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The matrix element for bremsstrahlung and pair production is
written in a particularly simple form which reduces to the well-
known matrix element for nonrelativistic energies, in terms of a
vector which is closely related to the nonrelativistic current
density vector.

The cross section for high-energy bremsstrahlung and pair
production involving arbitrarily polarized photons and electrons
has been calculated. The Coulomb and screening sects are taken
into account exactly. It is found that the screening and Coulomb
corrections to the polarization-dependent part of the cross section
are analytically of the same form and numerically of the same
magnitude as the corrections to the polarization-independent
part of the cross section found earlier. We also give the cross
section for bremsstrahlung summed over spin and polarization
directions and integrated over the direction of motion of the
final particle, i.e., the angular distribution of the radiation, which
has a very simple form.

Formulas are given for the linear and circular polarization of
bremsstrahlung from arbitrarily polarized electrons and for the
spin polarization of pairs from arbitrarily polarized photons.
The circular polarization of bremsstrahlung from longitudinally
polarized electrons is complete at the upper end of the spectrum

and is much larger than from transversely polarized electrons
throughout the spectrum. In the same way, circularly polarized
photons produce longitudinally polarized electron-positron pairs,
the probability of producing transversely polarized pair particles
being, in general, much smaller. The faster one of the pair particles
is always polarized in the same sense as the photon. On the other
hand, the linear polarization of bremsstrahlung is smallest at the
upper end of the spectrum and increases with decreasing photon
energy. It is independent of the spin of the initial electron if one
sums over the spin of the final particle. The circular polarization
of the emitted photons is to a high degree independent of screening
and Coulomb corrections, at the high energies considered here.
The linear polarization is, however, significantly dependent on
these corrections. Similar conclusions hold for pair production
from circularly and linearly polarized photons, respectively.

Finally, the electron spin-photon polarization correlation for
bremsstrahlung and pair production is discussed. The depolari-
zation, because of bremsstrahlung, of polarized electrons passing
through matter is calculated and is appreciable over a radiation
length. It is greater for a transversely polarized electron than for
a longitudinally polarized electron.

1. INTRODUCTION

~

'HE linear polarization of bremsstrahlung was
studied first by Sommerfeld' for low electron

energy and by May and Wick' for relativistic energies.
It was found that for low photon energies the electric
vector of the radiation is in the plane of emission, which
is what would be expected from classical considerations.
The photons of high energy, on the other hand, are
emitted in the plane of the magnetic vector. Thus at
high energies the radiation is always polarized in a
direction perpendicular to the plane of emission. In
addition to the work of May and Wick there have been
calculations by Gluckstern et al.' and by Gluckstern
and Hull. 4 These calculations have always been per-
formed in the Born approximation and with exponential
screening. The present work supplements these papers
at high energies in that it takes into account the
Coulomb correction and the screening exactly.

It was apparently noticed 6rst by Zel'dovich5 that

*Work partially supported by a grant from the National
Science Foundation.

t Present address: National Bureau of Standards, Washington,
D. C.' A. Sommerfeld, Ann. Physik 11, 257 (1931).' G. C. Wick, Phys. Rev. 81, 467 (1951);M. May and G. C.
Wick, Phys. Rev. 81, 628 (1951);M. M. May, Phys. Rev. 84, 265
(1951).' Gluckstern, Hull, and Breit, Science 114, 480 (1951); Phys.
Rev. 90, 1026 (1953).

4 R. L. Gluckstern and M. H. Hull, Phys. Rev. 90, 1030 (1953).' Ia. B.Zel'dovich, Doklady Akad. Nauk S.S.S.R. SB, 63 (1952).
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the bremsstrahlung emitted from polarized electrons
may be circularly polarized. Since the discovery that
the particles emitted in weak processes are polarized,
a number of papers on circular polarization of brems-
strahlung have appeared. '—"In all these articles the
Born approximation has been applied, and the screening
has been taken into account by an exponential screening
factor. As for the case of linear polarization we extend
these results at high energies by taking into account the
Coulomb correction and screening exactly. We also
give the cross section for definite spins of the final
electron; this then allows us to calculate the depolari-
zation of polarized electrons because of emission of
bremsstrahlung. A preliminary note of some of these
results has already been given. ""

e G. Bobel, Nuovo cimento 6, 1241 (1957).
7 A. Claesson, Arkiv Fysik 12, 569 (1957).
s K. W. McVoy, Phys. Rev. 106, 828 (1957); K. W. McVoy

and F. J. Dyson, Phys. Rev. 106, 1360 (1957); K. W. McVoy,
Phys. Rev. 111, 1333 (1958).

C. Fronsdal and H. Uberall, Nuovo cimento 8, 163 (1958);
Phys. Rev. 111,580 (1958).

@ Haridas Banerjee, Phys. Rev. 111, 532 (1958). The case of
arbitrary photon polarization without screening is considered.

"Olsen, Wergeland, and Maximon, Bull. Am. Phys. Soc. II,
3, 174 (1958).

"H. Olsen and L. C. Maximon, Phys. Rev. 110, 589 (1958).
It should be noticed that the term

A

+L(eP—es') (3+21')—2heg(1+4ns(al') jsg k(ik Xe&&X)

in Kq. (1) of this reference should have the opposite sign; see
Kq. (7.1) in the present paper.
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In Sec. 2 we discuss a simple method for obtaining
the cross section directly in terms of the initial and
final spins of the electron. The differential cross section
for bremsstrahlung with specified initial and final spins
of the electron and specified polarization of the emitted
spectrum is then derived in Secs. 3 and 4. In Secs. 5
and 6 we integrate over the direction of motion of the
final electron, for the cases of no screening, intermediate
screening, and complete screening. Formulas for linear
and circular polarization of bremsstrahlung are given
in Sec. 7, and in Sec. 8 we discuss the correlations
between the spins of the initial and final electron and
the photon polarization vector. In particular the cir-
cular polarization of the photon beam is considered.
The discussion covers all cases of screening. The de-
polarization of the polarized electrons in the radiation
process is derived in Sec. 9. Finally, in Sec. 10 we write
down the corresponding quantities for pair production.

2. SPIN FORMALISM

(' in'V )

E 2e&
(2.1)

We use a method by which the absolute square of the
matrix element appears directly in terms of the spin
vectors s~ and s2 of the initial and Anal states, respec-
tively. " The procedure is simplified by the fact that
the spin part of the wave function at high energies
involves a plane-wave spinor N. It has in fact been
shown' that for processes such as high-energy brems-
strahlung and pair production in which the momentum
transfer q is always much smaller than the momentum

p of the electron, i.e. , processes in which significant
angular momenta are l))1, the Sommerfeld-Maue type
wave function,

The free-particle spinor I satisfies

(n p+P —e)N=O. (2.3)

We want to write u in such a way that the two-com-
ponent Pauli spinor v appears explicitly. To this end,
we use the representation

~0 np p1 0 q

En 0& (0 —1&

u=lV
(

Eg)

(2 4)

where e is the Pauli spin matrix vector and g the cor-
responding Dirac matrix vector" in "charge space. "
v and ie are two-component spinors (the "large" and
"small" components, respectively), and X a nor-
malization factor. Introducing these expressions into
the four-component wave equation (2.3), this equation
splits into two two-component equations:

( 5 ) f 1
e=lV

(

E[n p/(E+1)]v& (n p/(e+1)&

&=L(e+1)/2eh'*,
(2.6)

where z has been assumed to be normalized. For appli-
cations it should be noted that the separation of the
spin space from the charge space is complete in the
sense that in (2.6) the matrices pz operate only on the
charge space part of I, viz. ,

& pw+(1 —e)v=O, n pp —(1+e)ie=O (2 5)

The desired solution is thus

(V'+2ip V —2eV)F=O, (2.2)

normalized so that F(r) ~ 1 as r ~ ~. The subscript
+ (—) refers to wave functions with the asymptotic
form of a plane wave plus outgoing (ingoing) spherical
waves. For an unscreened Coulomb potential V= a/r, —
a =Ze'/Ac, the solution F was given by Sommerfeld and
Maue, " and for an arbitrarily screened potential by
Olsen, Maximon, and Wergeland. "

'3 The present method divers from that which is usually applied
in polarization calculations. See, e.g. , F. W. Lipps and H. A.
Tolhoek, Physica 20, 85, 395 (1954); H. A. Tolhoek, Revs.
Modern Phys. 28, 277 (1956).

