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so that the cross section is not large. The situation is
quite different for the p Z'E-+ process, primarily be-
cause the electric dipole moment term Q, is positive
for this process. Thus the p~ and Q terms add de-
structively in the pseudoscalar case and constructively
in the scalar case. Hence, the ratio of the Z E+ and
Z+E' cross sections (As,/Ar) tends to be large in the
scalar case and small in the pseudoscalar case. A similar
argument may be made concerning the ratio (22,/24);
this ratio also tends to be much larger in the scalar
than in the pseudoscalar theory.

Again it should be pointed out that recoil effects
associated with the finite photon wavelength are im-

portant, even for the qualitative effects discussed
above.

The present. experimental data are insufficient for
any conclusions to be made concerning the E parity
or the sign of Gs/Gz. Only the p A'E+ an-d p 2'E+ cro-ss

sections have been measured, "and the data are not of
8 Brody, Wetherell, and Walker, Phys. Rev. 110, 1213 (1958).

sufficient accuracy to show whether or not the cross
sections are appreciably nonisotropic. Certainly much
would be learned if the measured results could be com-
pared to the corresponding cross sections for any of the
other processes discussed here. lt is seen from Table I
that the 5 wave cross sections for some of the un-
measured processes may be much larger than the 2'IC+
and A'E+ cross sections, so that measurement of the
processes 5+E', 2 E+, 2'E, and A'E may not be as
difficult as one would at first suppose.

Of course the eRects of pion interactions and reso-
nance states may seriously alter the perturbation theory
conclusions. Nevertheless, it is believed that the per-
turbation theory is a valuable guide to experiment, and
it is not unlikely that many of the qualitative con-
clusions of the theory will prove to be correct.
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The theory of gravitation is usually expressed in terms of an arbitrary system of coordinates. This results
in the appearance of weak equations connecting the Hamiltonian dynamical variables that describe a state
at a certain time, leading to supplementary conditions on the wave function after quantization. It is then
difficult to specify the initial state in any practical problem.

To remove the difFiculty one must eliminate the weak equations by fixing the coordinate system. The
general procedure for this elimination is here described. A particular way of fixing the coordinate system is
then proposed and its eBect on the Poisson bracket relations is worked out.

INTRODUCI'ION AND NOTATION

HE problem of putting Einstein's equations for
the gravitational field into the Hamiltonian

form, as a preliminary to quantization, has recently
received a good deal of attention, because of the develop-
ment of mathematical methods sufficiently powerful
to make it tractable.

The Hamiltonian form involves the concept of a
physical state "at a certain time, " which means in a
relativistic theory a state on a certain three-dimensional
space-like surface in space-time. At first people' ' chose
the space-like surface independent of the coordinates
x", which enabled them to preserve the four-dimen-
sional symmetry of the equations. Later it was realized' 4

*The author's stay at the Institute for Advanced Study was
supported by the National Science Foundation.' F. A. E. Pirani and A. Schild, Phys. Rev. 79, 986 (1950).

'Bergmann, Pen6eld, Schiller, and Zatzkis, Phys. Rev. 80,
81 (1950).' Pirani, Schiid, and Skinner, Phys. Rev. 87, 452 (1952l.

4 P. A. M. Dirac, Proc. Roy. Soc. (I.ondon) A246, 333 (1958).

that one could effect a substantial simplification, at the
expense of giving up four-dimensional symmetry, by
choosing a system of coordinates such that the three-
dimensional surfaces x = constant are all space-like
and dealing with the physical states on these surfaces.

The main features of the Hamiltonian formalism
will be recapitulated here. The notation will be that
used by the author, 4 with the exception that the sign
of the g„„will be changed throughout, to make goo

negative. Greek suffixes take on the values 0, 1, 2, 3,
lower-case Roman sufFixes take on the values 1, 2, 3,
the determinant of the g„„ is —J-', the determinant of
the g„, is E', and the reciprocal matrix to g„, is e"'. A
lower suffix added to a field quantity denotes an
ordinary derivative, while ~„added to it denotes the
covariant derivative.

