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of both iron and copper targets are required to resolve
these differences.

Natural Production of Tritium

Two problems involving the formation of tritium in
high-energy nuclear reactions are of particular interest:
the formation by cosmic rays in meteorites and in the
atmosphere. Since the tritium-production cross sections
are constant above 0.450 Bev for nitrogen and oxygen
and constant above 2 Bev for iron, the discussion which

appeared in reference 1 is essentially unaltered. Recent
measurements of tritium in nature, however, have con-

siderably altered the agreement between the observed
tritium production in the atmosphere and that predicted
on the basis of the cosmic-ray reactions. "The predicted

"H. V. Buttlar and W. F. Libby, J. Inorg. Nuclear Chem. 1,
75 (1955); F. Begeman, Air Force Office of Scientific Research
Report AFOSR-TR-58-41, December 31, 1957 (unpublished).

tritium flux remains at about 0.14 t/cm2-sec, whereas
the observed flux may be 2.0~(50%%uq) t/cm'-sec. I2

Possible sources for the discrepancy include: a higher
Aux of incident cosmic rays, additional tritium-pro-
ducing reactions, influx of tritons with the cosmic rays,
more serious secondary production of tritium in the
atmosphere, and unsuspected loss of tritium from the
targets.
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A modified method of analyzing nucleon-nucleon scattering is discussed and applied to proton-proton
scattering experiments at 310 Mev. The modified scheme is based on an explicit inclusion in all higher
angular-momentum states of the terms contributed by the one-pion exchange process. This procedure
is suggested by Chew's conjecture that the singularities of the scattering amplitude in the cose plane (0
being the scattering angle in the center-of-mass system) that are closest to the physical region are due to
the one-pion exchange process and are given by the Born approximation. Or, alternatively, in terms of
ranges, the one-pion exchange contribution has the longest range of the forces contributing to the nucleon-
nucleon interaction and hence should be primarily responsible for the contributions to the scattering
amplitude in the high angular-momentum states. Since the only parameter in the Born approximation
is the pion-nucleon coupling constant, the modified scheme can also provide a determination of this coupling
constant. The application of the modified scheme to p-p scattering at 310 Mev indicates that the first two
of the five best solutions of the conventional phase-shift analysis are more satisfactory than the others for
two reasons. Firstly, their goodness-of-fit parameters improve markedly when the higher angular-momentum
contributions are added, whereas those of the others remain essentially unchanged. Secondly, as a function
of the coupling constant, the goodness-of-fit parameters of the first two solutions show minima close to the
accepted value of the coupling constant.

I. INTRODUCTION
' 'T has been suggested by one of us' (M.J.M.) that
~ ~ the conventional phase shift analysis of nucleon-
nucleon scattering experiments be replaced by a
modified scheme in which the contribution due to

*Work done under the auspices of the U. S. Atomic Energy
Commission.

f University of California Radiation Laboratory, Berkeley,
California.

f. University of California Radiation Laboratory, Livermore,
California.

Michael J. Moravcsik, University of California Radiation
Laboratory Report UCRL-5317-T, Auj. ust. 1958 (unpublished).

the exchange of one pion is explicitly included in the
scattering amplitude. This approach was motivated by
some conjectures of Chew' on the behavior of the
scattering amplitudes in the nonphysical region of the
complex cos8 plane (tt being the scattering angle in the
barycentric system). Chew argues that the singularities
will be restricted to the real axis and that those closest
to the physical region, —1&cose&1, will be two
symmetrically situated poles associated with contribu-
tions to the scattering amplitude of one-pion inter-

2 Geoffrey F. Chew, Phys. Rev. 112, 1380 (1958).
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mediate states. If these poles are removed the remaining
singularities will be, according to Chew's arguments,
at least four times as far from the physical region.

Assuming these conjectures to be correct, one would
expect that the contributions corresponding to more
distant singularities could be adequately represented in
the physical region by fewer powers of cos8 and hence
by a smaller number of partial waves. On the other
hand, the contribution associated with the two near-by
poles is identical with that of the lowest-order perturba-
tion approximation to the one-pion exchange process,
and is readily calculated in terms of the pion-nucleon
coupling constant.