14 H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954);
in the following referred to as BM.

'5 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935).
'6 Olsen, Maximon, and Wergeland, Phys. Rev. 106, 27 (1957);

in the following referred to as OMW.

is a good approximation. p is the momentum of the
electron in units of rnc, e= (p2+1)' its energy in units
of mc', 0, the Dirac operator, and r the electron's coor-
dinate in units of A/mc. I is the free-particle spinor.
Ii~ is the solution of

(n p/(e+1)&

0 is clearly the pauli spin state referred to the system
in which the electron is at rest. Let s/s=( (g= —') be
the spin direction in this system Then

( nv=v. (2.7)

The well-known explicit solution of this equation is

) 1+f. i

L2(1+i,)]-' (g.+ig„&

or in terms of the angles x, p„where

(= (sinX cosg. , sing sing„cosy},

(2 g)

we can write
(e '~" cos(g/2) )

(2.9)
& e'4"~' sin(g/2) &

' P. A. M. Dirac, The Prirlci p/es of QNam(Nm ~echgrIics
(Clarendon Press, Oxford, 1947), third edition, pp. 255, g56.
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Ke shall not, however, need these explicit forms. In
fact, only (2.10) and (2.11) below are needed for the
following calculation.

Multiplying the equation adjoint to (2.7) by v from
the left, we have

ver(( n —1)=0

For normalized e the solution is clearly

3. MATRIX ELEMENTS FOR BREMSSTRAHLUNG

We calculate the amplitude A e*for bremsstrahlung"
for specified spins of the initial and final electrons using
the representation (2.12) of the wave function, in which
the two-component spinor e is separated out. e is a
vector with complex components a~ and a2 in the x and

y directions, respectively:

net=-', (1+( n). (2.10)
e—sle +82ey (3.1)

nv~ is the projection operator for the spin state e. We and is normalized so that

shall also need the well-known diagonal matrix elements (3.2)

(v, nn) = (. (2.11)

1 ( in. V) f 1
ieFg (2.12).

V2 ( 2e ) &e p/(e+1)J

This also follows from (2.7) by multiplication from the
left by et and noting that ( is the only vector in the
rest system.

The high-energy wave function which we shall use
for an electron may thus be written (since in this limit
E= 1/V2)

By choosing a& and a2 appropriately, one obtains the
amplitude for any desired polarization. Thus the am-
plitude for radiation plane polarized in the x direction
is found by choosing a&= 1 and u2=0; in the y direction
by choosing a&=0, a2= j.. The amplitude for circularly
polarized radiation is obtained by setting ar ——1/v2 and
a2 ——ai/V2, the upper a,nd lower sign referring to right
and left circular polarization, respectively. (We use
the same convention as in Blatt and Weissimpf. ")

The amplitude" is given by

A. e*= (P2, n e*e-'"'P ) (3.3)
In the matrix element for pair production there appears
the charge conjugate of the positron wave function
having the asymptotic form of a plane wave plus ingoing
spherical waves, viz. , CP,„, *(e,p, (), where C=iPn~.
Cg~„*can also be considered as the wave function (not
conjugate) of a negatively charged electron with energy
—e, momentum —y, —p, spin —( with the same
asymptotic form of a plane wave plus ingoing spherical
waves:

with Pi+ and f~, as given in (2.12). Neglecting terms
of relative order 1/e, we have

A e*=(e2, (n e*Ii+n e~n I2+n I3n e*)gi), (3.4)

where Ii, I2, I&, defined before, "are given by

The spinor factor in the wave function CP~o, ,
* is there-

fore, from (2.6) and (2.7),
I2 ——— ~F2, *e"'i'p'Fi, +d'r, ('Brems. ) (3.5)

26y

(yF2, *)e'&'Fr, ~d'r.

where e(—() is a normalized solution of

( nv= —r. (2.15)

1
I inwit t 1

!Cy..., *(.,p, ()=—e-'~'~ 1+
v2 ( 2e ) (n p/(» —1)&

&.e.,
P *(.,p,p, —Z)=P (—e, —p, —p, Z).

Alternatively to (2.13), the spatr'at part of the positron
wave function may be obtained directly from that of
an electron by reversing the sign of the Coulomb inter-
action, so that we may also write

These integrals have been evaluated for an unscreened
Coulomb potential (BM)," and also for the case of
arbitrary screening (OMW)."

For the following calculation it will be useful to
note that the three integrals (3.5) are related. By a

"W. Heitler, The Quantum Theory of RaCiation (Oxford Uni-
versity Press, New York, 1954), third edition, p. 143. It should
be noted that in Eq. (21b) of this reference 0.'.e* should appear in
place of 0,'e, as is apparent from Kq. (19)."J.M. Slatt and V. F. Weisskopf, Theoretical NNclear Physics
(John Wiley @ Sons, Inc. , New York, 1952); note p. 807, Kq.
(5 1)

"Reference 18. In order to simplify the following equations,
numerical factors are omitted in this de6nition of the amplitude.
These are 6nally included in the expression for the matrix element
for bremsstrahlung, Eq. (4.1) in the present paper.

"Reference 16, Kq. (4.2).
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partial integration on I2, one finds

F2, *p'(e'+'Fl )d'r

F2, *e' 'VFi, +d'r+ '

F2, *e' 'Fl, ~d'r.
2eg ~ 2cg ~

Therefore, comparing with the definitions (3.5), we have

6rst term becomes

(2i2, n e*gl)Il

1( ( o p2i ( 1
ivl iIl

2 ( ( e2+1) &o pi/(e, +1)) )
1 ( i

o'pl o'p2
=—

I V2, o e* + cr e* Vl iIl.
2 ~ el+1 22+1

Q
I,=—I + I,.

26g

Separating the components of pI and p~ in the direction

(3 6) of k and perpendicular to k, we have

The amplitude A e* may thus be expressed in terms of
only two of the integrals (3.5). Noting that at high

energies only the components of I2 and I2 perpendicular
to k contribute to the matrix element Lsee Eqs. (3.4),
(3.13)-(3.15)7, it will prove convenient to introduce
the vector J given by

o pJ o.pq o-u o v
o"e* + o e*=o"e* + o e*

el+1 &2+1 ~i+1 &2+1

t' Plz P2~ )+o e*o., i

— i. (3.10)
( ~i+1 ~2+1$

Neglecting terms of relative order 1/e, we may therefore
write

II,
26ycg ( oe*

(B 3 7 (N2, e e*al)Ii=
i v2, (o u —0,)Il

u
Ii+—I2.=

26]6g

v
Il+—I2,.

26y6g 6I

o e*i
+(a v )oI, — vi i. (3.11)2„i &

The latter equality results because of (3.6), noting
that q&=u —v. u and v are the components of pj and

p2 perpendicular to k, respectively. Using Eqs. (4.2)
and (7b.10) of OMW, the vector J is given by

J=Bfug —vg+k($ —v)), (Brems. ) (3.8)

We shall use this form later in Eq. (3.15) for the am-

plitude.
The second term in A e* is

with

$= (1+1') ', y= (1+v') —',

1( ( o'p2 )
io.e*o' I21

e2+1) Eo pi/(el+1) ~ )
s= Pluri v= P2q2

8= (42ra/kq2) A, k =k/k,

(3.8a) 1p
pg, ' o'C o'

2& 'i
o'p2 o'pa

o e*o I, '»
I (3.12)

e2+ 1 6l+ 1

V and 8' are the hypergeometric functions

V(x) =F(ia, —ia; 1;x),

W(x) =F(1+ia, 1—ia; 2; x), (3.9a)

U(1)=F(ia, ia; 1; 1)—= iF(1+ia) i
2=sinh2ra/2ra.

where A is given for arbitrary screening by Eq. (7b.10)
of OM%. For the special case of no screening, one has

LEq. (7b.11) of OMW and Eq. (8.20) of BM7,

i
8

i

'= (4na/kq2)2R(y).

E(y) = fV'(x)+a'y2W2(x)7/V'(1),

y =—1—x=P/(gq2), il= q;„=k/(2ele2).

o"' pg o' pJ =,+O(1/).
62+ 1 6l+ 1

('+2 ' e'o I22ii) (v2, o' e o 'I2lvl) (3.13)

Therefore the part of the last term in (3.12) containing
o-,I&, exactly cancels the part from the 6rst term con-
taining o,I2„while the part containing o, I2l adds to
the first term, giving 2o e*o I2l. The amplitude A e*
thus depends only on the perpendicular components
I„and I„:

We now turn to the amplitude A. e* given in (3.4).
written in terms of the spin amplitudes vI and v~, the

and in exactly the same way we find

(N2 lK' I2C' e Sl) = (v2 O'' I2lo ~ e vl). (3.14)
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For the amplitude we may then write, recalling (3.7), following OMW Eq. (6b.5):

891

(
A e*=~ v2, e e*

e l1 0'z

Ii+P 121 Il
261 261

4vru
t

1
J,=— —(u(+ vq) V(x)+iagg (u( —vrl) W(x),

kV(1) tq'
(P.P.) (3.20)

EF' v Oz 4mu t i+ Ii+~. I3.— Ii ~ e' » I (3 15) J.= (—g ~)V(x)+i~gv(p+q 1—)W(x) .
2eg 2e~ kV(1) q'

= ('v2 {e2lr
' e*e J+eio'' Jlf ' e*}vi).

