBED HAMILTONIAN

In calculating the free energies to second order in
the impurity perturbation, we make the assumption
that the scatterer does not upset either the normal or
superconducting states in any qualitative way. This
assumption is reasonable if the- concentration of im-

purities is not too high, and if the scatterers are
"structureless, " that is to say if they are not capable of
changing to states of diferent energy by interaction
with the electrons. If they can change state, a more de-

tailed treatment than the one presented here is required.
Although the second-order calculation just indicated

could be carried out using the prescription for the forma-
tion of matrix elements given in the paper' of Bardeen,
Cooper, and Schrieffer, we shall find it more convenient

ckt = cos(8k/2) dkt+ sin(8k/2) d kg*,

Ckf cos(8k/2)dk1 —sin(8k/2)d kt

(2)

The 8~'s are disposable constants which are determined
by substituting (2) into (1), and equating to zero the
coefficient of the term (dkt*d kI, *+d k1dkt). The re-
maining terms then have a form diagonal in d~~*dg, g etc.
The kinetic energy part of 3." will make a purely nu-
merical contribution to the coefficient of (dkt*d k&*

+d k1dkt); on the other hand the interaction energy
will also make contributions of the form dk*d~, which
must be replaced by their average values at the tem-
perature in question. The equation for 8& finajly ob-
tained is

6k tan8k ———', QVkk s1118k'(1 dk't d t kdk'I dk I).
A comparison with B.C.S. [Eqs. (3.22) through (3.25)j
shows that the h~ of that paper correspond to the
sin'(8k/2), and that 2fk corresponds to the thermal
average of dkt*dkt+dkI, *dk1. Taking Vkk = V to be
constant in the interval

~
ek~ (her,

~
ek

~

(Aa& and zero
elsewhere, one obtains the solution

~p(k)

&p

=0 (elsewhere),

(3)

where the energy gap (k«) is constant, =60, when

~
ek~ (bar, and zero elsewhere. [In these inequalities A~

stands for some typical phonon energy (see B.C.S.).]
ep is the solution of the equation

V 1—2fk

2 (.a( &k~ [ek'+ &OP(k) j:*'

The transformed Hamiltonian now takes the form

BC = ze1'o-po111t, tel'IIls+Q Ek(dkt dkt+dkg dk1)
+terms of fourth order in the d's, (4)

where
+1 [&k +60 (k)j .

Here, we need not concern ourselves with the zero-point

N. N. Bogoliubov, J. Exptl, Theoret. Phys. U.S.S,R. 34, 65
(l958).' J. G. Valatin, Nuovo cimento 7, 843 (1958).

to use the formalism developed by .Bogoliubov' and
Valatin. ' In the language of these authors the reduced
B.C.S. Hamiltonian [B.C.S., Eq. (2.14)), which in the
notation of B.C.S. reads

X =Q Ek(Ck ICkt+Ck1 Ck1)
—Q Vkk'Ck't C k'1 C k1Ckt) (1)

(with ek measured from the Fermi surface), is "di-
agonalized" as follows: The c* and c are replaced by
new fermion creation and destruction operators d* and
d through the transformations
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terms, since they are involved only in the evaluation of
the unperturbed state of the medium. The fourth-order
terms are neglected since they only cause zero-point
motions about states of the quadratic part of the
Hamiltonian, which lead to a negligible correction of
their energies.

Thus, for our purposes, we may take the unper-
turbed Hamiltonian in the form

X'=Q Et (d)t*dpt+dy~*dkt), (6)

and the mean value of the occupation number ek =dk*dk

at temperature T is given by the Fermi function

3. CALCULATION OF THE FREE ENERGIES IN THE
PRESENCE OF EXCHANGE SCATTERING

The Hamiltonian (6) must now be supplemented by
a perturbation appropriate to exchange scattering. If it
is assumed that the exchange interaction between con-
duction electrons and impurity spins is strictly localized
to a very small region around the impurity, the per-
turbing Hamiltonian takes the form

X'= JQo p t 8(r —R,)S,"s(r)dy,

.where Qo is the volume occupied by the ionic spin S,,
and s(r) the conduction-electron spin density at r. In
second quantized form this becomes

J1X'= ——PLSy q+cpg* qt+ p q2E u, ~

+Sp q'(cpt*cqt —cps*cq s)],
with

gy+= P 5~+e 'y "' etc.