We shall deal with the gravitational field in inter-
action with other fields, or possibly particles. Spinor
fields are excluded, as they require a special treatment.
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We have an action density of the form

where Zg is the action density of the gravitational field
alone, involving the g„„and their first derivatives, and
Z~ is the action density of the other fields, involving the
other field quantities, q&& say, and their first derivatives
and involving also the g„„,but not derivatives of the g„,.

The gravitational action density is

Zg ——(16m.y) 'Jg'"(r„'r„'—I'„,'r, '), (1)

where y is the gravitational constant, occurring in the
numerator of Newton's law of force. To save writing,
we shall take

16xy = i.

HAMILTONIAN FORM OF GRAVITATIONAL THEORY

We shall deal with the physical state on the surface
x'= t and shall set up Hamiltonian equations of motion
to determine how the state varies as t varies. The
Hamiltonian is, by the usual definition

p/ ( gpp) ss (5)

is independent of the g„o. This quantity may be called
the "invariant velocity" of g„, as it consists of the
ordinary velocity g„o multiplied by a certain factor and
with certain terms added on, so as to produce a quantity
independent of the choice of coordinate system outside
the surface x'= t.

With the physical state described in this way, one
easily finds4 that for a dynamical variable p not in-
volving the g„p, dg/dxP is of the form

dg/dxp = ( ( g") l—$L,+g—, pe"s$, ) d. 'x, (6)

It should be noted that, for a vector A„, the ordinary
and covariant derivatives A „, and A „~, are both
independent of the g„o. Their difference, namely
F„,&A„, is thus independent of the g„o. We may take A„
here to be the unit normal, namely

i =g'/( —g")'

and we find that t;he quantity

820 BZ~
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J ] g„P +PqbrP Z jd x,
Bgpsp QgMp ) (3)

where the sum is over all the nongravitational dynamical
coordinates g~.

It is evident that there must be a good deal of arbi-
trariness in the equations of motion on account of the
arbitrariness in the system of coordinates x". In the
first place we see that the g„o can vary with t in an
arbitrary way. To describe the geometry of the surface
x'= t and also the system of coordinates x" in it, we need
the g„, at all points on the surface, but we do not need
the g„o, which refer only to intervals going outside the
surface. Different values for the g„o correspond to
different choices of a neighboring surface xb=t+p and
to different systems of coordinates x" in the neighboring
surface, and these are completely arbitrary with a
given initial surface x'= t.

We get the simplest form for the equations of motion
if we describe the physical state on the surface x'=t
entirely in terms of dynamical variables that are
independent of the g„o. I et us consider the kind of
quantities that can enter into such a description.

Suppose there is a vector field A„. The three co-
variant components A „on the surface remain invariant
under a change of coordinates which leaves the co-
ordinates of each point on the surface invariant. So
these A „will enter into the description. We cannot have
Ao, but we have instead the normal component of A,
namely A„l&, where l& is the unit normal. Similarly for a
tensor 8„„, which may be the covariant derivative
A„i, of A„, we have the quantities B„„B„„l",B„,lf",

B„,l"l". Each of these quantities is unaffected by a
change of coordinates which leaves the points on the
surface invariant and is thus independent of the g„o.

with &r, and &, independent: of the g„p. We need equa-
tions of motion to determine $z, , $, for any g. The
coefficients (—g") ', g,p in (6) a,re arbitrary and not
restricted by the equations of motion.

