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The theory of the effect of a magnetic 6eld on the optical
absorption in semiconductors is developed on the basis of the
effective-mass approximation. For simple parabolic conduction
and valence bands and a direct transition which is allowed at k=0,
absorption peaks occur at energies above the zero-6eld gap.
Since the selection rule for the transition is An=0 where n is the
magnetic quantum number, the spacing between the peaks is the
sum of the cyclotron frequencies for the two bands. For degenerate
band edges, the spectrum is more complicated. A detailed treat-
ment of the direct transition in germanium is given in which
account is taken of the change in curvature of the bands away
from k=0 and the results are in good agreement with the experi-
mental measurements of Zwerdling, Lax, Roth, and Button. The

k=0 conduction band mass is found to agree with predictions
based on cyclotron resonance in the valence band. In addition,
a gyromagnetic ratio for conduction electrons of —2.6 resulted
from the calculations. The deviation from g=2.0 is due to spin-
orbit interaction. In InSb the e8ect is much greater, the result
being g= —50. These are consistent with experimental results.
For bands in which the transition probability vanishes at k=0,
absorption peaks will also occur corresponding to De=&1 but
absorption edges occur for he=0. In the case of indirect transi-
tions, the absorption does not exhibit oscillations but consists of
a series of "steps" as has been observed in Ge by Zwerdling,
Lax, Roth, and Button.

I. INTRODUCTION

" N recent experiments, ' ' the infrared absorption near
~ ~ the edge of the direct transition in semiconductors has
been found to exhibit oscillations in the presence of a
magnetic field. This oscillatory magneto-absorption
effect has been observed in germanium, indium anti-
monide, indium arsenide, and gallium antimonide. The
transmission minima observed are interpreted as due
to transitions between magnetic levels of the valence
and conduction bands at k=o. In this paper the theory
of the magneto-absorption efrects will be worked out
on the basis of the effective-mass approximation as
developed by Luttinger and Kohn. '

We shall first treat an idealized semiconductor with
two bands having a parabolic energy-momentum rela-
tion. We shall use this model to derive simple selection
rules and the expected shape of the absorption as a
function of photon energy, for direct and indirect
transitions. Secondly, the case of the direct transition
between a complex valence band, such as i.s found in
germanium, and a parabolic conduction band, will be
studied. The magnetic level structure of the valence
band of germanium has been worked out in detail by
Luttinger. ' From this work the selection rules and

statistical weights for the various transitions, as well

as the energy levels, can be obtained. Using the results

of microwave cyclotron resonance for the valence band
parameters in germanium, the theoretical spectrum
will be compared with experimental oscillatory magneto-

absorption data. The anisotropy of the eGect will be

* The research reported in this document was supported
jointly by the Army, Navy, and Air Force under contract with
the Massachusetts Institute of Technology.

' S. Zwerdling and B. Lax, Phys. Rev. 106, 51 (1957).
s Zwerdling, Lax, and Roth, Phys. Rev. 108, 1402 (1957).
3Zwerdling, Lax, Roth, and Button, preceding paper LPhys.

Rev. 114, 80 (1959)g; hereafter referred to as ZLRB.
4 E. Burstein and G. S. Picus, Phys. Rev. 105, 1123 (1957).' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
~ J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

discussed, and the eGect of polarization of the incident
radiation will be examined.

The experimental results in InSb will also be inter-
preted. An interesting result in this case is the large
magnetic spin splitting of the "s-like" conduction band
because of the admixture of p-like states and the large
spin-orbit interaction.

In analyzing the spectrum for the direct transition
in germanium, it has been found that some of the
absorption peaks are associated with exciton formation. '
The magneto-absorption phenomena associated with
this will be treated in detail in a later publication.

II. THEORY FOR SIMPLE BANDS

Let us consider erst the problem of the optical
absorption in a magnetic field of two simple bands
separated by an energy gap, and both at the center of
the Brillouin zone as shown in Fig. 1. We suppose the
lower band, which is inverted, to be completely filled,
and the upper band to be empty. In the absence of a
magnetic field, the energies of the two bands are given
as a function of the wave vector k'.

Br= Sto—k'/2nSt, Ss= Bso+k'/2'

where hi' and 82' are the band-edge energies and where

rn1 and m2 are the magnitudes of the effective masses
of the two bands.

In the presence of a magnetic field the motion of the
electrons can be described by the efkctive-mass
approximation. The energy for, e.g., band 1, is obtained
in terms of the effective mass uzi from the Schrodinger
equation (neglecting spin)

where p is the momentum operator (1/i) V', —e is the

7 Zwerdling, Roth, and Lax, Phys. Rev. 109, 2207 (1958).' We shall use units in which A=1.
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electronic charge, and A is the vector potential for the
magnetic 6eld. The zero-order wave function is given
in terms of fr(r) by

0'(r) nlo(r)fr(r), (3)

where urp(r) is the band-edge wave function' for band 1.'
The solution to Eq. (2) is well known. "If we choose

the particular gauge for the magnetic field II in the
s direction,

A =A, =O, Ay ———IIx,

then fr(r) can be written

fr(r) = (I.„I.,) i expfiip„y+ik, s]Q„(x ck„/—eH), (5)

where P„ is a one-dimensional harmonic oscillator wave
function and where f, is normalized over the crystal,
which we take to be a rectangular parallelepiped with
sides L, L„,L,. Band 2 has wave functions of the same
form as Eq. (5), and the energies for the two bands
are given by

ht ——Bg' —o2, 2 (n+-', )—k,s/2nSt,
(6)

82——Bs'+o2,2(n+ ', )+Jp,'-/2rno,

where o2.& eH/ns&c i——s the cyclotron frequency for band
1, and similarly for band 2. Let us now let radiation
fall on this simple semiconductor in the frequency range
corresponding to the energy gap. The perturbation can
be described by a time-varying electric field, whose
space variation can be neglected, since the wavelength
is long compared to the electronic wavelengths in-
volved. ""The perturbing term in the Hamiltonian is
then

sEp f eAp 1X'=
] p+—

[ I e exp(i~&) —e* exp( —i~&)j, (7)
np E C) 2io2

where nz is the free electronic mass, co is the frequency
of the radiation, Ep is the magnitude of the electric
field, and a is a unit vector in the direction of the field,
which may be taken as complex in the case of circular
polarization. By the usual methods of semiclassical
radiation theory, the transition probability for the
process in which an electron is raised from band 1 to
band 2, and a photon is absorbed, is proportional to
the square of the matrix element

eEp f eA)
2r= 1ip+—

i 2)
rn E c)
8Ep f' p 8Ai

fr*(r)urp*(r)
~

p+—~.efs(r)Nsp(r)dr (8)
rn~& ( c&

That is, u„f,(r) for k=0 and n=1, where N„I, is the periodic
part of the Bloch function exp[ik rgm„s(r)' L. Landau, Z. Physik 64, 629 (1930)."D. L. Dexter, Proceedings of the Conference on Photocondlc-
tivity, Atlantic City, 1954, edited by R. G. Breckenridge et al.
(John Wiley fk Sons, Inc. , New York, 1956), p. 155.

'2H. Brooks, Advances in Electronics and ELectron Physics,
edited by L. Marton (Academic Press, Inc., New York, 1955),
Vol. 7, p. 85.

FxG. 1. Schematic diagram showing the magnetic levels, labeled
by 22 (k.=0) for two simple bands. The possible transitions are
shown for the case in which the direct transition is parity allowed.

where we have used the zero-order wave functions of
Eq. (3).

Since f&(r), fs(r) and A are slowly varying compared
to the periodic functions uro and Nsp, we can treat f2,
fo, and A as constant over a unit cell, and so break the
integral up into an integral over a unit cell involving
uyp and N2p, and an integral over the whole crystal
involving fr and fs We assu.me the u's to be normalized
to unit volume, and the f's over the whole crystal.
Since the periodic functions for the two bands are
orthogonal, the only nonvanishing term comes from
applying the gradient to N&p(r). This gives

Gap i f f
M= —' Nro*p agpodr fr*(r)fs(r)dr

5$G0 Vp ~dwell ~ crystal

eEp
(p»') fr*(r)f2(r)«,

where Vp is the volume of the unit cell. M has been
expressed in terms of the momentum matrix element

pi2 related to the oscillator strength for the transition.
We shall assume that the two band edges have opposite
parity so that y» does not vanish.