(P.P.) (3.20a)y =1—x= $gq',

In (3.20) the quantities u, v, $, and iI are the same as
in 3.8a . However, x and y are given byThe matrix element thus depends on the integrals (3.5)

only through the vector J of Eq. (3.7). Using the rule

e Js e*=J e*+ie JXe~, (3.16)

A e*=(v&,{(ei+e2)J e"+ikoX J e*}v.i)
(Brems. ) (3.17)

The corresponding expression for pair production is
obtained from (3.15) and (3.17) by making the sub-

stitutions e1, k, e*~ —e1, —k, c and by replacing the
bremsstrahlung expressions J& and J, by those for
pair production. This substitution is justified by the
discussion at the beginning of Sec. 5, where it is noted
that the outgoing or ingoing nature of the wave function
is contained only in F t Eq. (2.1)$, and not in the free-

particle spinor I, with which the substitution e1 —+ —e1

is concerned. For pair production, the Ji and J,
analogous to (3.7) are

we have the simple expression for the amplitude, for
arbitrarily polarized bremsstrahlung,

4+a {1—F(q) }
Jn.,„—— —{(uP+ vg)+k(p —g) }

2

(P.P.) (3.21)

F(q) being the atom form factor."
It may be noted that with

(3.22)4=e'IP'Il

we may write J, and J, in the form

rather than as in (3.9). V and W in (3.20) are the
functions defined in (3.9a), but have as argument x as
defined in (3.20a). For small q, where the screening is

effective, the Coulomb correction is negligible. Thus in
this case J is given by the Born-approximation value

including screening, vie. , from OMW Eqs. (7a.5)-
(7a.10) and the equations immediately following

(7b.11),

1
J,=- I„

2616g

(P.P.) (3.18)

J,=
26162

j ~
—ik rd3~ (3.23)

with

ll 1 V

J,=- I,+ I2, —I, ——I„)————
2 6162 6g 26162

P )
ik rd3 (3.24)

where now the integrals (3.5) are replaced by
1

3 =—(%,*~+i—0 iv@2*), p =4'&*4 i, (3.25)
2i

Pg *e'& 'PI d'r, as may be verified by comparison with (3.7) after per-
forming a partial integration. Now in the nonrelativistic
limit (in which k-+0), the amplitude (3.17) )apart

F~ *e'&'~Fi, d'r, (P.P.) (3.19) from the trivial spin factor (v~, vi) j approaches

Ig —— (~F2, *)e*&'Fi, d'r.
2&2 ~

A e*=2J& e~= j, e*e '"'d'r. (3.26)

For pair production, for large values of the momentum
transfer q, screening is unimportant and J is given by
BM Eq. (6.23) or OMW Eq. 6b.5) and the equations

t That A e~ as given in (3.17) approaches the nonrela-

tivistic amplitude 2J, e* is of course accidental, since

~ Reference 16, equation preceding (Vb.12).
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in the derivation of (3.17) we have made the high-
energy approximation throughout. It may be noted,
however, that this same limit is obtained for A e* as
defined in (3.4), using (3.6) and observing that in (2.6),
in the low-energy limit, X= 1.]Thus, since 4 is, in the
nonrelativistic limit, the exact solution to the Schro-
dinger equation, the amplitude given in (3.17) for
relativistically high-energy bremsstrahlung is also
correct in the nonrelativistic limit. The spin-dependent
term in (3.17) is, apart from the energy factors, that
which would be expected from a radiating magnetic
dipole of moment e with J=J'je '~'d'r. However,
since fpe '"'d'r= fj,e '"'d'r, the vector J occurring
in (3.7) and (3.17) has the opposite sign on its s com-
ponent to that which would make such an explanation
of this term plausible.

Hi2'= —ekc(2ir/k) l (Pi/riic)'A e*.

The transition probability per unit time is

~= (2~/&) p, lH„'I',

in which the density of final states pJ is

pq= (mc')'(2irhc) 'k'dkdQip2egdD2.

(4.1)

(4 2)

(4.3)

The differential cross section, dg., is equal to the
transition probability normalized to unit current of the
incident particle. %'e therefore divide m by the velocity
of the incident electron, cpi/ei, and obtain (after
making the high-energy approximation e=p) the dif-
ferential cross section for polarized bremsstrahlung:

——
I
A e*l'k'dkdQidQi, (Brems. ) (4.4)

(2ir)' mc'mc k

where A e* is given by (3.3) and (3.17). Correspond-
ingly, for pair production

g2 $ ~2
do= pl dpld~ld1I2 (p.p.) (4.5)

(2ir)4mc'mc k

where A e is obtained from the bremsstrahlung am-
plitude in the manner discussed following (3.17).

The evaluation of the absolute square of the ampli-
tude is greatly simplified by applying (2.10), thereby
eliminating two of the spinors, vis. ,

I (v2, Mvi) I'= (ii,Mte2) (e2,3Ai)
=-', (vi, Mt(1+(p e)3&i), (4 6)

4. DIFFERENTIAL CROSS SECTION

In terms of the amplitude A e* given in (3.3), the
matrix element HI2' for bremsstrahlung is""

Mt(1+(2 e)M as a linear function of e by repeated
use of

e A o 8=A 8+io AXB, (4 7)

and anally use (2.11) to obtain IA e*l' directly in
terms of the unit spin vectors for the initial and final
states, (i and (&. (This procedure is clearly to be pre-
ferred to that which would perhaps appear more
straightforward, namely multiplying out the matrix
element (v2, Mei) explicitly using (2.8) and then taking
the absolute square. ) In this way one finds for brems-
strahlung

For bremsstrahlung it is found, both in the case of no
screening [BM Eq. (8.15) and ff.] and for arbitrary
screening [OMW Eqs. (7b.5)—(7b.10)], that the
integrals (3.5) are given by their Born-approximation
values times a common factor. Thus, in the case of
bremsstrahlung, J is real apart from a trivial phase
factor, and (4.8) simplifies to

IA e*l'=lk'~'+2ei~~(1+(i (i) I
J el'

+2k'[J'(i (2—2J (iJ (~]

+ke~ Ref [J'( e—2J eJ (i](2 e*}

—kei Re([J'(i.e —2J eJ (2](i e*}

+-,'kl'(ei(i+ ei(2) ~ (ie Xe*)

+2k[J (E2(1+&1(2) ' (ieXe )
—2J (e2(i+ei(2) J- (ieXe*)].

(Brems. ) (4.9)

A e*l'= 'O'I JI'+ eie2(1+(i (~) I
J e* I'

+-', k'Rej
I
Jl'(, (,—2J (,J* (,}

+ke2 Re([l Jl'(i e—2J eJ* (i](i e*}

—kei Re([l Jl'(i e—2J eJ* (2](i e*}

+2k
I
J

I
(&1(1+62(2)' (ieXe*)

+gk «{I&l'(~~(i+~i(i) (ieXe')

—2J (~,(,+ei(,)J* (ieXe*)}

+-,'k[k(1+(i (g) (ieXe*)

+ (~1+&2) ((iX (~)X (ie Xe*)

+( + )((+~)
—2Re(e*(ei(i+e2(2) e}] (iJXJ*).

(Brems. ) (4.8)

where M= (ci+e2)J.e*+ikeX J e, and (2 is the unit For pair production the square of the amplitude is found
spin vector of the final electron. We then write from (4.8) by making the substitutions ei ~ —ei,
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(1—+ —(1 and e*—+ e:

I& el'=-:k'I Jl' —2~122(1—(i.(2) I
J e*l'

—-', k Re{
l
Jl'(, (,—2J (,J* (,}

+k~2Re{[lJl2(1 e*—2J e*J* (ij(2 e}

+kfi Re{[l&l'(2 e*—2J e*J*.(2j(1'e}
+-',kl Jl'(~l(1+&2(2) (ieXe*)

—-', k Re{
l
Jl'(~2(1+&1(2) (iexe*)

—2J. (e2(,+~,(2)J* (ieXe*)}
—-'2kl k(1—(, (,)(ieXe*)
—(.,—~2) ((,X(2)X(ieXe*)

+ (61 62) ((1 (2)

—2Re{e*(~1(1+~2(2) e}j (iJXJ*).

(P.P.) (4.10)

It should be noted that the cross section is symmetric
with respect to the positron and electron, as it should be.