One gets equations of motion of the form (6) from
a Hamiltonian of the form

H= ((—g")—~XL+g„pe"'K,)d'x, (7)

I:g.b, P'"'3= ;(g."gb'+gb"g. '-)&(x x')—(10)

with 3CL, and BC, independent of the g„o and vanishing
weakly. It has been shown' that the Hamiltonian (3)
takes the form (7) provided the dynamical coordinates
describing the nongravitational fields are chosen to be
independent of the g„o, in the way discussed above, and
provided one takes for Zo, instead of (1), an expression
which differs from (1) by a perfect differential and
which does not contain the velocities g„oo, namely

z,=Jg"(r„,.r„. —r„„pr,.)
+ (~g")p(g"'/g"). —(~g").(g"'/g") o. (8)

With this Zz, the momenta p"' conjugate to g»
vanish weakly, which results in the degrees of freedom
described by g„p, P"P dropping out from the Hamiltonian
formalism. The weak equations p"=0 give, when one
passes to the quantum theory, the conditions p"'/=0,
which show that the wave function |P does not involve
the g„o.

The surviving gravitational momenta are

Prs +(erssesb ersesb)r P/( gPP) s (9)

They are built up from the invariant velocities (5).
The fundamental Poisson bracket (P.b.) relations for
them are
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The expressions for Xl. and X, in (7) are found to be

Xr, K ——'(p"—'p„, ,'p,—"p—,')+B
+{K—'(K'ers) } +X~i,, (11)

We can write the total Hamiltonian (7) in the form

H=H .; + ((—g") &—1}Xr,dox

where
X,= p"g.b, 2(—p"g.,)b+Xbi„(12)

I+ g,.per sX,d'x, (18)

iKg g ((eraesb ers~ab)~av

+2(erveab eragbv)esv) (13)

and BC~I., 3C~, are the contributions arising from the
nongravitational fields. It should be noted that the
terms B+(K '(K'e"'),), are equal to the density of the
three-dimensional scalar curvature of the surface x'= t.

We have the weak equations

when it appears a,s II „„with arbitrary linear combina-
tions of BCL, and of X„for various values of x", added on.
These additiona, l terms in the Hamiltonian produce
terms in the equations of motion in addition to those
produced by H „„, corresponding to the surface
x'=t undergoing arbitrary deformations and having
arbitrary changes of its coordinate system x" as t varies.

3Cg=o, 3C, =0. (14) NEED FOR FIXATION OF THE COORDINATES

where T„" is the stress tensor produced by the non-
gravitational fields. The left-hand side of (15) contains
second derivatives of the g p and thus in general
contains accelerations g,pop. The right-hand side of (15)
contains no derivatives of the g p. Now the well-known
identities

(R."—pg."R:)
i

=0

may be written

(R„'—-', g„'R:)p= —(R„" ,'g„"R;),+,—— (16)

where the + at the end indicates that some further
terms, not involving third derivatives of the g„„, must
be added on. The right-hand side of- (16) evidently
does not contain any third time derivatives g poop.

Thus the left-hand side cannot involve third time
derivatives, so E.„'——,'g„'R cannot involve accelerations

g spp. Thus if we take i =0 in (15), we get equations
involving only dynamical coordinates and velocities.
Sy substituting for the velocities here in terms of the
momenta, we get four equations between dynamical
coordinates and momenta only, which yield (14).

The main part of the Hamiltonian is obtained by
putting g,o= —&,o in (7) and is thus

Hmasn=
J

(K '(p"'p, . ,'p, "p,')+B+Xbrl—.)d—px, (17)

after removal of a surface integral at in6nity. The
removal of this surface integral does not disturb the
validity of II „„for giving equations of motion, but
it results in H „„notvanishing weakly.

They are p equations or secondary constraints. To see
where they come from, we note that Einstein's Geld

equations a,re

g Eg T2' 0 2

Xzlt =0,

X,Q=O.

(19)

(20)

To specify a state at a particular time involves obtaining
a solution of Eqs. (19), (20), which are functional
equations.

Equation (20) expresses merely that P must be
invariant under changes of the coordinate system x" in
the surface xo=t. To get p to satisfy this equation is
thus not difficult. Equation (19) expresses the require-
ment that the state shall be specified in a way that is
independent of deformations of the surface x'=t. The
treatment of such deformations is essentially as compli-
cated as the treatment of the passage from the surface
go=t to a neighboring surface x'=t+ p, so to get p to
satisfy (19) is essentially as complicated as solving the
equations of motion. Thus we have the situation that we
cannot specify the initial state for a problem without
solving the equations of motion. The formalism is thus
not suitable for dealing with practical problems.