These circumstances suggest that the poles (i.e.,
the one-pion exchange) be explicitly included in the
scattering amplitude. This should reduce the number
of partial waves that are required to represent the
remainder, and also permit an evaluation of the pion-
nucleon coupling constant, g, which would now enter
as a new parameter. This method of determining g
difI'ers somewhat from that proposed in reference 2,
which uses instead the conventional phase shifts to
obtain the coupling constant from nucleon-nucleon
scattering experiments.

The same idea of explicitly including the one-pion
exchange contribution in the higher-angular-momentum
states is suggested also by the consideration that higher
partial waves correspond to the forces of longer range,
and the forces of longest range are due to the one-pion
exchange contribution.

In the following sections some of the detailed formulas
required for the application of the above scheme are
presented and the results of the modi6ed analysis of
proton-proton scattering experiments at 310 Mev are
discussed.

conventional analysis by

M(5,g') =M(8)+M~(g', J&J .„), (2.1)

u, (p) = Q„,
[2m(8+m) jl

u. (p)u(p)=~-, p=p V poxo, -
(2.2)

where ns is the nucleon mass, E the total energy of the
nucleon, and

The y's are defined as

1
0
0
„0. .0.

(2.3)

. 0 —e 0 —1

(2.4)

We shall also use the notation

x= cos0,

where 0 is the barycentric scattering angle, and

(2 5)

where M~(g', J)J,„)is the pole contribution from
states J)I,„.In order to compute M(8,g') it is
necessary to obtain the decomposition of the pole
contribution into the various angular-momentum
eigenstates. One method of computing this decomposi-
tion is outlined in the remainder of this section.

We dehne four-dimensional positive-energy Dirac
spinors

2. THE POLE CONTRIBUTION xo——1+(u'/mT) = 1+ (p,'/2k') (2.6)

In the conventional phase-shift analysis one expresses
the scattering amplitude as a function of a limited
number of phase shifts, the remaining ones being
approximated by zero. This conventional expression
we denote by M(5), where M is the matrix of the
scattering amplitudes corresponding to the various
initial and final spin states" and 5 represents the limited
number of phase shifts. In the modified analysis we

wish to add to M(5) the lowest order perturbation
contribution to the one-pion exchange process, that is,
the pole contribution. In order to preserve the unitarity
condition in the angular-momentum states represented
by M(b), the pole contributions are added only in those
states that are absent in M(5). For instance, if M(5)
contains contributions to and including J, then in
the modified analysis one replaces the M(6) of the

'I.. Wolfenstein, Phys. Rev. 96, 1654 {1954).
4 Stapp, Ypsilantis, and Metropolis, Phys. Rev. 105, 302

{1957).

where p, is the pion mass, T the initial nucleon kinetic
energy in the laboratory system, and k the barycentric
nucleon momentum. For p-p scattering u denotes the
mass of the neutral pion.

In this notation the pole contribution to the M
matrix can be written as

M-.."'(p q p'q')

g'm' (pu)y (opu')u, (q)y (oqu')

2k'E Xo g

u„(p)you, (q')u, (q)you, .(p')

xo+x

g'= (2m/p)'f'= 14

(2.7)

where p', q' are the initial, and p and q the final nucleon
momenta, The subscripts r, r', s and s' take the values
plus and minus. The matrix M~ may be written in
terms of the two-dimensional Pauli matrices if we
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observe that

~.(P)V» (0') = (1/2~)L~ (P—6')]- (2 8)

Using this formula and the notation

&=(~+~')/5, m=(P —P')/~, n=(q'&&~)/~, (29)

where, in the center-of-mass system,

P=2k'(1+ cos8),

&0=2k'(1 —cos8),

q'= k4 sin'8,

one may express Eq. (2.7) in the form

(2.10)

M ~ = —(gs/SE) [QI+ (p+Q) (Iriu llr"' I
—rr"&.mlri'& m) —p(lr"& 1lri'l .I

+rr'" mrr"'m) —no"'nrr"'n]„„„,, (2.11)

where I is the unit matrix, cr&') and e&" the two nucleon

spin matrices, and

ri= (1+x)/(xo+g), p= (1—x)/(xo —x). (2.12)

In Eq. (2.11) the r indices refer to e&" and the s indices
refer to 0&@. In the singlet-triplet representation, '
Eq. (2.11) becomes

M, ip=M, p= —(g'/8E)t n(1+x) —p(1—x)],
3fgp =Mpg = —M gp"= —Mp g

= —(g'K2/SE) (P+n) sin8,
(2.13)

Mi-iP =M-irP = —(g'/gE) L~(1—x) —P (1+x)]
Moop = (gs/4E) (P+n) x,

M,.~= —(g'/4E) (&+p).