Equations (4.9) and (4.10) give the cross sections for
bremsstrahlung and pair production for specified mo-
menta of incoming and outgoing particles and for
assigned directions of the initial and final spins and
polarization. In the next section the cross section is
integrated over the direction of motion of the final
particle, giving the correlations between (1, (2, e, ir

and p~. The spins and polarization are then successively
averaged over, giving the various correlation functions.

same energy but different propagation directions for
either the outgoing or the ingoing type solution. There-
for, even if we do not sum over the spin but only
integrate over the direction of motion of the final
particle, the choice of final-state wave function is
immaterial, i.e., the pair-production cross section may
be inferred from that for bremsstrahlung.

Consider, then, pair production. As previously shown,
the Coulomb and screening corrections occur for dif-
ferent values of the momentum transfer q, cia., for large

q one has only Coulomb correction, for small q only
screening correction. Thus to include the e6ect of
screening we add to the exact unscreened cross
section the integrated Born-approximation screening
correction, which is, apart from factors,

{l
A e l2sor~, s~reenea —

l
A el 2aorn, un2~r~enea}d&2. (5.1)

It should be noted that in this formulation the screemAzg

appears as a correction to the exact cross section for a
pure Coulomb potential. Having used this property of
the pair-production cross section to see that we need
only (1) the exact integrated cross section without
screening, and (2) the Born approximation screening
correction, we now use the fact that these two parts of
the pair-production cross section may be inferred from
the corresponding bremsstrahlung cross section. This is
the procedure we follow since the latter is in fact easier
to evaluate.

The integrated cross section is calculated from (4.9)
and (3.8), from which it may be seen that all the
integrals required are of the form

S. CROSS SECTIONS INTEGRATED OVER
DIRECTION OF MOTION OF THE

FINAL PARTICLE
J Vi J V2d&2, (5.2)

We shall integrate the bremsstrahlung and pair-
production cross sections for an arbitrarily screened
Coulomb potential over the direction of motion of the
final particle, but without summing over spins. Now it
has been shown" that if we sum over the spin of the
final particle as well as integrate over its direction of
motion, then the pair-production cross section may be
inferred from that for bremsstrahlung by changing the
sign of e~ and making the appropriate change in the
final-state density factor. However, since we are using
Sommerfeld-Maue type wave functions (2.1), this
inference may be made even if we do not sum over the
the spin of the final particle. This may be seen by
noting that the diRerence between pair production and
bremsstrahlung (apart from changes of sign in energy
and momentum) results essentially from the choice of
final-state wave function (i.e., whether it is of ingoing
or outgoing type), which choice affects only Ii in (2.1).
Moreover, F satisfies the spin-independent equation
(2.2) and thus forms a complete set of states with the

"Haakon Olsen, Phys. Rev. 99, 1335 (1955).

tJ„2dQ2 X+VN„2, ——

Jg2d02 ——X+F(1—1/2$) 2

(5.3)

J.J,dQ, = Vu.N„,

J,J,d02= I N, (1—1/2g),

with Vi and V2 arbitrary vectors, not depending on 82

or q2. In the next section we show that the relevant
integrals are given by

)t J,2d02=X+ F22.2,



where, from (6.22),
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and x and y such that

X= (42ra/p k)22rp(1+r),

Y=—(42ra/p2k) 242r $4r.
(5.3a)

(N~, N2) = (Q cos221& Q sln221),

{ll„v„}= {v cos222, v sing&2), (6.1)

The quantity I' is given by (6.23) for no screening, by
(6.28) and (6.29) for arbitrary screening, and by (6.34)
for complete screening. Thus in the integrated ex-
pression (5.2) the terms with the factor I' will have the
same form as the integrand, with the vector

I'{u+(1—1/2k) k}

replacing J, whereas the three terms having the factor
X can be written as Vl V2. Thus we can write

so that the integrands in (5.3) may be written in terms
of 221 and 222 from (3.8). We note erst that 8 in (3.8)
depends on 222 only through q12=u2+v2 —2ultcos22,
where q= q~ —q~. Thus it follows that

2n

8 Sill((P1 —y2)d y2
0

~2+
8' sin2 (221—222) d 222

——0. (6.2)
0

where

U =—u+ (1—1/2&) k. (5 5)

~J Vl J V2dn2 ——I'U Vl U V2+XV1 V2, (5.4) Therefore we express the integrands in (5.3) in terms
of pl and 22,. and, using (6.2), find indeed, directly from
(3.8), that fJ,'dn2, fJ„'dn2, and fJ,J„dn2 are of the
form given in (5.3), with

t'42raq '
"Jdn, =

I I
~p(3+2r),

& p,k)
I [J2V, V, 2J V,—J V,.]dn,

(5.6a)

=(42ra/p2k)2 /[V, V2+SprU V, U V,]. (5.6b)

Noting the form of the terms in (4.9) it will be con-
venient to observe in particular, from (5.4) and (5.3a),
and noting that U2= (4t2) ',

2 2 2 ' 2X=~ 8 'V 'e Sill ydn2,

lg n2g2

I =p "a'I 1—2—o q+ o 2 Idn.
u$ u2P

Furthermore, also from (6.2) and (3.8),

~
J,'dn2 ——

~
8'($—g)2dn2,

(6.3)

The integrated cross section for bremsstrahlung may
now be written down from (4.4) and (4.9) using (5.4)
or (5.6a, b), and Vl and V2 equal successively to (1, Q,
e, etc. In this way we 6nd

d~(p„(,,(2,k,e)

e' ( e2 $ 2 dk d$ d 221

(2 (~1'+22') (3+2r) —&1&2

ke kme2) k e12 22r

—821'f2pr I
u e

I
'(1+(1 (2)

+ 2 [&1 +&2 +2&1&2(1+2r)](1'(2

+4k'p(1 U(2 U —k'Re((1 e(2 e )

+-,'k(3+2I") (el(1+&2(2) ' (ieXe*)

+-,'k(22(1+el(2) [(ieXe*)+SprU(U (ieXe*))]
—Skier Re{u e*[el(2 U(1 e

—22(1 U(2 e]}}. (Brems. ) (5.7)

Equation (5.7) is the basis for our further discussion.

6. THE INTEGRALS

For the evaluation of the integrals (5.3) we choose
coordinates x, y, s with the s axis in the direction of h,

vq

~
J.J.dn2=u. p, 8'($ 2I)I 1——cosq2 I—dn„(6.4)

uP

( ltd

J„J,dn =2)I) 8'($ g) I
1——cos—p Idn2.

E I( )
a. No Screening

Before proceeding further with the evaluation of the
four integrals occurring in (6.3) and (6.4), we note that
to include the effect of screening we have to add the
Born-approximation screening correction (5.1) to the
exact cross section, as discussed at the beginning of
Sec. 5. We thus first calculate the integrals (6.3), (6.4)
for a pure Coulomb potential, in which case [BM Eq.
(8.30) and OMW Eq. (7b.11)]

where

82= (42ra/kq2) 2R (y), (6.5)

1—x —=y=8/ppq2,

~(y) =[I"(*)+a'y'II"(*)]/I"(I), (6 6)

the variables appropriate to the integration being $,
q, and y. With these new variables, we have

1
d02= (6.7)

2p2'n' y' [—(& 2i)'+ 2X ((+21—2(21) X']&— —
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where we have used the abbreviation

) =~'[(1—y)/y].

Thus from (6.6) and (6.7),

1 f'4jra p
'

a dn, =-l
) PZ(y)

2 (p28kJ

t' ( vg

)
1——cosy ~($

—q)
(6.8) ~ E u(

X
L
—(5—n)'+2&(5+~ —2') —&']»

=v (1—2&)X(1—3X),

X (6.9)
L
—(5—0)'+2~(5+~—2tn) —) ']»

It should be noted that we may write, neglecting terms
of relative order 1/e,

q'= (~'/8) L(1—y)/y], (6.1o)

from which it follows that fJPdQ2, J'J,J,dQg, and
J'J„J,d02 are also of the form given in (5.3) with X
and Y as given in (6.3). To evaluate X and 7 we note,
from (6.9) and (6.13), that the y integrals which occur
are

which may be seen as follows: If q= O(1) then
y=O(P)«1, so that qP =8/@y=q', as it should since

q,&)q,. For q=O(1/e) we have qp= (5'/gqy) —(P/grf)
=q' —2/@, which is also correct since for q=O(1/e),
neglecting terms of relative order 1/e, qp=P/trf.

In (6.3) and (6.4) we shall need cosy and cos2y in
terms of p, rf, y, and to this end note that

t ) R(y)dy,

X'R(y) dy.