The difFiculty does not arise in the weak-6eld approxi-
mation, because then many of the terms in (19) get
neglected and the remaining ones, if expressed in terms
of Fourier components, are easy to handle.

To obtain a practical formalism of greater accuracy
than the weak-field approximation, it is necessary to
introduce into the theory some new constraint that
fixes the surface x'=t, so that we no longer have the
possibility of making arbitrary deformations in it. Then
the supplementary condition (19) gets eliminated. We

To specify a physical state at a particular time in the
classical theory, we must choose numerical values for
all the dynamical coordinates and momenta so a,s to
satisfy the constraints (14). This involves solving some
di6erential equations, so it is not such a straight-
forward matter as specifying a state in particle
dynamics.

In the quantum theory the situation is more compli-
cated. The constraints (14) go over into the conditions
on the wave function
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may also introduce some further constraints that fix
the coordinate system x" in the surface. While not
essential for getting a practical formalism, such further
constraints serve to simplify the formalism by elimi-
nating the conditions (20), and so making the task of
specifying the initial state a trivial one.

The fixation of coordinates is advantageous also in
the weak-field approximation, because it leads to some
degrees of freedom dropping out from the formalism,
the procedure being similar to the elimination of the
longitudinal waves in electrodynamics.

When dealing with gravitational waves, people
usually restrict the coordinate system by introducing
the harmonic conditions

These conditions mould be quite unsuitable in the
present formalism because they involve the g„o, which
the present formalism allows to be completely arbitrary.
Any restriction imposed on the g„o mould not help one
in dealing with Eqs. (14) or (19) and (20). We need
some restrictions which affect only the variables
involved in. (14), namely g„and p", and possibly also
the nongravitational variables.

GENERAL METHOD

Let us examine the general principles which come
into play when we introduce some new restrictions or
constraints on the dynamical variables in a Hamiltonian
theory. Suppose we have a number of weak equations
x„=0 (m=1, 2, . S), which may be either primary or
secondary constraints. We are taking lV to be finite
for dehniteness, but the same principles apply with E
infinite. Suppose further that these weak equations are
all 6rst-class, so that

a new definition of P.b. 's, which corresponds to the
number of effective degrees of freedom being reduced
by M.

In simple cases we can pick out directly the degrees of
freedom that have to be dropped and those that
survive. I.et us take the special case when M of the
equation I",=0 are

p„,=0, no=1, 2, , M. (21)

The remaining M of them must then contain all the
variables q independently, (otherwise the p„, would
not all be second-class) and so it must be possible to
solve them for the q and write them as

gm fm( 7rtv +1) /&v+2' ' 'Pgv+1) Pcv+2' ') ~ (22)

We now see that the degrees of freedom associated with

q, p (nz=1, 2, M) cease to play an effective role in
the dynamics. We can use Eqs. (21.) and (22) to elimi-
nate the variables p and q from the theory, which

implies using these equations as definitions or as strong
equa, tions. We then work with P.b. 's that refer only to
the other degrees of freedom.

In the general case one retains all the dynamical
variables and merely changes their P.b. 's to correspond
to the reduction in the number of degrees of freedom.
To do this one first sets up the matrix of all the P.b. 's

[V„V,7. lt can be shown' that this matrix has a
nonvanishing determinant, provided there is no linear
combination of the I', that is 6rst-class. One must then
obtain the reciprocal matrix C„, satisfying

(23)

Note that C., is a skew matrix, like [V„V,].One then
defines new P.b. 's by the formula

Now introduce some new restrictions, say the M
independent equations

I'm=0) m=1) 2) . . - M

with M&~X. They are, of course, weak equations.
Suppose that none of them (and no linear combination
of them) has zero P.b. with all the )t's, so that they are
all second-class constraints. They will cause M of the
)t's to become second-class, while X—M of the x's (or
linear combination of them) remain first-class.