Since f&(r) LEq. (5)] does not depend on the effective
mass, the corresponding function for band 2 has pre-
cisely the same form, so that the integral in Eq. (9)
vanishes because of orthogonality unless e=e', k, =k„'
and k, =k, ', where the primes refer to band 2. This is
analogous to the selection rules conserving k in the
absence of a magnetic field.

The absorption constant, n, is given by the relation" "

or= p ~M~'5(o2 —ho+Sr),
ecEp'V &,2

where V is the volume of the crystal, e the index of
refraction, and where the sum is over initial and final
states, which will be paired oB by the selection rules
obtained from Eq. (9). The Dirac 8 function insures
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conservation of energy. For the case of no magnetic
field, the result is well known" ":

( 2mrms ) 1

up=Ei
I (~—8.)'

t.mr+ms~

E= 2e'(pr, e)/rscm'or.

I-Iere 8,= 8.'—8&' is the energy gap.
The square-root factor determining the shape of the

absorption edge comes in from the density of states
near the edge of either band. In the magnetic case we
have an absorption edge corresponding to each pair of
Landau levels of magnetic quantum number n. Since
the energy does not depend on k„[Eq. (5)] each sub-
band has a large degeneracy. This is obtained by
restricting ck„/eH, which is the x component of the
center of the magnetic orbit, to values inside the
crystal. The sum over pairs of initial and Gnal states
is then given by

5[or —8s(rs, k,)+8r (rs,k,)]
n, ky kz

(eH/2c) L& d'P

=21.„r., g t 5 (or —8i+ 8s)
4 —(eH/2c) Lg 2X 4 p 2X

d (8i—8s)
—'

= (V/2rrs) (eH/c) P (12)
dk, co=by —82

Thus we have appearing the density of states for a
one-dimensional band. The result for rr using Eq. (6) is
then

p 2mrms y
* eH

rrrr=Ei Z (~—~-) '
(mr+ms) c

or„= 8,+(n+-,') (or.i+or.s),

where E is the same as in Eq. (11).

(13)

(ho-E&)/tr (or

or�&

&uo&)

Fro. 2. Absorption coe%cient as a function of energy for the
bands shown in Fig. 1.The solid line shows the oscillatory magneto-
absorption with (or.r+or. s) =5.

Equation (13) shows that for each sub-band absorp-
tion edge corresponding to the transition between
Landau levels with k, =o there will be a peak in the
absorption. The position of these peaks changes linearly
with magnetic field. The peaks are of course broadened
by collisions, which in the case of a semiconductor at
room temperature are mainly due to phonons. This can
be included phenomenologically by assuming a Lo-
rentzian spread of energies of width 1/r, in which case
we find that for each peak we make the substitution

0) COn

or —or„+[(or—or„)s+1/rs]'*

2[(or—or„)s+ 1/rs]

The height of the line is proportional to r', and the
peak is shifted to higher energy by an amount (rv3) '
as can be seen by setting the derivative of Eq. (10)
equal to zero. The shape of the oscillations for this type
of broadening is shown in Fig. 2.

Figure 2 also shows that below the direct energy gap,
the absorption edge is shifted and changes shape in a
magnetic field. In the initial experiments on the effect
of a magnetic field on the optical absorption, "this shift
was measured by means of iso-transmission lines. The
shift was not found to vary linearly with magnetic field,
and in fact started out with a zero slope. Our simple
model predicts such a result, as can be seen by looking
at Eq. (13), in which we suppose a relaxation time has
been put in. If we wish to evaluate n to first order in
the magnetic field [or (or, i+or, s)], we change the sum-
mation to an integration. However, the result of the
integration is just Eq. (11), so that there is no change
in 0, to first order in H. We must go therefore to second
order in H before we obtain a shift, which is in agree-
ment with experimental results. Since the discovery of
the oscillations beyond the absorption edge, the motion
of the transmission minima, which is a linear function
of H, has been found to be a far more useful method for
determining the shift of the band edge with field, and
also, by means of extrapolation, the position of the
band edge at zero field.

III. THEORY FOR COMPLEX BANDS

A. Direct Transitions

The simplified case worked out above serves to
explain qualitatively many of the features to be found
in the magneto-absorption near the direct gap in semi-
conductors. In this section, the transition probability
is given for more general bands including the case of
degenerate band edges and including spin-orbit inter-
action. We use the results of Luttinger and Kohn' for
the effect of a magnetic field on the electrons near a
band edge at k=0. The energy levels and wave func-
tions are obtained from the set of coupled Schrodinger-

"Burstein, Picus, Gebbie, and Blatt, Phys. Rev. 103, 826
(1956); Zwerdling, Keyes, Foner, Kolm, and Lax, Phys. Rev.
104, 1805 (1956).
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like equations,

Z L(~'—~)4f, (r)+P D',"Pf (r)3=0, (15)

where P=p+eA/c, i and j run over the degenerate
set at the band edge, and the dyadic 9;, is given by

1 1 mzpmp j9"=—5 "I+—P
m m'~&~, ~ 8'—b '

O
I-
CL

O
0)I ao

I being the unit dyadic. Here ss;„ is the modified mo-
mentum matrix element between bands i and p at
k=0, which includes spin-orbit interaction:

1

J
I p(r) p (7 Vgrr) N„p(r)dr, (17)

4mc'

where U is the crystalline potential, and e the Pauli
spin vector.

The Grst-order wave functions are given in terms of
the f's of Eq. (15) and the band-edge wave functions by

P=P; f;(r)N, s(r)

1
+ P — P ~„"Pf, (r) N„s(r). (18)».ns 8 —8„' ~

Using these wave functions, we can now give the
matrix element for direct optical transitions between
two bands, i.e., the generalization of Eq. (8). By
treating the second part of Eq. (18) as small, the
following result can be obtained:

eEOM, l P . s.ss3f,erf„~dr

1 Kg'pc py 1 'Jcpy'zy'p

+Zs ~ &+—Z +—Z
~'u mi~u 8 0—80 mr&~ 8 —8

~ ~f;*'Pf„dr ~ (19).
Here j runs over the degenerate set for band 1, and P
for band 2, I and P stand for initial and final states.
In the first term we are neglecting a quantity propor-
tional to eH//me(8~' BP)j. —

The first term in Eq. (19) vanishes unless bands 1
and 2 have opposite parity, and so is the result for
transitions allowed at k=0. Note that Eq. (19) justifies
the use of the zero order wave function in the previous
section, since the second term vanishes unless the two
bands have the same parity. This latter term gives the
results for transitions forbidden at k=0, for which the
absorption in the absence of the Geld" "is proportional

~4In the case of semiconductors, such as InSb, which lack
inversion symmetry, it is possible to have both terms in Eq. (19),
as has been pointed out by Blatt, Wallis, and Burstein, Bull.
Am. Phys. Soc. Ser. II, 2, 141 (1957).

FIG. 3. Absorption coe%cient as a function of energy for two
simple bands when the transition is forbidden at k=0. This was
constructed for the case co.2=-3'.I.

to (a&
—8,)'. The selection rules for this case are deter-

mined by the integral in the second term of Eq. (19).
In the case of simple parabolic bands such as were used
in the previous section, we have De=a' —e=o, &1.
If we also suppose that the dyadic in Eq. (18) is a
multiple C of the unit dyadic and that the radiation is
isotropic, a simple result for 0. analogous to that in the
previous section can be obtained:

( 2mrms ) '
no=&'l

I (~—@.)'
(m, +m, i

2e'l c l'
)

3Igcss Go

( 2mrms ) * eH
n~ =3@'l

~ ml+ms~ c

(20)

ri'5c. ".n—1+'+ 5n', n+t+s (~cr+~cs)
((o—8 „)-'*

8„„=8,+a),i (I+-',)+&a,s(e'+-', ).