(9).This could, of course, be accomplished by expanding
the free energy, F= kT—ln Tr expl —(Xo+X')/kT] in
a power series in BC', taking note of the noncommuta-
tivity of X' and 3C', and using a, representation in which
the d*d are diagonal for evaluating the trace. However,
this denies one the possibility of examining the reasons
for the qualitative failure of such a procedure as men-
tioned in the introduction. An alternative procedure,
which leaves this possibility open, is to find a canonical
transformation of Xo+X', which eliminates X' to the
first order. The new Hamiltonian then consists of X'
plus a second-order correction. The nonrandom part of
this correction, which arises from excitation of an elec-
tron by a given spin and de-excitation of the electron
by the same spin makes a nonvanishing contribution to
the free energy. The part involving excitation by a
given spin and de-excitation by another spin leaves one
with an effective spin-spin interaction of the type ex-
amined by many investigators'~" for the normal metal,
which, of course, has its analog in the superconductor.

Following this procedure, we seek a transformation
function such that the new Hamiltonian

Xo+X'+iLXo S]y(i(X' S] oil-Xo S] S]}
If S is determined in such a way that

X'= -i(X',S), (12)

then the new Hamiltonian, correct to second order, is

X„.„.=X'+-', (X',S).

X„,„=exp( —iS) (Xo+X') exp(iS)

no longer contains terms of first order in J. The new
eigenfunctions will be related to the original ones by

P,„=exp ( iS)P—„)g,

8 itself will be small, of the same order as BC'. Expanding
the exponentials to second order, we obtain

It has been supposed, in deriving (8) from (7) that It d'l 'fi d th t with X of the f m (9)the basis functions are plane-wave states (normalized
to the total volume 0), (1/Ol)e'P', and tha, t 0/Qo ——Ã J
the total number of atoms in the sample. S=i DS—,+[f,d g*d t

The transformation (2) changes this into E Ie

J
&'=—&(~p-q'L~yqdyi*dqt

21K

+obey«(dyg+d qg*+d ytdq)t]+comp. conj.

+~p-q*l:~p«(dy t*dqt —dp~*d«~)

+Pyq(d pt*d q~* d y~dqt-)]}, —(9-)
where

„=cosl (g,—8 )/2] P,=sinL(8, —8 )/27. (10)

Our object is to determine the temperature at which the
free energy of the normal state becomes equal to that of
the superconducting state, in the face of perturbation

+2gyq(dp*td —qt* d—ytdqt)] —comp, conj.

+-~ «*Lfyyq(d. t*d.t dyt*dqi)—
+g «(dp*td «g*+d pgdqt)]} (14)

provided the unperturbed Hamiltonian contains no
spin-dependent terms whatever. Here

fpq=~yq/(&y &q) gpq=&yq/(&—p+&q)

(We note at this point that it will not be necessary to

' H. Frohlich and F. R. N. Nabarro, Proc. Roy. Soc. (London)
A175, 382 (1940).

"M. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954)."K.Yosida, Phys. Rev. 106, 893 (1957),
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derive separate formulas for the normal and super-
conducting states. Those for the normal state follow
from those for the superconducting state by writing
pp=0. ) The new Hamiltonian (13) will contain a great
variety of terms. We assume here that the spin-other
spin terms contained in it are of insufficient magnitude
relative to the temperature to cause spontaneous order-
ing. Then the spin-spin terms contribute nothing to the
partition sum in order J'. Likewise terms of the form
(S,+)', (S, )' or any linear functions of the S, that will

occur in the evaluation of (X',8) contribute nothing.
The only terms that do make themselves felt are the
"self" terms out of S~ q~+ S~ q, S~ q S~ q+, S~~ q~'

' Sp—q that is terms involving the same spin twice.
Bearing these facts in mind, we find after some tedious
but straightforward evaluations of commutators that"

X„, =X,'—S(S+1)

t' ~pp'

4 1V2 pp (Ep E, Ep+—E, &

X (d, t*d, t+dps*d, 2)+Q ~pA,

mine eo from the unperturbed Hamiltonian alone, but
include perturbation terms in the coe%cient of
(d*d*+dd) before equating it to zero. Then the "true
gap" (to second order) can be evaluated. Disregarding
this problem, we omit the middle term, retaining only
the diagonal portions of 3C„,.„,including the zero-point
term. We then have

F= —(1/P) ln Tr expf —P(BOP+X, ')j
=F' $8F, —

where $=Xr/X is the impurity concentration, F' the
unperturbed free energy and

1 TrX„„,' exp( —PAP)

Tr exp( —PP)

J2 ~ 2 p 2

= s(s+»Zi
2X KEp —E, Ep+EJ

J2 p 2

+ S(S+1)2 (16)4' E,+E,

X
~

+ ~(dpr d pg +d psdpt)— —
E,—E,)