Suppose g~, y2, . x~ become second-class, while

y,iI+i, -. , y~ remain first-class. We now have the 2M
second-class constraints )t =0, V =0 (m= 1, 2, M).
I.et us write g =I'pr+, so that the 2M second-class
constraints become V, =0 (s=1, 2, , 2M).

There is no place for second-class weak equations in
the quantum theory, so we have to transform them in
some way. We shall see that we can change them into
strong equations (holding as equations between
operators in the quantum theory) provided we adopt

It can be checked' that the new P.b. 's satisfy all the
fundamenta, l relations that P.b. 's ought to satisfy.

From (23) and (24) we see at once that [g,V,]"=0
for any g. Thus the V. now have zero P.b. with every-
thing, so that we can consider the equations I', =0 as
strong equations and use them before working out
P.b. 's.

In applying this method to the gravitational case
we desire, of course, that the change in the P.b. 's
shall not be too complicated. In particular, we would
like to have no change at all in the P.b. of tmo quanti-
ties, neither of which involves the gravitational variables
g„„p"'.This result is ensured provided the two condi-
tions hold: (i) The V (m=1, 2, . M) involve only
the gravitational variables; (ii) The P.b. s [V,V

all vanish. The proof is as follows.
We have already (x „x j=0 from the assumption

that the p's were originally first-class. With the further
condition [V,V ]=0 we have [V„V,]=0 except
when 1~&s&M and M+1&s'&2M or vice versa. This

~ P. A. M. Dirac, Can. J. Math. 2, 129 (1950).
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FIXATION OF THE SURFACE

To fix the surface x'=t, the natural conditions to
take are

p '=g p"'= (26)

This involves bringing into the theory one V equation
for each point of the surface.

One easily checks that

PC„g'„„p""j=g„„p""b,(x x') =0—,
so the conditions (26) do not disturb the first-class
character of the equations BC,=O. This means that the
conditions (26) do not restrict the coordinate system x"
in the surface, a result which is evident from the tensor
character of (26). The conditions (26) mean geo-
metrically that the surface shall have a maximum
three-dimensional "area." The equations (26) and

KJ.=O are now second-class and we can use them to
eliminate one degree of freedom at each point of space.

%e have

La-,p'-"3= g.*f(x *'). —

It follows that the ratios of the grs at any point have
zero P.b. 's with p at all points of the surface. I.et us

put
K3 ~ g K

—2 ers ersK2 (27)

Then g„, involves only such ratios and has zero P.b.
with p " at all points. There are five independent

g„„as their determinant is unity. The e" form the
reciprocal matrix to the matrix g„„and also have the
determinant unity.

We have

Lz,p'„-)=3@'~(x—x'),
and so

LlnK, p'„"j= —,'S(x—x'). (28)

leads to C„=O except when 1~&s&M and M+1~&s'
~( 2M or vice versa. The surviving elements of C are thus
C~, ~+~ = —C~+, . The elements C, ~+ form a
matrix of 3f rows and columns, which is the reciprocal
of the matrix Lx, I' ).

The formula. (24) now reduces to

[~;3* L~—,.]= &—
~ .-(2,I' jLx .]

—
Lk,x- jLF-,nj} (25)

If $ and it do not involve the gravitational variables,
the condition (i) above leads to [$,F ]=0 and

L V,q)=0, so the right-hand side of (25) vanishes.
The introduction of the new constraints into the

theory, when combined with the appropriate change in
the P.b. 's, leaves the Hamiltonian first-class. It follows
that the Hamiltonian equations of motion preserve all
the constraints.

H ~»1»= (K P" Prs+8+3C lfL)d X, (32)

in which K is understood to have the appropriate value.
The integrand here may be considered as the energy
density or mass density. The complete Hamiltonian
is now

H*,„„„+t g.,pe"'3C.d'x. . (33)

We find that P"' and P„, have zero P.b. with P„"and K

at all points.
I et us change our basic dynamical coordinates from

the six grs to the five independent g„, and lnK. The
momentum conjugate to lnK is now, from (28), just
2P„, and the momenta conjugate to the g„, are certain
functions of the p"' and g„,.