"A. H. Kahn, Phys. Rev. 97, 1647 (1955).

We see in Eq. (20) that for rs'= m&1, there are peaks
in the absorption. This is analogous to the transitions
involved in cyclotron resonance. For e'=e we have
simply a series of absorption edges. The behavior of o.

as a function of energy is illustrated in Fig. 3. An
analogous transition occurs between the three valence
bands in germanium and has been analyzed for the
nonmagnetic ease by Kahn" assuming parabolic bands.
(Note that for the valence bands with our sign con-
vention, ms and ce.s would be negative. ) It should
therefore be possible to observe oscillations in the
magneto-absorption between the valence bands, al-
though it appears from the complexity of the spectrum
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from I to A is parity-allowed. M,s(1V,+1) and M,s)V,
are the phonon matrix elements squared, k0 is the
phonon energy, and + and —refer to phonon emission
and absorption, respectively. We have included conser-
vation of spin explicitly in 8 &

If we use again the model of parabolic bands, the
integral of Eq. (21) reduces to that of Eq. (9) which
implies, in this case, that for each initial state, there is
only one intermediate state. Furthermore, near the
absorption edge, we can neglect the variation with I
and Ii of all factors except the last, and the shape of
the absorption edge is essentially determined by the
quantity

Prp8(8p 8rak—e ~).
ENERGY

FIG. 4. Absorption coefficient as a function of energy for
indirect transitions between two simple bands. This was con-
structed for co, &/&o. &

——4/7.

in this case that high resolution and low temperatures
as well as polarized radiation will be necessary.

npg ——Eg(mtms) l(&cake —8,)',
n~~ 2E~——(eH/c)'(m, m, )l P ~ F(to—8„„.),
8 = 8o+kg+to, t(tt+-', )+to,s(tt'+-', ).

(22)

The following result for simple bands can then be
obtained for n with and without a magnetic field:

B. Indirect Transitions

We now turn to the case of indirect transitions, which
involve both a photon and a phonon. We consider here
the virtual process in which the electron is first excited
to an intermediate state by a photon in a vertical
transition and then is scattered by a phonon into a
final state in the conduction-band minimum away from
k=0.ts For the nonmagnetic case, this type of transition
has been studied theoretically by Bardeen, Blatt, and
Hall" and experimentally by Macfarlane and Roberts. "
We shall not attempt a completely rigorous treatment
of the problem but shall mainly consider the change in
absorption induced by the redistribution of states in
each band due to the presence of a magnetic field. In
the expression for n, Eq. (10),

~

M ~' is now replaced by
a second order expression involving both photon and
phonon matrix elements. From a generalization of
Eq. (9) in Bardeen, Blatt, and Hall, " we obtain the
absorption coeScient

4tre' 1 lr 1V,+1—P ( M,' 8,g,.p (8g —8p)'
~

ttcm'po Jt' r~p E

2

a t f *rf ~dr 8(8p —8r~kg cc) (21—).
7u

Here I, A, and F correspond to initial, intermediate,
and final states, and we are assuming that the transition IV. GERMANIUM

Here F(oo 8„„)is —a unit. step function and E~ is a
constant" analogous to E and E'. Thus the absorption
consists of a series of discontinuities" which is il)us-
trated in Fig. 4.

Equation (22) is valid for ellipsoids if a density of
states mass is used; for the magnetic case the mass is
that along the magnetic field, and can be shown to be
mt cos'0+m, sin't), where 8 is the angle of H with the
ellipsoidal axis, and vs~ and m& are the longitudinal and
transverse masses. For a degenerate band edge such as
the valence band of germanium, we must go back to
Eq. (19a); the various discontinuities will now have
heights depending on the valence level involved. These
can be determined from the transition probabilities for
the direct transition which will be discussed in the
following section. Because there is no selection rule on
e and e' in the indirect case, the expected spectrum is
rather complicated. Furthermore, since the effect is not
oscillatory, it is necessary to go to low temperatures
and high resolution to observe it.

Magneto-absorption effects of the type shown in
Fig. 4 have, in fact, been observed by Zwerdling, I ax,
Roth, and Button' in germanium at 4.2' and 1.5'K,
in addition to the exciton absorption which has been
reported by Macfarlane, McLean, Quarrington, and
Roberts. "The experimental results are consistent with
the theoretical spectrum; the details of the comparison
are given in ZI.RB.'

'6The alternative process in which the photon excites an
electron into the anal state and the phonon scatters the hole into
the initial state can be treated in a similar manner. This process
is believed to be less important for germanium and silicon.

' Bardeen, Blatt, and Hall, Proceed7'ngs of the Conference on
Photocondttctt'atty, Atlantic City, 1954 (John Wiley & Sons, Inc. ,
New York, 1956), p. 146.

's G. G. Macfarlane and V. Roberts, Phys. Rev. 97, 1714 (1955);
98, 1865 (1955).

We now consider in detail the case of the direct
transition in germanium. This is believed to be a

"For the case in which the direct part of the transition is not
parity allowed, the result would be more complex, but would
still involve discontinuities.' Macfarlane, McLean, Quarrington, and Roberts, Phys. Rev.
108, 1377 (1957).
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transition allowed at k=0 between the complex valence
band and the spherical conduction-band minimum at
k=0. We see from the simple band model that in order
to locate the absorption peaks, it is necessary to solve
Eq. (15) only for k, =0, where s is the direct. ion of the
magnetic field. We thus obtain a line spectrum for the
allowed transitions which can be compared with experi-
ment. Statistical weights will be assigned to each line,
essentially from the square of the momentum matrix
element for the transition involved.

my= g)
=3

mJ = —
g)
1

=1mJ

m J.= —
g)= —3

uip ——(1/v2) (X+iV)rr;

-=—
I 1/(6)']L(x—'&) +2ZP];

u„=—[1/(6)-:][(X+ii)P—2Z ];
u4e= (1/V2) (X—iF')P.

(23)

Here rr and p are up and down spin functions, X, I", Z
are the original p-like spatial functions and the mq value
has been indicated. The form of the set of four coupled
equations in Eq. (15) can be determined by group
theoretical considerations. " For the explicit form, the
reader is referred to Luttinger and Kohn5 and Lut-
tinger. '

Equation (15) for this case has been solved approxi-
mately by Luttinger' for nearly spherical bands (and
k, =0) and in addition, an exact solution was found for
the magnetic field in the [111]direction. We shall be
interested mainly in the simpler approximate solution.
The magnetic field is assumed to be in a (110) plane,
and the coordinate system is rotated so that the
s direction is the direction of the magnetic field, and
the basis functions, Eq. (23), are now referred to the
transformed system. The solutions to first order in the
warping then fall into two sets; the details of the
derivation can be found in reference 6. (See also

1Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955);
hereafter referred to as DKK.

A. Energy Levels

The problem of the energy levels in a magnetic Beld
of a degenerate valence band such as germanium has
been treated by Luttinger' and we shall make extensive
use of his results. The valence band edge functions in
the absence of spin-orbit interaction belong to the
representation F25+ of the cubic group and transform
as ys, xs, xy. The sixfold degeneracy (including spin)
is split by spin orbit interaction into a fourfold and a
twofold degenerate set. The fourfold group lies higher
and is the one we are concerned with. In the absence
of a magnetic field, this group splits into two twofold
degenerate bands away from k=0. In the presence of
the magnetic field this degeneracy is lifted, so that
there are four sets of hole levels. A schematic energy
level diagram is shown in Fig. 5.

The band-edge wave functions are basis functions
for an angular momentum of 2:

1

In S 2

2 I
I

/l

/0-

A1 =+7S

Dn=-2

3
m =+———'

2 ' 2

0 0 2
~——1y y ~ 4

5 —~2
2 3

fTl =+———
2 2

FIG. 5. Schematic diagram showing the magnetic levels for the
valence and k= 0 conduction bands in germanium. The transitions
shown are those allowed for EI~H.