2
pq+2

E +E
—=KP+3C„, '. (15)

F„('&(T)—HF„(T)=F,"'(T)—gF, (T),

As outlined in the introduction, in the case of a first-
order transition, the temperature T at which the free
energies of normal and superconducting states become
equa, l for a given concentration g, so that the specimen
becomes normal, is given by the equation

The first of the correction terms in the bracket is a
shift in the kinetic energy of the new fermions. It is
important only insofar as a finite temperature permits
excitation of such fermions. The last term in the
bracket is a "zero point" shift, "and, as we shall see, it
gives the most important contribution to the lowering
of T,. The middle term, involving d*d* and dd does not
affect the calculation of the free energy to second order
in J, since (with /=1/kT),

Tr expL —P(XP+K„, ')]=Tr exp( —PXP)

P

—Tr exp( —PBCP) exp(xKP)X„,„,' exp( —xXP)dx,
0

and in a representation in which d*d is diagonal the
contribution to the second trace on the right from the
middle term in 3C, is zero. However it is clear that in
a situation in which the true energy gap is very small,
the middle term enters the gap condition in a vital way,
and the simple expansion procedure for the free energy
is not satisfactory as indicated in the introduction. One
should really return to the full Hamiltonian, not deter-

"Actually, for obvious symmetry reasons, only the S' part of
the interaction need have been retained, if in the 6nal result for
3'.n, ~, (S; ) is replaced by (S;*)'+(S;&)'+(S )'=S(S+1).

'4The name "zero point" is meant to imply independence of
excitation of the d's. The term still depends on temperature
through e, .

which may be written

F (P) (T)—F (P) (T)

SF„(T) SF,(T)—
or

(1/82r) H.'(T)0

6F„(T)—5F,(T)

where 0 is the sample volume, and H, (T) the critical
field at temperature T. As already noted, we derive bri „
as a special case from (16) by setting pp(p), «(q) equal
to zero everywhere, not just outside the interval

bc' (6~(AM.
Utilizing the expressions for sinep, sin82 from (3), and

using the definitions (10), we obtain from (16)

J' 1 E,'+«(p)pp(q)
0F,=S(S+1) 8+ —— f(Eq)

4 S ~p&o, p&&0 E,(E,'—E,')

EpEp —pp(u) «(q)
+2 (18a)

pp, pq)o (Ep+E,)EpE,
J2 1

pF„=s(s+1)

6q Eq 1
X8 +2 P ——. (18b)

&p )0,&0 )0 pp pp E'p, 6 pp&p+op&2 2
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we express the logarithm in (21) as

Bq+ln(1+e iy+pq'/1+e 'y 'q&). (22)

Fn. 1. Division of the tp fq plane for evaluation of
the free energy shifts.

It will turn out that the f-dependent terms make a
negligible contribution to 6F„—5F,. Therefore we begin
with a discussion of the f-independent "zero point"
terms. We divide the e~, eq plane into three regions
(Fig. 1). Region I, is the square 0& py&AIp; 0& pq&Acp.

Region II is ~,)km', eq &hen. Region III consists of two
parts: (py)AIp, 0&pq&AIp) and (0& py&ApI, pq)AIp).
Over Region I, the number of states per unit energy
range hardly varies, and is almost equal to»I(0), the
density of states near the Fermi level. In Region I we
have therefore

Bearing in mind that q in practice should be a large
number, at least in the weak coupling approximation,
we may expand the logarithm as a power series. Then
we find that the integrals in the series all have the form
e "~J'p~(sinhnB/sinhB)dB, and thus tend to zero as e 'y.

Hence the last integral in (20) is effectively

Oq m'

d9q =—
slnhoq 4

neglecting terms of order (pp/Acp). The integral in the
square bracket can be evaluated without approxima-
tion, using (21) and integrating by parts. The final
result is

E.yE.q
—ep'-

o &. yq &a FyFq(Fy+Fq)

App pp App ( Ep i= [IV(0)]'pp ——+—2 ln2 ——ln—+OI
2 Ep Acp Ep ~ AQ&)

0&ay, eq&A~ py+Eq

f I.ce f'Ao) 1
=P'(0)]

p

= [»'(0)]'ApI2 ln2. (19)

Hence the f-independent contribution to BF„"pF,from—
Region I is

J' Ir' Pp AIP it' Pp )
2S(S+1)—[»I(0)]'pp —+—ln—+OI —

I
. (23)

4IV i 2 AIp pp l,A&p)