(6.14a)

(6.14b)

l
—(k—n)'+» (5+rf —28)—)I']'

=v. $+(1—2g)X],

(6.12)

L
—(5—~)'+»(5+~ —2&v) —) ']»

2uv)rf cosy= $+rf —2Q —X. (6.11)

Substituting (6.9) and (6.11) in (6.3) and (6.4), we
perform the g integrals first. These are

The limits on the y integral are determined by P—4ac
=0 when the square root in the denominator of the g
integrand is written as (arp+brf+c)», i.e., by X(1—)I) =0.
Thus the upper limit on y is given by X=O, y= 1 and
the lower limit by ) =1, or, neglecting terms of relative
order 1/e', y=P. Moreover, it should be noted that
since the entire range of y is covered by letting p go
from 0 to x, we must double the y integral in order to
obtain the integral over the entire space 02.

Thus with X as given in (6.8) and E(y) as given in

(6.6), the integrand in (6.14a) is, apart from a factor hv,

x 1 -( V'
~(y) =

I
+o'~W'

I

—(V'+o'*'W')
V2(1) &1—~ )

The limits in each integral are given by the zeros of the
square root in the denominator of the integrand. From
(6.9), (6.11), and (6.12) the g integrals in (6.3) and
(6.4) are then

v2g2 sin'pdg

Now from the differential equation for V, viz. ,
24

d (dvq
(=o v,

dgE dpi

and from

d V/dx= a'W,

(6.15)

(6.16)

t ( vrf v rP

~

1—2—cosy+ cos2y (

uP u'P )

X
[—(t—rf)'+2) (t+g —2@)—)I.2]»

it follows that

and

t/r'2—(xVW) = +a'xW',
dx j.—x

(6.17)

= —2v X(1—3)%,),
(6.13)

—[aV&—g&(1—~)o2W&] = Vm+g&~'W2 (6.18)
dx

24 Davies, Bethe; and Maximon, Phys. Rev. 93, 788 (1954); in
the following referred to as DBM. Note DBM, Eqs. (30)-(32),
and reference 14, Eqs. (8.12)—(8.14).
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from which

f1—82 X
R(y)dx

1—x4p

2 1 —62

PxVW —xV'+ x'(1—x)a'W']
V'(1) 0

= —1nP —1—2f(Z)+0(82 ink),

where we have used, from DBM Eq. (34),

W(1—y) = —V(1)Llny+2f(Z)]+0(y lny)

(6.19)

for these small q we may replace 2l by $ in the argument
q=5/(Pgy)'* of F(q), which then becomes F(8/(gy),
independent of q. The g integrals are then as before and
are given in (6.13). Therefore, since it follows that
merely after integrating over 21 (but not over y) the
integrals shown in (5.3) have the form given there, the
Born-approximation screening correction to these in-
tegrals, with

1 (42ra ) ' {L1—F(b/(gy)]' —1}dgdy
82d02 ———

/

2 Ep2u)
(6.25)

1
f(Z) =a' 2

&=&R 'S 8

for y«1, (6.20)

In (6.14b) the contribution to the integral coming from
y=O(1) will, because of the extra factor P in X, be of
0(P) relative to the entire integral. Hence the only
nonnegligible contribution to (6.14b) comes from
y=O(P), in which case we can write R(y) = 1, X=V/y,
and'

,

t X'R(y)dy=P+0(54ln5). (6.21)

Thus, substituting (6.9) in (6.3), using the rl integra-
tions (6.13) and the y integrations (6.19) and (6.21)
Lwhich must be doubled according to the remark fol-
lowing (6.14b)], we have

where

X= (4xa/p, k)2~/(1+ r),
V =—(42ra/p2k)242r pI',

I'= 1n(1/5) —2 —f(Z).

(6.22)

(6.23)

b. Screening

As we have noted, the effect of screening is included
by adding to the exact unscreened cross section the
Born-approximation screening correction, (5.1). As in
the case of the exact cross section, the Born-approxi-
mation differentia cross section is given by (4.9), with
J as given in (3.8). However, the factor 8 in (3.8) is,
in the Born approximation including screening, given by

42ra $1—F(q)]8= --—
q'

(6.24)

rather than by (6.5). F(q) is the atom form factor."
Since F(q) is only given numerically, the variables
appropriate to the integration are now $, g, and q rather
than P, g, and y. However, we are here concerned only
with the screening correction, , which is significant for
q&Z'/137«1. This permits us to use the variables (,
q, y of the unscreened case since

~ $—2I
~

&q and hence

As in (6.14a, b), the upper limit, which corresponds to
small q, is y=1. The lower limit may be taken to be
y=P rather than y=P/q22 (r„-'&(q2«1, where r„ is
the screening radius), since for y &2/q22 the integrand
is zero. Changing now to the variable q—=5/eely, we
have

~t {t.I—F(~/~V'y)]'-»1 dy

OQ (q'-~'/e)
{(I—F(q)]'—1} dq. (6.26)

The upper limit in the q integral in (6.26) is taken to be
infinite but may be chosen to be any value of q &~qp.

The X and V to be substituted in (5.3) to obtain the
Born-approximation screening correction to the inte-
grals in (5.3) are therefore, from (6.3), (6.13), (6.25),
and (6.26),

where

X„„„=(4 /2prak) 2/2&2r(8/p),

V„.„„=—(42ra/p2k)242rpS(5/(), (6.27)

00 (q2 g 2/g2)

P(g/() = ' {51—F(q)]'—1} dq (6 28)

Therefore the I and I" for arbitrary screening are again
given by (6.22), but where now

I' = ln (1/6) 2 f(Z) +P (8/P) . ——(6.29)

This, then, is the general expression for F to be used
in (5.7). I' is always positive for the high energies
considered here.

We have calculated F(8/$) for the Thomas-Fermi

will also be of the form (5.3) with X and F' given by
(6.3) and 8'd&2 as in (6.25). In (6.3) the integral over
g is given in (6.13), but these expressions are, in the
present region q((1, much simpler since X &P/y &q'«1,
and hence we need only retain the terms of erst order
in X. The y integral occurring in both X and Y is,
therefore,

f
' {II—F(~/&V'y)]' —1}&dy.
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TABLE I. F(e/p) for the Thomas-Fermi model of screening as used by Moliere.

Zi6p/121&- F(e/g)

Z~6p/121e —5'(e/g)

0.5
0.0144

25.0
1.564

1.0
0.0492

30.0
1.731

2.0
0.1400

40.0
2.001

4.0
0.3312

50.0
2.216

8.0
0.6758

60.0
2.393

15.0
1.127

70.0
2.545

20.0
1.367

80.0
2.676

90.0
2.793

100.0
2.897

with

1—P(q) 2 n,

q2 i lP 2+q2

model as used by Moliere, vis. ,
"

(6.30)

electron is not observed, the cross section is

dir (pl, (l,k,e)

e' ( e' )
' dk d$ dpi

{(el'+'2') (3+2')
kc tBlc ) k el 22I

ng =0.10, e2 ——0.55, +3=0.35,

P,= (Z'/121)b, ; bl 6.0, b——2=1.20, bs ——0.30.

The result is rather simple:

e(b/g) = —-' P n' ln(1+8,)
i=1

—2e]e2(1+4u'PF) 8elesu'QI'(2~u e~' —1)

+$(e,'—e2') (3+2F)—2ke2(1+4u'Pr)](i k

)& (ie&&e~) k —4ke2((1 —2$)

)&I'(l u(iege*) k}. (7.1)

This result was given in a previous note. "The radiation
is seen to be elliptically polarized, the major axis of the
ellipse being perpendicular to the plane of emission,
since the coeKcient of (2

~
6 e

~

'—1) is always negative.
The linear polarization of the radiation is independent
of the polarization of the initial electron when the final
electron spin is not observed. The cross section summed
over polarization directions, i.e., the angular distribu-
tion of the radiation, is

2 2 I+2I;
+P P rr,n, ln(1+8;)+-2'.

i'
(6.31)

We use the abbreviation

(6.32)

e' ( e' ) ' dk d$
d~(p„k) = 2Z2—

~(6.33) kc j. mc2) k e'&(&/$) = ln(111Z—
lb/$),

In the special case of complete screening, P,$/b))1, we

get, from (6.31),

giving
X{(e,'+.,') (3+2r) —2.,e,(1+4usgr) }. (7.2)

I'=In(111Z &/$) —2—f(Z). (Compl. Sc.) (6.34)
As the distribution is independent of p~, we have

For the Thomas-Fermi model of screening as used by integrated over this variable.
Moliere, (6.30), f(b/$) is given in Table I. The linear pola, rization is given by

V'. THE POLARIZATION OF BREMSSTRAHLUNG

From (5.7) we may write down the polarization of
the emitted radiation and the depolarization of the
electron. In Secs. 7 and 8 we consider the polarization
of the radiation, leaving the depolarization to Sec. 9.