Appendix B.)
Set (a): f,.(r) =a,C„,(r),

fs, (r) =as@„(r),

f.(r)=f.(r)=O,
(24)

Here the f; refer to Eq. (15), and the wave functions
are given by Eq. (18) with the band edge functions of
Eq. (23). The energy level designated by e is thus a
combination of e and e—2 harmonic oscillator states.
a1 and u2 are the solutions of the equations

[(vi+7 )(u s)+sb e]ai 7 [3'(tb 1)]'as
—y"[3e(tb—1)]~at (26)

+[(Vi—V') (u+ s)—s~—e]as=0,

with the normalization condition ais+ ass= 1. The
various parameters are defined below, and the normal-
ized energy e, defined by

h = h' —(eH/mc) e, (27)

is obtained by setting the determinant of Eq. (26)
equal to zero:

"+(u)=Viu —(-'Vi+&'—-'~)

+([—y'e+ (-,'y'+pi —a)]'+3y"'N(e —1)) '*. (28)

Here for the + signs, v=0 1 2 and for the-
signs, n=2, 3, 4 . The + and —signs refer to light
and heavy holes, respectively. Similarly, we have for
the second set

S«(b): f»(r) =f»(r) =0
fsb(r) =kiC s(r),

f4b(r) = bsC „(r),
(29)

where, using the gauge of Eq. (4),

C (r)=(L„L,) i exp[ik„y]C„(x—ck„/eEI). (25)



96 ROTH, LAX, AN D Z |A'E RDL I NG

with bis+bss=1 and

[(y,—y') (e—-', )+-', I~—e]b,—y"L3is(n.—1)]'b,=0,
7"—$3ii(ii 1)—]'*bi (30)

+L(pi+a') (n+ s) —sK e]bs= 0,

action. We shall not include q in our calculation, as it
is small.

In addition to the valence band, we need the energy
levels for the 4=0 conduction band minimum. Since
this is spherical, the effective-mass Hamiltonian
including spin will have the form

and for the energies

esp(is) =y, is (—-,'yi —y'+-,'z)
~{[y'is+ (yi —x——,'y')]'+3y"'ii (n —1)) l, (31)

1 |' e
BC=

i p+—+ii*ir H
2m, k c

(34)

eH
Lvi~ (v"+37'")']

82C
(33)

~ is a new constant introduced by Luttinger and
necessary to describe the magnetic levels, although it
is not measured in the classical cyclotron resonance
experiments. Solutions in Eq. (28) and Eq. (31) corre-
spond to that obtained from De of Eq. (81) of reference
6.

Higher order terms in y2 —y~, which is a measure of
the warping of the energy surfaces, are obtained by
using second order perturbation theory on the addi-
tional term Di of Eq. (81) in reference 6. This per-
turbing term shifts the levels slightly and, although we
shall not go through the mathematical details, " this
correction will be included where necessary in comparing
the theory with experiment (Tables II—IV). Finally,
Luttinger introduces a new parameter q, which affects
the energy levels in the presence of spin-orbit inter-

TABLE I. Valence band parameters.

with only the + sign for m=0, 1. Again + and —signs
refer to light and heavy holes.

In the above equations, y' and y" can be written

7'='r +(r,—y,)L(3 co '0—1)/2]',
7"=sVs+svs+sbs —vs)H3 cos'0 —1)/27',

0 is the angle between the magnetic Beld and the s axis
in the (110) plane. pi, ys, and ys are valence band
parameters which are related to other parameters in
common use according to the definitions given in Table
I. The classical (large n) cyclotron frequencies for the
light and heavy holes are given in terms of these
parameters by

where o is a Pauli spin vector and m, is the conduction-
band mass. With the inclusion of the effective magnetic
moment p,*, this is the most general form of BC for a
spherical band edge, as has been shown by Luttinger. '
Since the conduction-band minimum is s like, it is not
immediately obvious that p,

* should be different from
the free-electron magnetic moment. However, it is
shown in Appendix A that such an anomalous moment
occurs because of the coupling of this band with the
spin-orbit split valence band. The energy in this case
is then given by

eH
h, (e) = (n+-;)+p,*H,

as shown schematically in Fig. 5. For the case of
germanium, this effect should give a g value of —2.6
for the electron at k=0, or a splitting of the magnetic
levels of 1.3eH/mc. The effect should be larger in InSb,
as is discussed below.

The above results for the magnetic levels are valid
when the energies are small compared to the separation
of the band edges involved. This condition is usually
satisfied in cyclotron resonance experiments, but with
the large magnetic fields (40 kilogauss) used to observe
the interband effects, marked deviations from quadratic
behavior of the bands occurs. In the experiments of
Zwerdling et a/. ' ' in Ge, oscillations were observed up
to almost 0.2 electron volt beyond the energy gap.
This is to be compared to 0.9 ev for the gap, and 0.3 ev
for the spin-orbit splitting of the valence band. Conse-
quently, it is necessary to go to higher than second
order in ir to compare the theory with experiment.
The calculation of the levels for the conduction and
valence bands is more complicated in this case, and the
details are given in Appendix B.

L, M, Na F, G, H1, H2b A, B, Cc B. Selection Rules and Transition Probabilities
——,'(L+2M) —1 ——,

' (t+2G+2Hg+2H2) —1——,'(L—M) ——', (F+2G—Hg —H, ) 28
6N ——,'(Z —GyH, —H,) —,'(-;C +as)i

K ——', (F—G —H, +Hs) ——,'

a This notation is used by DKK (reference 21). Luttinger (reference 6)
calls these A, B, and C.

b Sums of matrix elements as defined by DKK (reference 21) except that
we have expressed F, G, H1, and H2 in units of 1/2m to make them di-
mensionless. See also Appendix B.

e This notation is used by DZL (reference 24) and DKK (reference 21).

R. R. Goodman, doctoral dissertation, University of Michi-
gan, 1958 (unpublished).

The matrix element for an optical transition is, from
Eq. (19),

e&o
M = Qy, .e f C„dr,

no~ ~

(36)

eEO
~p= 2 pip's) A C' 'dr

SSM 'J

where j goes over the four degenerate valence band
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edges, C„ is the free electron wave function for the
I'th level in the conduction band, and n and P indicate
up and down spin, respectively, for the conduction
band. We are neglecting the difference between ~ and

p in Eq. (16) as this can be shown to be negligible.
If we evaluate the matrix element for k, =0, where the
peaks in the absorption occurs, it can be seen from the
form of the valence band wave functions, Eqs. (24) and
(29), that the selection rules on e are he=I' e—=0,
—2. Additional selection rules are obtained from the
momentum matrix element between the band edge wave
functions, e.g. , p; s=(u;Ol p elsn&, where the I;0 are
given by Eq. (23) and where S is the conduction band
edge function, which transforms as hays(1'2 ) under the
cubic group, and n is the spin-up function. From
symmetry, we have for the spatial part of the matrix
element

(xf p*ls&=(I'I p. ls) =(zl p*ls&, (37)

(a)
n —2

m J'
3
2
1 s—2

—
2 (b)

S3
2

ee
eP——,.1

From the square of the matrix element, Eq. (36), it
is also possible to calculate relative statistical weights
for the various transitions. For example, for the
transition from a level of set a to the spin-up conduction
band, with e'=e —2, we 6nd

with all other combinations vanishing. From this and
the orthogonality of the spin functions, a selection rule
on m is obtained which is the same as that for the
anomalous Zeeman e6ect, namely Ans=m, —m&=0 for
polarization parallel to the magnetic 6eld, and Am= ~1
for polarization perpendicular to the magnetic field.
The manner in which these selection rules are combined
is shown by the following scheme indicating the
combination of nsg and e values for the a and b sets in
the valence band, and the m, values for the conduction
band:

Thus far we have not included the density of states
weighting factor Lm~mm/(m~+m2)$& resulting from Eqs.
(11) and (13) for simple bands. In estimating this for
germanium, we shall use an average heavy- or light-hole
mass. For the heavy hole and electron m&—0.3m,
m2—0.04m; hence the above weighting factor is
approximately gm&. For the light hole to electron,
m~—m2—0.04m so that we have 0.7+m~ for this factor.
Thus the density of states has relatively little effect on
the intensities, as compared to the quantities listed in
Table II. This fact justi6es the use of the simple band
approximation here."