On the other hand, writing ~~ = ~p sinh0~ etc. , we have

E h —ep'

o«„., &p~ FyFq(Ey+Eq)

cosh8~ cosho, —1
= [iV(0)]'pp I

i dBydB
coshB, +cosh8,

where py=sinh I(ApI/pp). The integral may obviously
be written

sinh'0~
p slnh�-

pd8�~d,

~ p ~p cos11B&+cosllBq

In Region II, 6F„and bF, are equal so that bF —8F,=0.
In Region III, since we have to integrate over a large
energy range with respect to one of the two variables it
is necessary to make some assumption about the varia-
tion of the state density. We assume a simple parabolic
energy dependence. If we pick the region e~)Au,
0& pq&Ap& of the two regions of type III (for the other
the f-independent contribution is the same) we then
have

iV(p„) =»I(0) (1+py/pr)i

where ey is the Fermi energy,
From the two regions of type III we thus get a total

f-independent contribution

Ke have

dBydB, 1—
2) ) . (20)

coshBy+coshB„ III py+ pq III py+gq

q q

III (py+ pq) (py+F q)

coshB, +coshB,

f Bq+ ip

lnI cosh
sinhBq ( 2

cosh I. (21)
2

(1+x)&

X (Eq —pq)dx.

P @co

=4[»'(0)]'
"P " - i.f (x+Pq/PI) (x+Eq/P;)

For the purpose of evaluating the last integral in (20), Writing 1+x=s', one can easily evaluate thIs Integral,
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(E,,—e,)/Aop
ln 1+ de, .

1+ep/AM

4[&(0))' Ical d 6p
dp

bearing in mind that, in (O,Ao)), e, is much less than e~. and both f(ep) and f(E,) are appreciable only for
After integration with respect to e„, one is left with e~&&~. Hence the logarithm may be expanded so that

for the present purpose

Now (E,—ep)/Ao) is of order ep/Aop which is much less
than one. Hence the integral is

f AG) Eq tq
4[V(0)]' dep

"o A+e,
p~ e 'cosh8d8

=4[v(0)]"'
& o Sue+co sinh8

To lowest order in ep/Ao) it finally becomes

( coy4[X(0)]'« ln—+0(
. 2AM eo (AM)

In estima, ting the f-dependent contribution, we erst
note that there is no difficulty with vanishing de-
nominators, since

"f(ep) 1 f(ep)+f(ep) f(eo) —f(")=-- Z +2
4p eo+ ep 6p 6q

etc. , and all the summands are well-behaved near
op= e, . Therefore the sum on the left, when converted
to an integral, is equal to its principal value at any
point, in particular at ep = e~. This is also the reason
why it was not necessary to raise the question if the
principal part sign should or should not precede the
transformation S.

In Region I we have

epf(ep) &p ++p

g (jv&—g~)

P Ace 6q= [-'~'(0)]' '

epf(ep) ——f(I'-p)

('lied lEep f'p(u pe
X PJ de +2) f(&)—

0 Ep &q 0
2 2

hc0 dip
X & de, . (25)

O 6p

Now

P fichu d 6p 1 A(d

P ln
"p e ' —e o 2e, Ao)+e

Thus from the f-independent terms the contribution to
8F„—8Ii, from all regions is

2J' vr' eo App ( eo )
5(5+1) [X(0)]'ep —+2 111 +0~ ~

. (24)
4X 2 Ao) eii 5 Ao) )

AMp

Thus the last integral in (25) is

,
«' vf(&p)—2[%(0)]'—

~
de,

jV

= —2[iV(0)]'— f(ep cosh', )di9,. (26)
0

Bearing in mind the definition of f, we see that this
integral is less than

e
—(ep/hv) coshpdg Q (e /kT)

one of the modified Bessel functions. For large eo/kT
this varies as exp[—(ep/kT)], for small values it be-
haves as ln(kT/eo). That is to say the contribution
made by (26) is at most of order (ep'/Ao)) ln(kT/ep),
which is an order

~
In(kT/eo)/ln(Ao)/eo)

~

lower than the
second term in (24). In Region III (only one of the
two Regions III is now eRective), the last integral in (25)
does not exist at all. The erst integral, extended over
Regions I and III is likewise of order (ep'/Ao)) 1nkT/ep.
Thus we conclude that the f-dependent terms con-
tribute negligibly to the free energy. Our result to
lowest order, from (24) and (17), becomes

(1/g )H,'(T)n

(J-'/4X) [Ã(0)]'7r'eii(T) 5(5+1)
(27)

for the concentration required to depress the transition
temperature to T.