To avoid complicated expressions we shall consider
only correlations between the sets of variables

(pl, (l,k, e) and (pl, (l, (2,e). The first set gives the angular
dependence of the polarization of the emitted radiation
and is discussed in this section. The latter contains the
correlation between the three polarization variables (l,
(2, and e; this cross section, discussed in Sec. 8, is
considered only after the angular dependence of the
radiation has been integrated out. When the 6nal

25 G. Moliere, Z. Naturforsch. 2a, 133 (1947).

dog —do»

d&i+d&ii

where do-L and do.» are the cross sections for brems-
strahlung polarized perpendicular and parallel to the
emission plane, respectively.

8el esu't'I"
&(Pl~k~elinear) =

(el'+ e2') (3+2I') —2e e (1+4u'PI')
(7.3)

This expression is an extension of the results of May'
and Gluckstern et al. ' in that it takes into account the
screening exactly and includes the Coulomb correction.
The radiation is linearly polarized perpendicular to the
plane of emission. The maximum polarization for any
element in the case of no screening occurs for $=-'„or
u= pier=1. Screening will increase this value of u
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I I I I I I I I I It is remarkable that at the upper end of the spectrum,
k = c~, the polarization of the radiation is complete
for any element.

The circular polarization of bremsstrahlung from
completely transversely polarized electrons, (i P&

——0, is

P(plj(1 trnnsqk~ecire)

((i u)4kes((1 —2$)F
(7.5)

(eis+ess) (3+21")—2eres(1+4N'pp)

This contribution is zero for just those values for which
(7.4) is maximum, vis. , $= -', and k = ei. Only for values
far from these is (7.5) comparable to (7.4). It should
also be noted that P (pi, (, „,„„k,e„„), Eq. (7.5), is
maximum when (i is in the plane of emission, while it
is zero when the photon is emitted in a plane per-
pendicular to ('i.

In Figs. 1—3 we give curves for the cross section and
the linear and circular polarizations for $= -,' and ei ——100.
In this case the circular polarization from transversely
polarized electrons, P(pi, (i i,,„„k,e„„), is zero. This
quantity is exhibited in Fig. 4 for e& = 100 for the case
when it is close to its maximum value, namely for
re=0.414. P(pi, (i i„„„k,e„„) is much smaller than
P(pi, (i i,„„k,e„„). As shown by the curves, the
screening and Coulomb corrections are quite important
for the spectrum and for the linear polarization. How-
ever, these corrections do not have any significant
inQuence on the circular polarization.

I )
~6 .7 .8 II'/ 1.P

rC"]

I I

Q .1 .2
I I I

.4 .s

Fio. 1. Bremsstrahlung spectrum, do (pi, lc)/dkd&, of 50-Mev
electrons in lead at a photon emission angle 81——e1 '——10 ' rad.
P=Z'(e'/Ac)(e/mc')'. Curve a and b as explained in Fig. 2.

slightly. The polarization is always maximum at the
lower end of the spectrum, while it is smallest at the
upper end.

The circular polarization, P=do „doi/do, +d—o i, .
where da, and der~ are the cross sections for right and
left circularly polarized bremsstrahlung" respectively,
behaves in exactly the opposite way, increasing with
increasing k. In general, the circular polarization from
longitudinally polarized electrons is considerably greater
than from transversely polarized electrons. Note that
because of the small angle between pr, ps, and k,
(i k = (i.pi when one neglects terms of relative
order 1/e.

The circular polarization from completely longi-
tudinally polarized electrons, (&.pi= &1, is given b

8. THE POLARIZATION CORRELATION

P(iiiy(1 longyk&eeire)

kL( + ) (3+2I')—2 (1+4u'PF)$

(ei +es') (3+27)—2eres(1+4tc'(sF)

)oo

PP'

I I I I I I I

In Secs. 8 and 9 we consider the dependence of the
cross section on the polarization variables (i, (s, and e.
Since at the high energies considered here the momenta

(7 4) pi, ps, and k are all inside a very narrow cone of opening
angle of order 1/e, we may still give a meaning to the
polarization of the photon and electron beams (Secs. 8
and 9, respectively), determined from the cross section
integrated over the direction of motion of the photon
as well as that of the final electron.

so= . . b

a. No Screening

The cross section for final spin (s and polarization of
radiation e, when the initial electron has spin (i,
obtained by integrating (5.7) over the direction of
motion of k (yi and $), is particularly simple for the
case of no screening:

Q .1 .2»3 .4 .$ .6 .7 .8 Q 1.0

FXG. 2. Linear polarization of bremsstrahlung, P(pl h el[aegr),
perpendicular to the plane of emission, of 50-Mev electrons in
lead at a photon emission angle 81= e1 '= 10 ' rad. Curve a:
Exact calculation involving Coulomb correction and screening.
Curve b: Born-approximation calculation with only screening
taken into account. Curve c: Born-approximation calculation
neglecting screening.

do(pt, (r, (s,e)

e' (e'$'dk
(3+2P) (ei'+ es' seies-

Ac (risc'~

+—(el+e2) (i'(2 sk Re((l'e (2'e )

+kL (et+ s es) (i+ (e2+ s el) (2] (seXe*)) . (8.1)
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Since 3+2I' appears as a common factor, the various
polarizations are in this case independent of j. and
therefore independent of the Coulomb correction f(Z).
Thus the Born-approximation values for the polariza-
tions of the beam are exact in the present case. The
linear part of the polarization of the radiation is per-
pendicular to the line dividing the angle between (11
and (21 into two equal parts. It should be noted that
this linear polarization is proportional to k', thus it is
zero at the lovrer end of the spectrum. The linear
polarization is

)00

pg,

+(Plr(lr(2relinear)

&'I (ill l (241
. (8.2)

(EP+'E2 ) (3+{ls{2s) 2'El'E2(1 2(11,' '(21, {1 {2s)s

It is maximum when the spins are both completely
transverse, {1,={1,——0, and antiparallel, (11=—(21. At
this maximum, P is the same all over the spectrum:

+(Plr(1)(2)elinear) = 3 ~

The circular polarization of the photon beam is

~(P1 (1~(2 ecirc)

p .& .2 .5 .4 .5 .S .7 .8 +fg g)t

FIG. 4. Linear polarization of bremsstrahlung,

Pi in =P (plik&e linear) r

circular polarization of bremsstrahlung from longitudinally
polarized electrons, P„„1, =P (pl (1 lang k ee' c), and from
transversely polarized electrons,

Pcirc trans =P (plr(1 trans, kiecirc) /((1 'ts) r

of 50-Mev electrons in lead at a photon emission angle

81=0.4ic1 =0.41X10~rad.

Coulomb and screening effects are included.

do'(» (1 (2 e)

3~l„(el+3 E2){1s+ (E2+ 3 El){2s]
. (8.3)

(El +E2 ) (3+/1st 2s) 2ElE2(1 2(11' (21 t is)2e)

The elliptic photon polarization is given by

P(», (1,(2,e.») = I~2(ei'--)+~2(e--) j' (8.4)

b. Arbitrary Screening

When integrating (5.7) for arbitrary screening over
q 1 and $ we get, instead of (8.1),

e' ir e' ) ' dP
{(Ei'+E2')Ol —ssissas

1tc &mc'i

+ (El +E2 )Ql g'2)/1st 2s

+2 "L(k —V.)(, (.,+g t .{,.j
+3&$2((11 (21—2 Re{(l e (2 e*})

+~41(sl(1+E2(2) ' (seX e*)

+&(41 slf'2) (E2(1+El(2) (ieXe*)}. (8.5)

)00

Pp

50

lf 1 and $2 are given by"

Pl ——6+4 r(t)dg,

1

lf, =6+24 " k(1—P)r(q)dg.

(8.6)

I I

0 .1 .2 .3 .4 .5 .6,7 r8 $/~ 1Q

FIG. 3. Circular polarization of bremsstrahlung of 50-Mev
electrons in lead, polarized in the direction of motion,
P(pl(1 ic gkectrc), at a photon emission angle et=et '=10 2

rad. Curves a and c as in Fig. 2.