C. Numexical Results

A theoretical calculation was carried out for ger-
manium using the values of the valence band cyclotron
resonance parameters from Dexter, Zeiger, and I.ax":

2 = 13.1, 8=8.3, C= 12.5.

converting these to Luttinger's notation, we have

y1= 13.1, y2= 4.15, y3= 5.5.

The three constants are sufTicient to determine the
three quantities F, |",and H&, introduced by Dressel-
haus, Kip, and Kittel, " which measure the effect of
I"2, F~2, and I'~5 band edges on the valence band
edge. We are neglecting II2 which measures the eGect
of F» band edges because, theoretically, these should
be remote. "With the same assumption, the additional
parameter a, =3.23 can be obtained from Table I.

With a knowledge of the energy gap ($,=0.90
electron volt) and the spin-orbit splitting (6=0.29 ev),
the conduction-band mass can be calculated from Kq.
(A-4), if we assume that no I'u5+ bands except the
valence band enter the picture. The result is

m/m, =27.1.

TABLE II. Statistical weights. '

I~ I'" I(xl p. ls&l'~~'I (~* ~~w)/~~—l' (») Transition
EgH

E [) H Plane pol.
EgH

+Circ. pol.
E~H—Circ. pol.

Here the 6rst factor is a constant; a1, the amplitude of
the (e—2) harmonic oscillator state, will depend on
the particular valence level, and we have, in addition,
a factor depending on the polarization. The relative
statistical weights found in this manner for the various
allowed transitions are given in Table II for diferent
polarizations of the incident radiation. From Table II
for example it is apparent that for EJ H the light-hole
transition c+o.e is 9 times as intense as light-hole
transition a+ne' and the corresponding heavy-hole
transitions are of equal intensity. The relative intensi-
ties of other transitions are similarly determined. It is
apparent from Table II that the use of polarized
radiation greatly simpli6es the spectrum and aids in
identifying the various transitions.

a+0,n'
C~aQ
@+Pe'
baden'
bye'
b,pn'

0
0

g 2

b12

0
0

3g 2

4ap
0
0

&be
-'b '

g 2

0
0
0

Lb 2

0

0
g221

0
0
0

2b2'

"For the case y2 ——y3=y1 —~, a linear expression for the energy
as a function of n and k,' can be obtained for the four sets of hole
levels, so that this result would be exact for this case.

~4 Dexter, Zeiger, and Lax, Phys. Rev. 104, 637 (1956);hereafter
referred to as DZL.

a The transitions are labeled by the valence band set a~, by, where + and—refer to light and heavy holes, by the spin for the conduction band a or P,
and by the quantum number n' for the conduction band. An = —2 transi-
tions have bars over a or b; An =0 transitions do not. Thus a ~n' represents
the transition from the n'+2 light hole level of set a to the n' level of the
spin-up conduction band. To give orders of magnitude for high quantum
numbers, from E&qs. (25), (26) and (28), (29), we have a&2 =3a22 and
bH =3bt2 for the light hole, with the opposite relations holding for the
heavy hole. We have not included t m&m2/(my+my) g&.
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Fro. 6. Comparison of
the theoretical spectrum
with the results of
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heavy-hole transitions
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light-hole transitions.
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the notation in Table II.
The quantum number is
that for the conduction
band (spin is evident
from Table II) and the
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In calculating k4 and higher corrections to the levels,
we make the additional assumption that the I'15 and
F12 bands are separated from the bands of interest by
an energy much greater than b, . With these assump-
tions, the three cyclotron resonance parameters and

the two energies determine the spectrum, as shown in
Appendix B.

The calculation of the valence and k=0 conduction-
band levels was carried out for V=38.9 kg in the L100j
and 1111$directions. The corresponding line spectrum

TABLE III. Comparison of experiment and theory for heavy-hole transitions in germanium.

(2)

«(n) L100j

(3) (4)
eo(n) I 100)—eo(n) L1 1 1j 6g (n) L100j

(5)
es (n+2)

I-100j

(6)b

Experiment

(7) (8) (9)
(n) L111j ea (n+2) t 111j

Line 6a-(n} I 100) —~f (n+2) $100j
(1O)

Experiment

13.6%0.65
40.2%0.6
66.2%0.6
91.6%0.6

116.5%0.55
140.5%0.5
164.2~0.5
187.4%0.5
210.1%0.5

0—0.1—0,1—0.3—0.5—0.7—0.9—1.2—1.4

4.7
95

13,7
17.9
20.6
24.3
28.4

2.2
6.4

10.5
13.2
17.3
21.1
24.8
28.5
32.2

2.7
4.1
5.3

10.0
13.0
17.3
21.1
25.3
28.8

2

6
8
9

12
13
14
16

—20—2.6—3.5
47—4.5—5.3—6.6

—0.8—1.6—2.7—2.5

—4.7—5,6—6.5—7.4

0.4—1.4—2.0—2.8—3.6—4.7—5.3—7.2—81

a Minus and plus refer to up and down spin, respectively.
b Result of subtracting column (2) from the experimental line referred to in column (7).
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for H in the [100]direction and for polarization
~~

and
J to H is shown in Figs. 6(a) and 6(b) in comparison
with the experimental results of Zwerdling, Roth, Lax
and Button. ' ' In order to obtain the fit shown, the the-
oretical spectrum was stretched" by 1.11%and the band
edge was taken at 0.9870electron volt. It can be seen that
all the prominent minima are accounted for, except for
lines 1, 1', 3, 3', which are believed to be due to exciton
absorption. " The detailed calculation essentially
verifies the preliminary identification of the prominent
minima in Fig. 1 of reference 7.

For E~~H [Fig. 6(a)], the prominent transmission
minima correspond to transitions from heavy-hole
levels, and the theory indicates that these are unre-
solved doublets. The weaker light-hole transitions show

up when they do not overlap the strong lines, as can be
seen for lines 10 and 11. For EJ H [Fig. 6(b)] the
light-hole transitions appear more strongly, and two
distinct series can be seen corresponding to transitions
from the two sets of light-hole levels. These are c+nm'

and b+Ptt, '. The experimental results indicate that the
light-hole transitions in this case are even more intense
relative to heavy-hole lines than the theory predicts;
this disagreement is probably due to the relatively
crude assumptions used for the statistical weights, since
neither the detailed shape of the absorption edges nor
the effect of k4 terms on the amplitudes were considered.

A detailed comparison of theory and experiment for
the heavy-hole doublets in the parallel spectrum is

given in Table III. Column 2 gives the calculated
electron levels for the [100] direction. If these are
subtracted from the experimental line positions, the
result (column 6) for a particular n should be the
average of e (e) and es (v+2) which are given in

columns 4 and 5. The experimental values were, for
the most part, taken from a more recent run than those
in Fig. 6, and the band-edge posi. tion was taken at
0.9868 electron volt. The experimental values do indeed
lie between the two theoretical results, although slightly
below the average position. When it is considered that
the 90% of the line position due to the electron has
been subtracted oB, the agreement is certainly satis-
factory.

The decrease in spacing of the heavy-hole doublets
at the higher energies, due entirely to the electron, is
evident from Fig. 6(a). The calculation shows that the
electron level for n=8 lies 10% below the first order
result, and that the mass has increased by almost 20%.

The calculation was carried out also for 8 in the

[111]direction, and the difference between the levels

in the two directions, which is a measure of the ani-

sotropy is given in columns 8 and 9, for comparison

with the experimental results in column 10. In obtaining

these, account was taken of the small anisotropy in the

electron levels (column 3), which is due to k' terms in

Thus the parameters actually used are pi=13.245, F2=4.20,
F3=5.56, a=3.266.

TABLE IV. Comparison of experiment and theory for
light-hole (g set) transitions in germanium.