%hen T is near T„ the transition temperature of the
pure sample, we may show from the B.C.S. paper that

H, (T) ' 2(1—ln2) ep(T) '-

H(0) 1.75 eo(0) .

which shows that, for T near T„$varies as eo(T). Since
ep(T) varies as [1—(T/T, ) ]**near that point we see that
the T* versus $ curve has zero slope near /=0, demon-
strating the point made in the introduction. On the
other hand, near T=o, eo is essentially constant and,
from B.C.S. [Eq. (3.43)] dH, o(T)/dT~0. Thus the
T* )curve should ha—ve a vertical tangent at T=o.
Exactly at T=O neither the prediction of the present
theory nor that based on the law of corresponding
states is necessarily reliable. For less extreme concen-
trations, using Herrings di6erential equation method
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gives, from (24),

des(0) 5F (0)—8F.(0)

iV (0)ep(0)

J2
= ——v (ef)7rsS(S+1),

where v(ef) =cV(0)/iV is the number of states per atom
per unit energy range near the Fermi surface. Since
60= 1.75kT,*, we finally obtain

J' i (eg)m'$5(5+1)
kT,*=kT.——

4 1.75
(29)

4. SPIN-ORBIT COUPLING

For the rare earths other than gadolinium there may
well be an important spin-orbit coupling even in the
lanthanum surroundings. In general, the introduction
of an L S term in 5(." complicates the calculation con-
siderably. Some of the energy denominators now have
added to them, others subtracted from them, energies
corresponding to the interval between adjacent multi-
plet levels. A specially simple calculation may be made,
however, in the case of very strong spin-orbit coupling.
Then we may neglect the matrix elements of S between
levels of different multiplicity, and by the rules of angu-
lar momentum algebra we may make the replacement

(Pg, A Sit g) A (A+1)+5(5+1)—L(L+1)
S—&A =A

2A (A+1)A (A+1)

where A= L+S is the total angular momentum. Hence
in our final formulas we make the substitution

5(S+1)~
[A (A+1)+S(5+1)—L(L+1)j'/4A (A+1).

For the elements to the left of gadolinium, A =I.—5 in
the lowest state, and then

5(5+1)—+ 5'/(1+1/A).

For the elements to the right of (and including) gado-
linium A =L+S, and

S(S+1)—+ 5'(1+1!A).

Figure 2 shows three sets of points, giving the depres-
sion of T. as a function of atomic number, relative to
the depression for gadolinium. The circles are the ob-
servations, the crosses assume zero spin-orbit coupling;
the squares infinite spin-orbit coupling. For most points
the squares come closer to the observations than the
crosses. The most notable exception is europium, for

The extrapolated curve of reference 8 gave T,*=O at
$=0.01. Taking v(ef) =0.2 (ev) ', 5= rs for gado-
linium, and kT, 4)&10 4 ev we then get

J=0.165 ev,

an entirely reasonable estimate.

which A =0. But since europium has a 6nite magnetic
moment, in spite of the fact that A =0, one cannot
expect agreement.

N
5(."=—Q Us, cs.*cs.,

2V pa.
(30)

whereto= (1/Qs) J s(r)dv, Vs s=P exp[ —i(p —q) R,],
Oo is the atomic volume, and cr denotes spin orientation.
In terms of the d-operators

5(."= (tv/cV) Q [U, ,n„+(d,t*d,t+ dst*dst)
+Us-As"d-stdst+Us-s*&ss+«t*d-. t*l (3 )

with

os+os 8s+gs
ns, +=cos; Pss+= sin

2
"

2
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FIG. 2. The reduction of T, due to exchange scattering of con-
duction electrons by rare-earth impurities. The exchange integral
has been assumed constant over the whole range.

' Rote added in proof. Since this paper was submitted, a similar
calculation on nonmagnetic scattering has been published

I
K.

Nakamura, Prog. Theoret. Phys. (Kyoto) 21, 435 (1959)g.
Xakamura's results for the reduction in the free energy difference
between normal and superconducting states are essentially the
same as those given here. His interpretation is that it arises from
a changed electron interaction, so that the impure superconductor
obeys the same relation of transition temperature to energy gap
as the pure superconductor. LSee Sec. 7, and also H. Suhl and B.
T. Matthias, Phys. Rev. Letters 2, 5 (1959).g

S. CHANGES IN THE FREE ENERGY DUE TO
NONMAGNETIC IMPURITIES"

I.ynton, Serin, and Zucker' ' have observed that very
small additions of. diamagnetic impurities to a super-
conductor lower T, by an amount that is a universal
function of the residual resistance of the sample, rather
than of the impurity concentration. This result becomes
plausible in the light of the present theory.