The conditions (26) now take the form (21) and we
have the equations 3CL=O playing the role of (22).
To put them into the form of (22) we must solve them,
with the help of (26), to get K expressed in terms of
quantities having zero P.b. with P„" and K. Such
quantities are the g„„e"',p"', p„„and the nongravi-
tational variables.

From (11), the equation XL =0 gives,

—(K '(K'ers) } =K 'prsp„, +8+XirL, (30)

in which we look upon the grs in 8 and X~I, as expressed
in terms of the g„and K. This is a difficult equation to
solve generally for K. However, for gravitational fields
that are not too strong, the important terms are those
that involve second derivatives of K, i.e., those on the
left-hand side. We can therefore obtain the solution
by a method of successive approximation, first putting
K=1 on the right and solving the resulting simplified
equation, then substituting the erst approximation for
K on the right and solving to get the second approxi-
rnation, and so on. We shall consider this equation
further in the next section, with reference to a particular
system of coordinates, and for the present we shall
assume that the solution has been obtained.

Following the method of the preceding section for
dealing with the second-class equations (21) and (22),
we express H „„and 3C, in terms of the variables
g„„e"',P"', P„„P ", and K, and then eliminate P„"and K

from them by means of (26) and the solution of (30),
which we may now use as strong equations. The
elimination from X, is trivial, as we get from (12),
using (26),

X =P"g.b. 2(P"g-)b+X-—' (31)

If the nongravitational field variables are suitably
chosen, X~, will not contain K. The elimination from
H „„leads to an expression

Put
prs (prs i&rsg pab)K2-
Prs gragsbP

(29)
The term corresponding to the freedom of deformation
of the surface, i.e., the middle term of (18), has
disappeared.
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We now have a Hamiltonian formalism in which
the degree of freedom described by p„" and lnb has
dropped out. The Hamiltonians (32) and (33) are
first-class even with the condition (26), so they lead
to equations of motion tha, t preserve (26). The pro-
cedure of substituting for ~ in the derivation of II
caused the introduction of the right amount of Kl,
into the Hamiltonian to ensure the preservation of (26).

(Ee"') =0 (34)

However, (34) does not have zero P.b. with (26), so if
we adopt. (34) together with (26) we must change the
P.b. relationships between the nongravitational vari-
ables. To avoid this inconvenience, it is better to
replace (34) by

FIXATION OF COORDINATES IN THE SURFACE

To get the theory into a more convenient form, one
must also 6x the coordinate system x" in the surface.
The most natural conditions to take for this purpose,
from the geometrical point of view, are the harmonic
cond. itions in three dimensions:

which follows from (35), this reduces to

B &g ~g~„( era, esb euv 2@aebuesn) 2& I&—
& erne (39)

The last term here, divided by 16', can be inter-
preted as the mass density (or energy density) of the
Newtonian field with the potential f{:—1. It is negative
definite, corresponding to the Newtonian force being
attractive. The remaining terms of 8, together with
the first term on the right-hand side of (38), give the
energy density of the gravitational waves.

THE NEW POISSON BRACKETS

With the coordinates fixed by (35), the P.b. 's of the
gravitational variables with one another and with the
nongravitational variables will be altered. The new
P.b. 's are given by formula (25) with I" replaced by
e"" and. p replaced by 3C', . It thus reads

—[g,X'.][e- ~]}d'xdax'. (40)

(35) The coefficient C„'(x,x') is the reciprocal of the matrix
[K'„e""j and thus satisfies

ers 0)

which does have zero P.b. with (26).
With the coordinates fixed by (35), Eq. (30) reduces

r

C„'(x",x') [K'„e'"„jd'x'=g "5(x—x"). (41)to
—4V'~= Ii 'p"'p„+8+BC,err, . (36)

where V' denotes the I aplacian operator with respect Evaluating the P.b. here, we get
to the metric g„„namely