(1) (2) (3) (4) (5) (6) (7) (8)
~a+(n) E100j «+(n) E111j —~.+(n) L1007

First
order

Line in H Theory Experiment

First
order

n in H Theory Experiment

0 2.8 2.8 1,4
1 11.4 11.3 9,5

2 30.2 29 3

48.0
48.4
68.1
87.9
87.9

105.7

3 51.3 48.7

4 735 683
5 95.9 87.3

2
5
7/

7
6l

10

15

—0.6
—1.5
—1.6

2.2

3.3

—0.6
-1.4
—1.9

—0,6

0.0

0.6

0.9

+0.4
-2.1
—1.7—1.7
-0.5-
+0.1

0.0
+0.3

~ ~ ~

+22

TABLE V. Comparison of experiment and theory for
light-hole (b set) transitions in germanium.

(1) (2) (3).b+(n) E100j
(4) (5)

First order
in H Theory Experiment Line

(6)
ah+(n)
First
order
1n H

(7) (8)
E111)—eb+(n) E100)

Theory
Experi-
ment

0 3.5 3.5
1 22.1 22.0
2 43.1 41.9
3 65.2 62.1

4 87.5 81.8

5 110.1 100.6

1.4 2'

22.2 4'
43.0 9'
63.3 12'

82.4 14'
83.0

102.0 18'

1.6
1.4
3.0
4.2

1.6
1.3
2.8
3.8

5.3 4.5

6.4 5.2

1.0
2.0
2.8
3.6

5.8

the energy (Appendix 8). If this were left out, the
agreement would not be as good, although the difference
is not great.

A similar comparison between theory and experiment
for the light-hole lines, principally found in the perpen-
dicular spectrum, is given in Tables IV and V. Here a
more direct comparison can be made, as the lines are
singlets (except for 2 and 2'). In Table IV for the a set,
comparison of columns 2 and 3 shows that the deviation
from the first-order result for light-hole levels is greater
than for the electron; this is due to the effect of the
split-off band. The experimental values were again
obtained by subtracting off the theoretical result for
the electron. The agreement is good for the a set; for
the b set (Table V) the theoretical values are slightly
too low. It should be pointed out that the anisotropy
of the light-hole lines, that is, the absolute energy shift,
is as pronounced in this experiment as it is for the
heavy-hole transitions, and the light-hole lines are well

resolved. In cyclotron resonance the anisotropy of the
heavy hole on a percentage basis was much larger than
that of the light hole. Hence, once the lines are identi-
fied, one can use the light-hole anisotropy in evaluating
the energy surface parameters just as was done for the
heavy hole from cyclotron resonance.

Once the lines have been identified, it is possible to
obtain experimental values of the conduction-band mass
and g factor. For the g factor, if we assume that lines
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7 and 7' represent transitions from e,+(2) in the valence
band to s,(2,n) and s, (2,P), respectively, in the conduc-
tion band, the separation of 0.0007 (0) electron volt gives
a g factor of —3.1 for the data in Fig. 6, and —2.5 for
the data from which the results in Tables III—V were
obtained. The theoretical value is —2.60 for low 6elds;
due to the change in curvature this should decrease in
magnitude to —2.36 for e=2. There is some uncertainty
in the identification since the intensities appear to be
wrong in the J case, although as pointed out earlier,
we may rely more on the theoretical energies than on the
intensities. The separation between the exciton lines 3
and 3' may also be due to the conduction band spin
splitting; these would give a g value of (&) 3.7 for the
L1007 data and (+) 2.3 for the L111)data.

For the conduction band mass, we can use the pairs
of lines a~P3 and c+a1, b+P4 and 5+n2, a+P5 and a~n3
to give the following values for differences between the
electron levels:

e, (3,n) —s, (1,P) =52.9,

e, (4,n) s, (2,P)—=50.9,

s, (5,u) —e, (3,P) =50.2.

(39)

V. INDIUM ANTIMONIDE

Infrared magneto-absorption experiments' have also
been carried out on InSb at room temperature and the
results indicate that a direct transition is involved
similar to that in germanium. Four transmission
minima were observed, whose positions in one run at
36.9 kilogauss were 0.1895, 0.2005, 0.2225, and 0.2475
electron volt. Relative to the gap of 0.180 ev obtained
by extrapolation, these become 22, 48, 100, and 158 in
units of eII/mc. Cyclotron resonance experiments give
an effective mass for the conduction band at about
40 kilogauss of m/70 within 5% Using this result,
together with the energy gap and an estimate by Kane"
of 0.9 electron volt for the spin-orbit splitting of the
valence bands, the effective magnetic moment of the
conduction band is found to be —25ps from Eq. (A-4).
This corresponds very closely to the separation of the
first two minima, which is 26eH/mc. We therefore
interpret the minima as transitions to the spin-up and

"E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

Using these results and the experimental g value of 2.5,
the energy levels can be fitted to the expression

s, (n) = L27.1+1j(n+-', )—f0.33&0.1j(e+-,')'%0.6. (40)

The 6rst term here gives the value of the effective mass
at k=0, and the second, the change in curvature of the
band. The third term gives the spin splitting where the
W refers to spin-up and spin-down, respectively. The
eR'ective mass agrees well with the result from the
valence-band parameters. The theoretical value of the
coefficient of the second term is 0.37; the theory actually
indicates that a term cubic in e is signi6cant at m=5.

spin-down conduction band from the lowest levels of
the valence-band Landau levels with m=0. The average
position gives an eGective reduced mass of nz/70, which
is in good agreement with the cyclotron resonance
result for the electron although the exact correspondence
is fortuitous. The contribution from the valence band
should be small, corresponding to the heavy hole. In a
previous publication, ' the second two minima were
interpreted as due to transitions to v=1, spin-up and
spin-down, in the conduction band. However, the
separation between these two minima is too large by a
factor of two. A more likely interpretation is that these
correspond to n=i and m=2 in the conduction band,
for the predominant heavy-hole transition, and that
the spin splitting does not appear because either it is
not resolved or it is masked by complications from the
valence band. The separations between the mean of the
first two lines and the third line, and between the third
and fourth lines, are 65 and 58 eII/mc, respectively,
which are reasonably near the experimental cyclotron
frequency, with the decrease probably due to change in
curvature of the band. It is hoped that experiments at
low temperatures and high resolution will reveal 6ne
structure, and so give information about the structure
of the valence band.

The experiment supports the theoretical prediction
that the effective gyromagnetic ratio for the conduction
electrons in InSb is about 50. It would be interesting
to see if this could be observed by means of spin
resonance. An estimate of the effect of the large mag-
netic moment on the susceptibility indicates that it is
probably not significant, as the Landau diamagnetism
dominates the Pauli paramagnetism even in this case.

VI. DISCUSSION

From the results in Ge, it appears that the effective-
mass approximation and its extension to higher order
in k give us a fairly good understanding of the magneto-
absorption effects observed in semiconductors. The
quantum effects predicted by Luttinger and Kohn' for
the valence band in Ge are clearly demonstrated by
these experiments. The fact that it was necessary to go
to higher order in k indicates that the technique can
be used to explore rather deeply into the bands. While
this gives us additional information, it unfortunately
complicates the experimental determination of band-
edge parameters. It was for this reason that the cyclo-
tron resonance values were used in the calculation with
only a scale factor for fitting. It appears that a better
fit could be obtained by using slightly different param-
eters. If such calculations are carried out, it may be
possible to take ~ and m, as independent parameters,
although it appears that this will not make a great
deal of difference.

An interesting consequence of the results in ger-
manium is the good agreement between the experi-
mental conduction-band mass and the value calculated
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from the valence-band masses. The relationship between
the masses was obtained on the basis of the one-electron
approximation. Actually the inclusion of an exchange
operator in the one-electron Hamiltonian has been
shown by Kane" to alter this relationship, although
Kane's estimate of this effect in germanium shows that
the calculated conduction-band mass would be changed
by only a few percent, and this is probably within the
uncertainty of the experimental results. The concept
of an effective mass is valid from a many-electron
standpoint, as has been shown by Kohn, "but it is not
obvious that the valence- and conduction-band masses
should be related in the same way as for independent
electrons. It was also found that the change in curvature
of the bands agreed well with the one-electron theory.
Thus it appears that while many-electron effects may
alter the magnitudes of the parameters and the energy
gaps involved, the relationships between them are
maintained to a good approximation in the range of
energies studied. The appearance of exciton lines is of
course due to many-electron effects.