Let n(r —R,) be the difference in energies of an elec-
tron at r in the field of an impurity at lattice site R;,
and the 6eld of a normal atom at R;. We assume the
electrons to be in plane wave states, and suppose that
t(r —R~) is appreciable only over regions small com-
pared with all electron wavelengths involved. Thus in
terms of the c's the perturbing Hamiltonian is
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The canonical transformation now has the form

'Lzo Up

g(lyly

+
g=—P -(dpt*d»t+dpt*d»r)

A uc. Ey —F~

&p-A»'
p&d»2+ d»2 d p&

Ep+E»

In evalua, ting the commutator PC', g) required in the
establishment of the new Hamiltonian there occur
terms of the form

, P —~ —i (p'—q') R&'—i (y—q ) R;u' —a p—e
'c2

The sum over i and j may be split up:

2=2+2.
i=i iWj

Neglecting the effect of the very slight correlation in-
troduced by the requirement iA j in the second sum, we
see that it will be negligible, unless p'= q' and p= q,
Such terms, however, could have been included in the
kinetic energy from the beginning and would only lead
to a slight shift in the zero of energy. Henceforth we
assume that this has been done and that p/ q through-
out. Then only the part i =j produces a major effect;
the remainder just leading to second-order scattering
terms. But when i =j, the sum is still small, unless we
also have

O' —21'+ Ii —il =0,

in which case it equals E&, the number of impurities in
the specimen. Bearing these points in mind we anally
obtain a new Hamiltonian

( 0 +2 p +2

&E EE„+E,J—
1 1

X(dqt dqt+dqt dqt)+&pq Ppq 'l

E»+Eq &

p +2

X (d»p*d-»2*+d-, td»2)+2 . (32)
Ep+E»-

The calculation proceeds just as for the spin case.
we have, for the concentration $ that causes the transi-
tion temperature to decline to T,

bF„=2w'
vf q)oep+ oq

Again the e„, e, quadrant is divided into three regions.
The contribution to 0F —6F, from Region II is again
zero. That from either Region III is just the same as in
the previous case, since «(p) o(oq) is zero throughout
III, and it is only in the sign of that term that 8F,
differs from the 6F, of the spin-dependent case. How-
ever, in Region I the result is quite different. There

EpE,+oo2
8F,-Q—

i EpE»(Ep+E, )

r ~ t'" cosh8p cosh8»+1
dOydgq= C)V(0) )'oo

cosh8p+cosh8,

sinh'8~
=Catv(0))2 q sinhqo — ' ' — d8,d8, .

~t o ~ o cosh8p+ cosh8»

This is just the same as the integral (20), except that the
last term of (ZO) is missing. But that is precisely the one
which gave a contribution of order eo to OF„—0F,. Thus
for the spin-independent scattering we get just the
same result (except, of course, for the coefficient) as in
the spin case, but with the eo term missing:

4z' Aco
8F„—8F,= CS(0)]2—ln—

gpss Aco Ep

(34)

to lowest order in oo/A&o. Thus we finally have, from the
viewpoint appropriate to a first-order transition,

(1/8»r)H. 2(T)Q
gw2— . (35)

(4/&) C&(0)3'&o(T) Ceo(T)/&o'3 lnC™/«(T)3

For T close to T, H, '(T) varies as co(T)', hence dT/dP
is again zero near T,. as in the previous case. Likewise,
near T=O, dT/d$= ~.

On the other hand, the differential equation method
gives

d E.() 60 @co——=4w2v(qt) —ln—,
AM oo

(Pp»+) 2 w' 1—cos(8p+8, )
8F,=w2 g

Ep+E» 2 (Ep+E.)

EpE»+oo(lp) «(21)
=2w' (33)

q&o (Ep+E»)EpE»

(1/8»r)H 2(T)Q

h F„(T) 8F,(T)—
and a,gain the f-dependent terms make a negligible
contribution to the shift. This leaves the "zero point"
terms which are

which integrates to yield

&o(pure) exp/4w v(Ej)2/Sot)

6p =Aco
AM

(36)

(37)
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The relation (38) is shown in Fig. 3." The curve de-
clines much faster, initially, than any of the curves in
reference 1. There might be several reasons for this. We
have assumed a 8-function scattering potential. In
calculating bF„—SIC., we therefore had to integrate over
all momenta, while for a scatterer with finite range,
there would be much less contribution for large values
of

~ p —
q~ in the sums (33). (Such large values actually

occur in a, ll three regions of Fig. 1.) This could lead to a
substantial reduction in the exponent of Eq. (38).
Further, in estimating the contribution of Region III,
we assumed a state density appropriate to a parabolic
band extending to infinity. In cases in which the Fermi
level is close to the zone boundary, this would be a very
poor approximation, the contribution from region III
being negligible in that case. Thus it is quite possible
that the predicted slope is too large by a factor ten. In
that case theory and experiment would agree better.