"The integrals (8.6) for the case of arbitrary screening are
most easily evaluated by substituting I'(() as given by (6.29)
and (6.28) /choosing the upper limit in (6.28) to be 1 rather than
en), omitting the region 0&I&I in (8.6) {the lower limit then
being b), changing to the variable x=5/P, and integrating succes-
sively by parts. One then obtains

fat=4 J (q —S)r(1—P(q))'q 'dq+1 —f(Z)~)~
S

2 4 (q3 6$2q In(q/6)+362q 4/3) (f p(q))2
tl

Xq 4tfq+ ' f(~) . -—
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]00

g) Py
P

50

The circular polarization is given by

+(Pl (1 (2 e.;,.) =3k[(eil i.+esf2 )01
+( l-.+ r.)Q ——:S.))/~, (89)

where X is given in (8.8).
Of greatest interest is perhaps the circular polariza-

tion of the photon beam irrespective of the spin of the
final electron:

kg in[sill'1+ e2(ll'1 g 2))
~(u, (,e--)=, , (8.1o)

61 62 1 3 6162 2

I l
0 .1 2 .5 .4 8 8 g 8 A/g 1.0

FIG. 5. Circular polarization of bremsstrahlung beam from
longitudinally polarized electrons,

+II P (Plr(1 Icng&ecirc)r

and depolarization of longitudinally polarized electrons,

DI I D(PI (I lcng)

and of transversely polarized electrons, Dl ——D(pl, (1 grc~).
Coulomb and screening e6ects are included. The curves for Elf
and Dz are valid for all elements and for any incident electron
energy above =20 Mev. Dll depends slightly on the electron
energy; curves are shown for incident electron energies 20 Mev
and 10 Bev.

From the Bethe-Heitler spectrum for arbitrary screen-
ing, it follows that ""

The quantity P(pl, (l,e„„)is shown in Fig. 5. Screening
has no inQuence on the curve; thus an excellent ap-
proximation to (8.10) for all energies is the expression
for no screening,

k(el+ 2 e2)f lg
(8.11)&(Pir(irecirc) =

2 2el +e2 2 ele2

As this quantity depends only upon the ratio k/el, the
curve in Fig. 5 is valid for any value of ~1.

In order to check the Moliere representation for the
Thomas-Fermi model, Eq. (6.30), we have calculated
dll and &2 from the integrated expressions (8.6) and
from (8.7):

1

dI =6+4 ~t I'(p)d(+-,' lnz+4f(z),
0

pl ——yl ——', lnZ —4f (Z),

fs=rtrs —,
' lnZ 4f(—Z). —

or, introducing the expression (6.29) for F($),
(8 7)

F11 and &2 are the functions given" and tabulated" by
Bethe and Heitler. It is remarkable that also in the
polarization-dependent parts of the cross section only
these functions appear.

The expressions for the polarizations for arbitrary
screening analogous to Eqs. (8.2) and (8.3) are given
below.

The linear polarization of the photon beam is

&(Pl, (1,(2,el'--) =k%2 I (» I I ("I/& (8.8)

where

K= (el + es )[36+(3l 1—2/2)l lgf 2g)
—2ele2[ll'2 —(3lt'1 —2lt'2)(ll'(21 Al lgt 2g)

At the lower end of the spectrum, because of the factor
k2, the polarization is very small and hence the screening
correction does not visibly aGect the polarization
curve. At the upper end of the spectrum, on the other
hand, there is no screening correction at all, since 8&q0
[F(q)=0 for 17~ps) for large k. Thus in general the
screening correction to the polarization curve will not
be very important. This is also true for the other quan-
tities in this section.

gr H. A. Bethe, Proc. Cambridge Phil, Soc. 30, 524 (1934).
2S H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London)

AI46, 83 (1934).

d, =19.25—4 Inq+4~' e(8/P)dP.
0

(8.12)

y=100kZ g/ele2.

In the same way we find

(8.13)

1

It 2 ——19.25 —4 lug+24 t $(1—$)r(8/$)d$. (8.14)

Using the expression (6.31) for P(8/$), we find

~1 3
' ~(~/r)«=-l 2 .~(p./d)

.2

+ Q P rr,cr, A(p, /6)
i=i j=l p' —p2

zQg

3 3

+ 2 2 ~(p,/~)
g=l j=l p 2 p 2i'

Here

+2 E 2 ~'~ (815)
i=1 j=. 1i'

~(P,/&) =l [1+(P,/d)')+2(d/P, ) t '(P,/~) —2,

y is the quantity defined in Eq. (61) of reference 27:
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TABLE II. ComParison of values of 4& comPuted from Eqs. (8.12)- where 0 fi; is the total cross section for spin pip:
(8.16) with values taken from curve of Bethe and Heitler. '

a See reference 28.

~(~'/') = -'"['+(~'/')']+'(~'/') ""'(&'/') '
(8.16)

In terms of Bethe's variable y, p,/ii=1. 6536,/7.
We have computed ft l from Eqs. (8.12)—(8.16). The

result is compared in Table II with the values taken
from the curve of Bethe and Heitler. "The excellent
agreement shows that the Moliere representation (6.30)
is satisfactory.

9. DEPOLARIZATION

It will be useful to denote by do (pl, (l, (2) the cross
section integrated over the direction of motion of the
final electron and the photon, and summed over the
polarizations of the photon. Further, we denote by
dofiip and do„, fl;p the value of do(yl, (l, (2) with (2= —(l
and (,= (l, respectively, and let do=do fi p+. d(T f'l'p be
do (pl, (l,(2) summed over final spins.

The depolarization of the electron because of brems-
strahlung is then

dunno flip d&f lip
D(y. ,(.)=1——

-dono flip+doflip-

= 2do flip/do.

For the case of no screening we have, from (8.1),

(9.1)

and

(3+2') (I-lf'),
kc &fffc2) f:

'
(No sc.) (9.2)

&'(I —2| i.')
D(pi(l) = —. (No sc.) (9.3)

el + e2 2 f1f2

From (9.3) the depolarization is only important for the
harder quanta, the upper part of the spectrum. The
depolarization of a transversely polarized electron,
f l,——0, is 2 times the depolarization of a longitudinally
polarized electron, l l,——1.

We may also derive the mean depolarization per
centimeter path length, 7d p when the electron pa, sses
through a material with density of atoms V

7 0 0.4 0.826 1.22 1.65 2.00

@I (Eq. (8.9) 20.84 19.28 18.01 17.08 16.23 15.68
@1(Bethe-Heitler) 20.84 19.28 18,00 17.08 16,22 15.64

do flip
&flip =

i

dk.
~p dk

(9.5)

X [ln(2el) ——,
' —f(Z)]. (No sc.) (9.6)

Analogously to the radiation length L„d, defined by
Lrad Trad

' where

r„s=E)
k der

dk
e1 dk

(9.7)

is the mean energy loss per centimeter path length, we
define the depolarization length Ld,p=v.d,p

'. For no
screening we have, from (8.1),

e2 ( e2 q
2

I...;i=...,=4ATZ2 —
~ ~

[ln(2e, )——;—f(Z)].
hc &fffc2)

(No sc.) (9.8)

Thus there is a close relationship between these two
lengths, vis. , for the case of no screening,

Ie,p 2[in(2 el) —
2
—f(Z)]

(No sc.) (9.9)
,: ( —l|.')[.( )—l —f())

In general, for arbitrary screening, the spin-fiip part
of the cross section is, from (8.5),

e' ( e' )'kdk
dof»p= 2Z'—

~ I
(lt'l —i l'(lt l—2A) l

hc & fffc2) ei2

(Arb. sc.) (9.10)

the depolarization of the electron spin is

&'[4 l —i i'(6—alt 2)]
D(pl, (l)=, (Arb. sc.) (9.11)

61 62 1 3 6162 2

and the mean depolarization per centimeter path length
is

ifc Efffc2) ei2 J
&[Pl f'l'(4'l —26) ]d&—

(Arb. sc.) (9.12)

At extremely high energies, in which case the
screening is complete, we find, using (6.34) and (8.6),

$,=41n(111Z ")+2—4f(Z) =4[in(183Z l) —f(Z)],

Thus for no screening we have, from (8.1) and (6.23),

e2 ( e2 ) 2

I (1—ai'l')
life &fffc2)

do
rd, p ,V)~ D(yl, (l)———dk'

dk (9 4) $2=4[in(183Z l) —f(Z)]——,.
(Compl. sc.) (9.13)

Thus for complete screening the spin-Aip part of the
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cross section is

e' ( e' )~kdk
do fi'p 2Z

h,c &mc')

X {Dn(183Z ') —f(Z)][1—3{'i*']—9}

(Compl. sc.) (9.14)

and the cross section summed over final spins is

e'
~

e'
~

' dk
d~=4Z —

~ ~
{(.P+.,'—-', e...)

hc(mc'J e,2k

X [ln(183Z )
—1f—(Z)]+ ', e,-e,}

(Compl. sc.) (9.15)

Substituting (9.14) and (9.15) in (9.7) and (9.4), we
have

Lg.p 2[in(183Z—') —f(Z)+1/18]

L„e [ln(183Z ') —f(Z)][1—'{i ']———'

(Compl. sc.) (9.16)

If in (9.16) we neglect the small quantities 1/9 and
1/18, we obtain the very simple relation

Leep = Lraa. (9.17)

10. PAIR PRODUCTION

From the formulas in Secs. 7 and 8 we may obtain
the corresponding formulas for pair production by the

2O I I I I I I I I I

1P

C

I I I I I I I I I

0 .) .2 .5 .4 .5 .6 .7 .8 gf/+ 1.0

FIG. 6. Energy distribution of electrons do. (k,p1)/d~1d( pro-
duced by 500-Mev photons in lead at an angle 81= & '=10 ' rad.
Curves a and b as in Fig. 2.