We have been more exact in the calculation of energy
levels than of intensities. Detailed calculations of line
shapes would involve evaluation of the squared
amplitudes and the one-dimensional density of states
as a function of k„and would be rather involved.
There do exist additional allowed transitions for k, /0,
but since there is no singularity in the absorption, we
would not expect these to show up as absorption peaks
experimentally; they may, however, appear as shoul-
ders. There should also exist additional "forbidden"
transitions due to the warping of the energy surfaces
in the valence band, and related to the harmonics
observed in cyclotron resonance. This may account for
some of the weaker absorptions. Another source for
extra lines is exciton absorption; the effect of the
magnetic field is to pull the exciton lines up into the
band (e.g., lines 3 and 3 in Fig. 6) and to intensify
them. '

The optical magneto-absorption technique is useful
for exploring band edges not available for cyclotron
resonance because of the lack of carriers, as in the k=0
conduction band in Ge. The results con6rm the theo-
retical predictions as to the symmetry (Fs ) of this
band. There has been some question from the optical
absorption as to whether the direct transition is parity-
allowed, due to the shape of the absorption edge."
Departure from the theoretical (~—8,)& dependence

may be due to exciton absorption' and to optical
phonon effects."
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lp. *l'
+—p

2m* 2m m' ~~o 8'—8„'
p««*p««" p««"—p««'

+
2mc 2m'c j ~go go—g o

(A-1)

(A-2)

where y „is the momentum matrix between the spin-up
band edge and the eth band edge. The contribution
of the second term in ee;„, Eq. (17), can be shown to be
negligible. "

For the case of the split-off valence band in ger-
manium, p,

* has been evaluated by Luttinger6 and
shown to be of the order of ~ (Table I).For the spherical
k=0 conduction band, we can evaluate p* by assuming
that the only band, which makes a signi6cant contri-
bution is the valence band, which is split by spin orbit
interaction into the fourfold and twofold bands, at
energies 8, and 8,+6 below the k=0 conduction
band, respectively. The fourfold band edge wave func-
tions are given by Eq. (23), while for the twofold band
we have

1
Nss =—[(X+iI')p+Zn j,

(A-3)

I„=—[(x—sr)~ —zi3j.

Substituting these wave functions into Eqs. (A-1) and
(A-2) and using Sn for the spin-up conduction band, we
And

1 1 1 38g+2A
+— '

l(sl p. lx) I',
2m* 2m m'38 (8 +6)

l(sl p. lx) I'
2mc m'c 380(80+6)

p,
* can also be written in terms of m*, as follows

e
t

m
p*= 1—

l

—1
/

2mc (m* ) 380+25.

(A-4)

(A-5)

APPENDIX B. HIGHER ORDER TERMS
IN THE ENERGY

The effective mass approximation can be generalized
to include terms of higher order than 2 in k, as has been

"E.O. Kane, J. Phys. Chem. Solids 1, 82 (1956).

APPENDIX A. EFFECTIVE MAGNETIC MOMENT
FOR SPHERICAL ENERGY BANDS

Equation (34) for the 2)&2 effective-mass Hamil-
tonian for spherical bands can be obtained as a special-
ization of Eq. (15) in which we must be careful to
maintain the orders of the factors' P. The quantities
m*=m, and p* can be obtained from Eqs. (16) and
(17). The term proportional to H comes from the
noncommutivity of the x and y components of P. The
results are
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discussed by Kjeldaas and Kohn. "The general expres- that the expression
sion for the effective-mass Hamiltonian can be written

1 P '7cpyP ' %pg

m

I 1 1 I
~p, pv py x j +, (B 1)

~» (b —8 )(8—8')(8—hy)

where i and j refer to the degenerate band edge con-
sidered, and u, v, X are all other band edges. This
expression is more compact than that used by Kjeldaas
and Kohn, "and the final energy appears in the denomi-
nator. Using P= p+eA/c, we have

is just the part of the effective-mass Hamiltonian for
the valence band arising from bands other than the
conduction band. (We may let h' be the valence band
edge h„o, since we assume S.o to be far away. ) This can
be evaluated by the methods of DKK, using the
constants (Table I)

2 l&xlp, ls)l

x,,= B,or,,+ S,,+&,(~ H).. .
2m

(B-2)

(B-3)

1 1
X„,'=—P oo„„+ P'8„,+go(s H)„,.

m
"

2m
(B-4)

P'ooipP'oops( p'q 1
x,,'=l 8,y ls,,+&,(~ H), ,+—P

2m) m' ~ 8'—80

1 (P oo,„)(P oo„,)(P oo»)(P oog, )
m4 ~» (g' —h oo)(b' —b oo)(g' —g&, oo)

Here p and A. run over the 6 valence band functions.
Except for the last term, the expressions are those in
Appendix A t Eq. (A-4)], except that h, is replaced by
o+ h, o, where o is the energy relative to the conduction
band edge. The last term can be evaluated by noting

31 T. Kjeldaas, Jr., and W. Kahn, Phys. Rev. 105, 806 (1957).

The last two terms in Eq. (B-4) are unimportant when
the effective masses are small. In evaluating Eq. (B-1)
for the magnetic case, we must be careful to maintain
the order of the factors' of P.

In evaluating Eq. (B-1) for the valence (I'»+) a,nd
k=0 conduction (I'o ) bands of germanium, we shall
assume that all other band edges are far removed from
these two, where we now include the split-off band with
the valence band. Thus we can neglect 8 in the denomi-
nator unless it appears with an energy of the order of
the gap or the spin-orbit splitting. For the conduction
band, we make the additional assumption that it inter-
acts only with the valence band. We shall neglect the
last term in Eq. (B-4) and include the second term
approximately by replacing b by b'= h —(e+ o)eFF/mc
in the denominator. The third term of Eq. (B-1)
vanishes from symmetry, and we have

m P(i"12)

I(Xl p. f~&l'
FI,=

m v(i"15 )

m p(i'15 )

(B-6)
$0 $ 0

(x I p*l ~&(~ I
p.

l

I'&

g„o—g o

These are essentially the constants used by DKK
except that we have made them dimensionless by
multiplying by 2m. We are neglecting the difference
between oo and P (reference 30) and assuming that the
band edges I'oo make no contribution (Ho=0). The
notation for the conduction and valence band edge
functions is given in Appendix A.

The result for the last term in Eq. (B-5) is

FB, ( 1

2m' & b'+ 8 'l

X{GPo+(2FF,—3G)LP oP o+P oP o+.P oP o]) (B 7)

We have neglected the noncommutivity of the compo-
nents of P, as the result is important onjy for large m.

8,' is some average between h, and ho+6 (see Ap-
pendix A). We shall use the same average as in the
effective mass. To obtain the contribution of Eq. (8-7)
to the Landau level e, we shall take its expectation
value and approximate for large e.

For the case of germanium, in which p~, Eq. (A-4) is
small, we can first solve for the average Landau level
for the two spins, and then add and subtract p*H. The
dominant term is the third term in Eq. (B-5). If only
o+8, appeared in the denominator, a quadratic equa-
tion would result for e. Et is convenient to use the
solution to this quadratic equation and include the
contribution from the split-oG band by iteration. With
some approximation, the resulting expression for the
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energy level for k, =0 is then (expressing all energies in

units of eH/rrbc)

4 = el+ 22+ e2+ 44)

1el ——-'280
(

1+ )

—1,
h, &

«= —P(&+2) I
1—

3(el+8,+6) &

e2=22+-„1

41' (3 COS'0 —1 ~
'

a,+-21G——2(a,——22G)
~

—~, (8-g)
FBg ( 2

64—~2 1 0

-3 (&1+&2) (&1+ha+~)

Equations (B-g) actually give a somewhat better result
than second order in e. c~ is anisotropic; we have
evaluated it for II in a (110) plane, with e the angle
with the [001]axis.