0.4

0.3

Oe2

0.1

LL.
0.2 0.4 Oe 6

l RED| D ~ROOM

0.8 1.0

FIG. 3. Predicted course of the transition temperature versls
residual resistance ratio of the impure metal. (The experimental
curves show such universal dependence only for extremely small
values Of precis/proem )

6. RELATION TO THE RESIDUAL RESISTANCE

In the Born approximation, the residual resistivity
due to the impurities also involves w'$, in the same way
as Eq. (35). All other quantities appearing in (35) and
in the expression for the residual resistivity are prop-
erties of the host metal. A standard expression for this
resistivity may be found in Wilson's book on metals:

p= (m*/2e'Aes) v(er)w'P.

Hence we have

4w'tv(ef)/Ato= 8pe'mrs/m*te.

But m*&o/e'ms is of the order of the room-temperature
resistivity due to lattice scattering, which we denote
by p&. Thus we may rewrite (37) as

'bee (esrpeu) '"&&s&~&'&

(38)
j..7D ' 'f240

'7. CONCLUSIONS

We have shown that for calculating a transition tem-
perature in the presence of perturbations, the perturba-
tion theory of B.C.S. can safely be applied only if the
transition becomes first order as the result of the per-
turbation. When it does not, one should revert to an
earlier stage in the theory and recalculate the eGective
electron interaction, excitation spectrum, etc. , ab zmtio
in the presence of the perturbation. An easier way out
is to assume that the impure superconductor behaves
much like the pure superconductor, in that it obeys the
same relation of transition temperature to energy gap
at absolute zero. This gives good qualitative agreement
with the facts, for nonmagnetic scattering, suggesting
that the impurities leave the order of the transition un-
changed. The more rigorous viewpoint, beginning with
the full electron-phonon Hamiltonian, will be presented
in a later paper. A few final remarks will indicate how
such a theory would develop: As for nonmagnetic im-

purities, general arguments due to Anderson, "based on
time reversal, and due to Abrahams and Weiss, "based
on specihc models, indicate that superconductors with
nonmagnetic impurities should behave just like the
pure substance, but with changed constants, particu-
larly with a changed effective "V"of the B.C.S. theory.
This viewpoint is consistent with our result

fiT,/bP- es ln (hei/eii),

which is of the same form as one would deduce from
the relation T, expL —1/E(0)Vj when U suffers an
incremental change. For the spin-dependent case, time
reversal cannot be invoked directly; however, since our
calculations are all quadratic in the impurity spins,
time reversal should hold on the average. Yet in that
case tiT,/8( constant, a result which cannot be de-

"For obvious reasons, Eq. (38) is to be trusted only for small
values of p/p~."P. W. Anderson (private communication).

's E. Abrahams and P. R. Weiss ('to be published).
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duced from a changed interaction constant alone. I'he
reason for this apparent contradiction lies in the
peculiar nature of the B.C.S. pair states. One may show
that if 4p is some state of the system, and the two
operations cpt cqt cpg cqg generate two orthogonal
states from 4'p, then the spin-dependent case to any
even order in the impurity spins must give the same
result as the spin-independent case. However, if 4'p is
a B.C.S. state, the two new states are not in general
orthogonal, and this leads to coherence effects that are
different in the two cases, as already pointed out in
B.C.S. At the level at which one treats the full electron-
phonon Hamiltonian this diHerence becomes particu-
larly apparent.

APPENDIX I. ESTIMATE OF THE EFFECT OF A
RANDOM DIPOLAR FIELD ON THE SUPER-
CONDUCTING TRANSITION TEMPERATURE

To obtain a rough estimate of the effect on the free
energy of the random dipole 6eld, we restrict ourselves
to the absolute zero of temperature. In principle, the
calculation should proceed as follows: Each dipole
gives rise to a field that can be represented as a vector
potential whose divergence vanishes. In vacuo, dipoles
of magnetic moment p,; placed at R; set up a vector
potential whose spatial Fourier transform may be
written

Avnc(q) =
47ri P p, &(q

etq. R
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where ll(q) is a function of q which falls off as 1/q when

q exceeds about 10' cm '. The result of solving (ii)
and (iv) is now

4~ j-(q)
A(q) =——,—

c q +K(q)
(v)

Having found A we may calculate the energy in t]ie
field:

1—"A(q) j*(q)dq,
2C~

(vi)

where j(q) =j +j,. Using (v), this may be written

4 A-(q) J-'(q)
d|I

Lq'+K(q)]'
(vii)

When (vii) is averaged over all R; and all orientations
of p, ;, there obviously remain only the El equal self-
energy terms of the individual dipoles, and these di-
verge, since the integrand varies as q' for large q.
However, we are interested only in the difference in the
shift of the energies, and this converges.