For the case of no screening, if we neglect the numbers
-', and -'„we find the same expression, (9.17), for Le.,
Therefore this simple relation between the depolariza-
tion and radiation lengths is always approximately
valid.

substitutions e~, (2 —+ —e2, —(~ while all the other
variables, ei, pi, (i and k, k, e remain unchanged. In
connection with the change from outgoing to ingoing
waves one should consult Sec. 5 where this question
is discussed in some detail. In the cross section the
statistical factor must be changed, k'dk ~ ppdpi, as is
well known.

It should be noted that the alternative substitutions
ei, pi, (i —+ —ci, —pi, —(i and k, k, e-+ —k, —k, e*,
while leaving e2, (2 unchanged, leads to the same result
as the one used above. This follows since the processes
described by these matrix elements are inverse proc-
esses. The change in statistical factor is the same as
above.

Also in this way we obtain from (5.7) the cross section
for pair production by a quantum k with polarization
e when the direction of motion of one of the particles
is integrated out:

de (k,e, pi, (i,(2)

e' t' e' ) 'dei dpi
=Z'—

i i d& {-',( '+ ')(3+2I')
kc k mc'J k' 2'

U=u+(1 —1/2()k, (10.2)

which is the same as in (5.5). F is given by the same
expressions as in the case of bremsstrahlung, Eqs.
(6.23), (6.28)—(6.29), and (6.34) for the cases of no
screening, arbitrary screening, and complete screening,
respectively.

Equation (10.1) may also be derived directly from
(4.10) and (3.20), performing the integrals as was
done in Secs. 5 and 6 in the case of bremsstrahlung.
The required integrals are similar to (5.2), of the form
J'J ViJ* V2dQ2. For the case of no screening, with J
as given in (3.20), the it integrals which occur are given
in (6.12) and the integrands in the y integrals are the
exact differentials which appear on the right-hand side
of Eqs. (6.16) and (6.17). y and x are given by (3.20a)
and P, =grig, '=y —h'. The result of these integrations
(although considerably more tedious to perform than
in the case of bremsstrahlung) is identical to (5.4) given
for bremsstrahlung, vis. : J'J.ViJ* V2dQ2 ——&U ViU V2

+XVi V2 where X and V are given in (5.3a), with the
obvious modification for pair production, k=ei+e2. In
particular it follows that J'JX J*dQ2=0, and hence that

+& &»+8&i&2pF
~

u e~ '(1—(i (2)

——,'[ei'+a~' —2e,c2(1+2F)](i (a

—4k'('F(i. U(2 U+k' Re{(i e(2 e*}

+-,'k(3+2F) (ei(i+c2(2) (ieXe*)

——,'k(e2(i+ei(2) [(ieXe*)+8(2FU(U (ieXe*))]

+SkPF Re{u.e [ei(2 U(i e+e~(i U(~ e]}}.
(10.1)

Here
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100

QX
P

the asymmetry ratio then being

do. (u=e) —do. (u e=0)
E.=

do(u=e)+do(u e=0)

50 (10.5)
(er'+ es') (3+21')+2etes(1+4u'PI')

Fio. 7. Asymmetry ratio, R(k,eu, »,yr), of electrons produced
by linearly polarized 500-1Vlev photons in lead at an electron-
photon angle 81=k '=l0 ' rad, and longitudinal polarization
of electron produced in lead by a circularly polarized photon of
the same energy and at the same angle. Curves a, b and t," as
explained in Fig. 2.

R is greatest when the electron and positron are equally
fast, and is minimum when either one of them is very
slow. Even at the maximum it is never very large, at
most of the order of 20%.

A circularly polarized photon will produce a polarized
electron-positron pair. From (10.3) we find the longi-
tudinal polarization

+(krecircr pit(1 long)

~kL(.,—e,) (3+2r)+2e, (1+4u'Pr))
(10.6)

(e,'+ e,') (3+21')+2e,es(1+4u'Pi')

the integral of the last four terms in (4.10) over Ils is
zero.

As is the case of bremsstrahlung, we now alternatively
sum over (s and integrate over the directions of pi. In
the former case we obtain the cross section for the
production of an electron (or positron) with momentum

pi and spin (i, in the latter case the spin correlation
and other polarization properties of the electron-
positron beam as a whole are obtained.

The cross section for production of an electron with
momentum pr and spin (r is, from (7.1),

do (k,e,pr, (r)

e' ( e )'der dpi
((el+e& )(3+21')

kc L mc'I k' 27r

+2eres(1+4u'PI')+Seresu~PI'(2
~

u. e ~' —1)

+[(e '—c ') (3+21')+2ke (I+4u'Pi')]

X(r k(ieXe*) k

+4kesg(i —2$)1'(r u(ieXe*) k}. (10.3)

+ and —stand for right- and left-handed polarized
photon", respectively. The faster one of the pair particles
is always polarized to a high degree in the same sense
as the circularly polarized photon; at the upper end of
the energy distribution, e& =k, &2=1, the polarization
is 100% for any element. The slower one of the par-
ticles is polarized in the opposite sense to that of the
photon at the lower end of the energy spectrum. This
is also shown in Figs. 7 and 8 for the case of k=1000.

100

R".P

50

The cross section for pair production by unpolarized
photons when the spin is not observed is

e' f e' ) 'der
do (k,pr) =2Z'—

~ ~
d$ f (erg+egg) (3+21')

ac&me') k'

+2eres(1+4u'Pi') }. (10.4)

The energy distribution of electrons, dtr(k, pr)/de, dg,
produced by 500-Mev photons in lead at an angle
Oy= k '= 10 ' rad, is shown in Fig. 6.

When the photon is linearly polarized, the electron is
most likely to be emitted in the plane of polarization,

Fio. 8. Asymmetry ratio, R(k,et;,yt), of electrons produced
by linearly polarized 500-Mev photons in lead at an electron-
photon angle go=0.41k ', and longitudinal polarization,
a(circ tpng E(k,ec;«,yt, (t tong), and tranSVerSal palariZatiOn,

+circ trsnc =F(k~entre, yl q(1 trans) r

of electrons produced by circularly polarized photons in lead at
the same angle and energy, Coulomb and screening eBects are
included.
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The screening and Coulomb corrections are seen to be
relatively unimportant for the polarizations.

The amount of transverse polarization of the spin is
in general smaller than the amount of longitudinal
polarization. From (10.3) we find the transverse
polarization

&(&secircsPls(1 trans)
&4k e,st/(1 —2P)r

(10.7)
(.,'+.,') (3+2r)+2e...(1+4&'Pr)

100

P oya

50

Only when the longitudinal polarization passes through
zero (Fig. 8) is the transverse polarization of impor-
tance; thus only in a limited range of energies is one of
the pair particles transversely polarized.

When the cross section (10.1) is integrated over d01
but not summed over (s, then the spin polarization
correlation of the electron-positron beam is obtained:

e' ( e' i sdet
= 4Z'—

i i ((et'+es )lpl+sele24'2
kc &mc') k'

61 62 I 3 2 Iz 2z

+2elesLQ'1 slf'2)(11 (21+slirsflsfssj

—skVs((11 (»—2 «(4 e4 e*))

+k/1(&1(1+e2(2) ' (teX e*)

—k(lkt —sos) (es(i+el(s) (ieXe*)). (10.8)

Here lt'1 and fs are the same functions as occur in the
case of bremsstrahlung; they are given in (8.6). After
averaging over polarization and summing over spins, we
are left with the Bethe-Heitler terms including Coulomb
correction:

X j (el'+ ss')ltl+s eleslf 1). (10.9)

FIG. 9. Longitudinal polarization of the electron beam,
Pii ——P(k, esi«, (r), the spin correlation of longitudinal spins,
Cii=C(k, (1 lpna (2 icna) and Of tranSVerSe SPinS,

Cl =C (ks(t transp(r trans) s

of electron-positron pairs. Coulomb and screening effects are
included. The dependence on the photon energy k is very small.
Curves are shown for incident photon energies 20 Mev and i Bev.

The longitudinal polarization of the electron beam
produced by a circularly polarized photon is

~kl slit 1
—es(lf 1

—slf s)3
E (k,e„„,(1)= —. (10.11)

61 62 I 3 6162 2

The transverse polarization of the electron beam is

zero, as it should be.
The quantities P and C depend only slightly on the

photon energy. This is shown in Fig. 9 where curves
for incident photon energies 20 Mev and 1 Bev are
given.
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