For the valence bands, we shall neglect the fourth
term in Eq. (8-1), as all the "v" bands for which the
matrix elements exist are theoretically remote. This
reduces the problem to that of solving the six effective-
mass equations including the split-o6 bands, and .in
addition including e in the denominators.

It is possible to obtain a solution for the 6)&6 equa-
tions for nearly-spherical energy surfaces by a straight-
forward generalization of the method used by Lut tinger. '
The 6&&6 effective-mass Hamiltonian (Eq. (15)) breaks
up into two 3&(3 matrices involving columns and rows

1, 2, 6 and 3, 4, 5, respectively, using the basis functions
of Eqs. (21) and (A-3). Using the notation a and b to
distinguish them, these can be shown to be

set u:
(y,+y') (Ã+-'2)+3«/2 —e

—V3y"at2

6&y"a~2

—
K3y

"a2 flu

(& —&') (&+-')—/2 — —v2I:v'(&+l) —='( +1)] f . =0
-~2Lv'P"+-,')--,'(+1)] Y+& (7V+ ,')- (8-9)

set b:
(yl —y') (Ã+-2')+ K/2 —e

—&3'"a"
—~ 2t y'(S+-2')+-', (K+1)]

—V3y"a2

(pl+a') PV+-,')—3«/2

—V2Ly'(1V+2')+2'(K+1)] fbb
6'y"at2 f4b ——0, (8-10)

6+ Yl(1V+ 2) e fbb

where y~, etc., are defined in Table I and all energies
are in magnetic units. —e here is the energy relative
to the valence band. Here we have used creation and
annihilation operators at and a defined by

where

and

d= a+r, eb, — (8-14)

at= (c/2e)l(P, +iP„),
a= (c/2e) l(P.—iP„),

{a,at) —=1V+-2'.

(8-11)

These have the following properties when operating on
the harmonic oscillator functions C

atC „=(rb+1)'C „+1, aC ~= rb'*C „1. (8-12)

From the relations (8-12), the solution for Eq. (8-9)
is given by Eq. (24), with, in addition

set a
rl=vi~ (2vl+v' —2«), —
r2= vl(22+2) —(K+2)

sl Y 22 (2 Y +71 K))

s2 ——y'(22+-'2) ——',«+1,
t= —v3q" [rb(rb —1)]'*,

set b

rl =vl~ —(2&1—v'+ 2«),

r, =p, (22—-', )—(K+-', ),
sl =v'~+ (el—K—2v'),

s2 y'(I ,')——+,'K+—1,—-
Y,
= —V3q"L22(22 —1)]~.

(8-15)

Equation (8-13) is used for light-hole levels; for the
heavy-hole levels the eGect of the split-off band can be
neglected.

We must now include the variation of the energy
denominators in y~, etc. If all the constants in Kq.
(8-9) Lor Eq. (5)] contained the factor 1/(4+8, ), we

could multiply the equation by (1+e/8, ), and would
have the result

f.=~~-(r), (f.=o)

Similarly for Eq. (8-10), we have Eq. (27), with

fbb=&2C' 2, (fsb=0).

By substituting these solutions in Eqs. (8-9) and
(8-10), we obtain sets of linear equations for the a' s
and b's. The secular equation in each case is a cubic,
and the following form is useful for iteration:

(8-16)(1+c!@,)=eo,

s 2+(2
tp=t'j—

i.e., a quadratic equation, where ep is given by Kq.
(8-13). This result is almost valid, since the principle

contribution to the valence band parameters is from

the k=0 conduction band, and we can make a small
2 $22g 2 ~ 2g21 2- -'.,

+~2~t 1
~

(8 13) correction for the other band edges which we assume

d ) 4 d ) to be far away. We can then finally write for the energy
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levels

e = ei—(rs+-', ),

4/ep+(I+-,')+es+e4j '*

ei ——-', hp 1+
g

rj= A (1+e,/8 p)+ r,—ep. (8-18)

Here the n+-,' appears from using b' in Eq. (8-5), and
ep is given by Eq. (8-13) with d redefined:

For e3, if the valence band effective mass Hamiltonian
is X(F,G,Pr), using the parameters of Eq. (8-6), then

"=(ei/hp) ((5C(o G IIr))+~+ s), (8-19)

where we can take the expectation value with respect
to the wave functions in Eqs. (22) and (27) since this
is a small correction.

Finally e4 is the contribution of D& in reference 4,
and is obtained from second order perturbation theory,
using Eqs. (22) and (27), since again this is a small
correction.
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Optical Properties of Nickel and Tungsten and Their interpretation
According to Drude's Formula
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New optical data are reported for nickel at 88', 298, and
473'K and for tungsten at 298', 1100', and 1600'K in the wave-
length range 0.365 to 2.65 microns. These data are shown to
depend on wavelength in a way which is in good quantitative
agreement with a formula initially proposed by Drude. By
attributing different terms in Drude's equation to the motion of
different classes of free and bound electrons, one may conclude
that several classes of each are present in both metals. Each class
of free electrons accounts for a portion of the dc conductivity and
has its own characteristic relaxation time or wavelength. From
this analysis it appears that most of the dc conductivity may be
attributed to one class of free electrons, although optical properties

are strongly influenced by other classes as well. In both metals
the characteristic wavelength X,I of the first class of free electrons
proves to be proportional to the corresponding conductivity 0.1 at
diferent temperatures. In nickel the constant ratio 0-1/X, I accounts
for the low temperature coe%cient of optical properties through-
out the visible and near infrared range. In tungsten this constant
ratio contributes to the existence of the x-point or cross-over
wavelength in the spectral emissivity. It is shown that the
anomalous skin effect may not be a significant factor in the
measured optical properties of a metal like nickel in the range of
wavelength where these properties have only a small temperature
coefficient.

I. HISTORICAL ORIENTATION

~M~PTICAL properties of thick metal specimens may
be measured most readily by rejected light. The

principles for doing this were worked out many years
ago and were carried to a high state of refinement by
Drude. ' Drude' also showed that the observed optical
properties depended on wavelength in a rational man-
ner. On the basis of this analysis he claimed that there
were at least two kinds of charged particles which
could move freely in the metals he studied. He called
them "ions" but was unable to give a satisfactory
theory to account for them. Nevertheless, Drude' did
point out that other properties such as Hall eGect and
thermoelectric phenomena likewise indicated the pres-
ence of two kinds of charge carriers. Drude's "ion
hypothesis, " however, was not well received by his
contemporaries. In a recent paper (hereafter referred
to as paper I) the author4 appears to have been the
first since Drude to recommend that serious consider-

' P. Drude, Ann. Physik 39, 481 (1890).
2 P. Drude, Physik. Z. 1., 161 (1900).' P. Drude, Ann. Physik 1, 566 (1900); 3, 369 (1900)

& 7, 687
(1902).

4 S. Roberts, Phys. Rev. 100, 1667 (1955).

ation be given to this interpretation of optical properties
of metals.

In paper I and in the present work the author reports
that the interpretation depending on the implied
existence of more than one class of free electrons,
distinguished by their different relaxation times, is
highly successful in describing the optical properties
versus wavelength of a variety of metals. One might
wonder, perhaps, why such a simple fact has remained
so long in obscurity. It may be that an appropriate
reason is suggested in these words of I.ucretius: ". . .
no fact is so simple that it is not harder to believe than
to doubt at the first presentation. "The circumstances
related below certainly indicate that the above fact
was very dificult to believe in Drude's time.

Schuster' appears to have been the first to have
suggested that, since electrons in a metal were the same
as those observed in cathode rays, they should all have
the same charge, the same mass, and in each metal a
single relaxation time. In the absence of quantum
mechanics this argument seemed quite logical. In

' A. Schuster, Phil. Mag. 7, 151 (1904).