To continue the calculation rigorously would require
an exact knowledge of K, and K„, which are only known
implicitly, as complicated integrals. However, we may
safely restrict the integral (vii) to values of q) 10'cm '.
Most of the energy resides within this range, in either
state. For q&10' cm ', the magnetic fields in the normal
state are minuscule, and in the superconducting state
they become negligible since ~(q) ~ const. as q ~ 0. In
computing the difference in normal and superconducting
energies, we may use (vii), neglecting a except where it
occurs in the form K K, Thus we have, to lowest order
in K, and using the previous notation

When the dipoles are immersed in the conductor, in
either state, A has to be recalculated, account being
taken of the current distribution set up in the medium.
A is then deduced from Poisson's equation

4x—q'A(q) = ——Lj.(q)+j-(q)],

where
c

j-(q) =—q'A-. (q)
4x

is the driving current, and where j,(q) is the conduction
electron current due to A, calculated to first order in A

. by a perturbation expansion, such as that given by
B.C.S. The result of this calculation has the form

—$(5F„—8F,)

2~ t.i-(q)i-*(q)—[K., (q) —~„(q)]dq
c' & q4

1
A „(q)A,„,*(q)[~,(q) —~„(q)]dq. (viii)

Sx~

The "paramagnetic" contribution to the two K's are
equal and therefore need not be considered. Then if we

denote by j the diamagnetic current in a potential
A .„we have

((&F-—».) =— A-.-(q) Lj-.. (q) —j--'(q)]d» (lx)
1

2c~

j.(q) = ——~(q) A(q)
4x

(lv) The diamagnetic currents are related to A by formula

(5.19) of B.C.S. At absolute zero, this formula and Eq.
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(ix) give (if random phase terms are equated to zero)

e~PP 2 pdpdq
$(5F„f'IF—,) = lV$ [(pxq) p]'

4m'c' (22r) 8~ q4

E~I+28P+pp(P)«(P+If) j/FIFT~Q
X

f'-'.+Lu+

the positive e„e, quadrant alone, just as in the main
text. As before, the integrand vanishes in region II of
Fig. 1. In region I it is well behaved, for at p=g,
where the logarithm goes to infinity, the remainder of
the integrand goes to zero more strongly. For an order
of magnitude estimate it will therefore be permissible
to ascribe some typical value which the explicitly p-
and q-dependent part of the integrand takes in region I,
that is to say„close to the Fermi surface, and to move it
outside the integrand. This typical value is

e'k' 2 t dpdq
=IVP I:P (PXq) j-'

4m'c' (22r)8"
l p —

ql
4

1—
Pep "+«(p) pp(q) j/&8~.

X ~ ~ ~

g +g

p(SF„bF,)—
e2A2 42ry2 I

" 1 p2+q2 p —q
+ ln

4m2c2 (2%)8J p2$2 4p8$8 p+ q

1—sgnep sgnpp 1—Pppep+CP(P)«(cf) j/E&Fp

Ey+62 g +g
P cl dppdpq

X
(A'/2m*)'

(x)

Obviously the integral may be converted into one over

Here p is some one typical magnetic moment. As-

suming the energies to depend only on the magnitude
of the wave vector, we may perform the angular in-

tegrations, to obtain

A 2/(A2/2 m4) 2=A 6/E 2

The remaining integral is then exactly the same as that
or the case of spin exchange discussed in the main text.
Finally, the contribution to (x) from region III is again
smaller by an order (Ep/AIp) 1I1(Acp/Ep) than that from
region I. Using, then, the value of the integral already
calculated, (i.e., pppr2) we obtain an estimate of

Se'A'p, 'k '
t"«Ir2

4mc'ef'

for the reduction in F„—F, due to the magnetic fields.
This must be compared with Eq. (24) for the reduction
due to exchange. The condition that the magnetic
lowering be less thus becomes

(eII/O c) (mpI)'(22rI (pf)JLS(S+1)fl.

The left-hand side, with p 10 Bohr magnetons, is of
order 10 ', while the right-hand side, with J 0.15 ev
and I (p~) 0.2 (ev) ' ranges from about 0.04 for gado-
linium down to 0.002 near the edge of the rare-earth
series. Hence the magnetic fields of the dipoles cannot
be responsible for the observed e6ect.