V' =e"'8'/Bx "Bx' (37)
IIC„'(x",x') {g, 'e"b.b (x—x')

The right-hand side in (36) equals the integrand in (32)
a,nd is the mass density. To interpret (36), let us restore
the gravitational constant into the theory in accordance
with (2). It then becomes

—(4m7) 'V'b=16iryi~ 'P"'P„+(1&ny) '8+X,brr, . -(38)

We now see that ~—1 is the Newtonian potential
generated by the mass density in a space with the
metric g„,. The fact that z occurs in the right-hand
side of (38) can be understood as due to the Newtonian
potential itself having some inhuence on the mass
density which generates it.

Let us examine the term with 8 in (38). The expres-
sion (13) for 8, written in terms of the new variables, is

+-',e" t',.(x—x') }d'x'= g„'8 (x—x"),

which reduces to

V'C "(x' x)+-',e"'C '(x', x), = g' 5(x—x') (42)

with V' defined by (37).
This equation may be considered for fixed x', when

it is a differential equation for the unknown functions
C„"(x',x) in the variables x. The important domain for x
is now the neighborhood of x', since when x is far from
x' the functions C„"(x',x) are small. We can therefore
get an approximate solution by considering the space
as Rat in this domain, so that the e b are constants.
With this approximation we get, on diGerentiating
(42) with respect to x",

8=-', b
—'(Kg, . +2b g„)(Kg.b„+2b„g.b) V'C. ,=-,'S„(x—x').

+{(~ ) + ( )e } The solution of this equation is

(43)

With-the help of the equation

grsue"

1 3( 1
C. .= ——x-i

4 E [x—x'[ i „

which follows from the determinant of the g, , being where ~x—x'~ denotes the distance from x to x' with
unity, and of the equation respect to the metric g,.„

grsue' '=
Op

~
x—x'

~

= {g, .(x"—x'") (x'—x'")}l. (44)
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Equation (42) now becomes can then set up the wave function as a function of these
variables,

whose solution is

1 1 1
C„"(x',x) = ——g"„—— —+ e"'~ x—x'~ .. (45)

One could get the solution of (42) to a higher accuracy
by substituting for the e'~ in the left-hand side of (42),
(remembering that e" occurs also in the operator V', )
their Taylor expansions in powers of x—x' and using
the 6rst approximation for C„" in those terms in which
it occurs with a factor x"—x'". By a process of successive
approximation one could get the solution to any
desired accuracy.

With the coefFicients C,'(x,x') in (40) determined,
the new P.b. 's are determined. It should be noted tha, t
the new P.b. of any nongravitational variable with

g„or e"' vanishes. However, its new P.b. with P"' does
not vanish.

QUANTIZATION

To pass over to the quantum theory, we must make
all our dynamical variables into operators satisfying
commutation relations corresponding to the new
P.b. 's. Ke must then pick out a complete set of com-
muting observables. We may take these to consist of
the e"' at all points x", together with a complete set of
commuting nongravitational observables, | say. We

The effective domain of f is that for which the
e"' are restricted to have the determinant unity and
to satisfy e",=0. P may be considered as undefined
outside this domain. When we operate on f with P" or
with any dynamical variable in the theory, we get
another wave function de6ned in the same domain,
on account of P" commuting with the determinant
of the e" and with e"'

There are no supplementary conditions to be imposed
on f. We can choose it arbitrarily to correspond to the
initial state in any problem. There is just one equation
for P, the Schrodinger equation

which 6xes the state at later times.
For the theory to be self-consistent it is necessary

that the space-like surface on which the state is defined
shall always remain space-like. The condition for this
is that E', the determinant of the g„„shall remain
always positive. In the present formalism this means
~'&0, with z determined by (36). If the mass density
is always positive, (36) shows that a& 1 and there is no
trouble. Difhculties arise only where there is a large
negative density. This occurs very close to a point
particle, on account of the last term in (39). The
gravitational treatment of point particles thus brings
in one further difhculty, in addition to the usual ones
in the quantum theory.