In order to separate the contributions from the various
final angular-momentum states, one may expand
these matrix elements in terms of spherical harmonics.
This gives

g'ger
(

1 QO

M, iP =M i i —— ——Yi'(8,4)+ (xo—1)' P (2L+1)lQr, (xo) Yr,'(8 y)2EI ~~ L=l., L odd

g'g~ 1 00

Moo = —Yio(8,$) xo(xo —1) p (2L+1)~Qr, (xo) Yr, (8 g)
E v3 L=I, L odd

g'gir
o~= —&o-i~=—

2L+1
~

—
~

Yi-'(8,0)—(*o—1)(xo' —1)-'* p Q,i(x,) Y;i(8 y)
I=i, L odd L,(I+1 )

g'err f 2l '*
& 2L+1

I

—
i Y'(8,~)-("—1)("'—1) 2 Q"(*.) Y"(8,~),

v2E (3j L=l, L odd L(L+1)

g'gir 2L+1
(x,'-1) Q"(*)Y"(8,~),

r 0, & «d (L=+2) (L+1)L(L—1)

gopher ~ 2I+1
(xo' —1) Q~'(xo) Y~ '(8A),

&=0, «dd (L+2) (L+1)L(I.—1)

(2.14)

g 7lM„= —Yo'(8,4)+ (xo—1)
L=p, L even

(2L+1)'Qr, (xo) Yro(8,$)

The Yr,r (8,&) are the spherical harmonics as defined

by Blatt and Weisskopf, o and the Qr.~*(xo) are the
associated Legendre functions of the second kind as
defined by Morse and Feshbach. ~

Using Eq. (2.14) one may separate the contributions

'Henry P. Stapp, University of California Radiation Labora-
tory Report UCRL-3098, August, 1955 (unpublished). In Eq.
(2.13) we have taken p, the azimuthal scattering angle, equal to
zero.

6 J. Blatt and V. Weisskopf, Theoreti cal Xgclear Physics
(J. Wiley 8z Sons, New York, 1952), p. 782.

7 P. Morse and H. I'eshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953). Note
that the recursion relations (n+1)Q„+I(x)+nQ„1(x)= (2n+1)x
XQ (x) do not hold for n=O. One has instead for n=O the
formula Qg(x) =xQo(x) —1.

from the various final angular-momentum states.
Specifically one obtains the quantities M(L, ,S,L„S„.
S',S.'), defined by

Ms, s, '(8,&) = Pi Yr i*(8,&)M (L,S,L.,S„S',S,'), (2.15)-
where the primed and unprimed variables refer to
initial and Anal states, respectively. The quantities
M(L,S,L„S,; S',S,') contain those contributions to M
which correspond to the final orbital angular momentum
I..

For the singlet case, comparison with Table III of
reference 4 allows one to obtain at once the expression
for the singlet amplitude o.L. For the triplet case,
however, one must first separate the contributioos from
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g2 —0
(conventiona1

Set analysis) g2 =9.4 g' =14.4 g2 =19.4 g' =28.8

TABLE I. Goodness-of-fit parameters for p- p scattering at 310Mev. sum of contributions from the two amplitudes nL~ and
n~. However, the three values of J, give two linearly
independent equations which are readily solved. We
obtain in this way the final expressions

17.92 14.37
2 21.66 18.32
3 23.79 23.66
4 24.51 25.44
6 34.58 34.05

13.97
17.59
25.01
17.59
34.98

14.83
17.89
27.29
17.88
35.44

20.09
21.85
20.09
21.85
34.77

ikg'
&L, L~i —— L+l &0

2E(2L,+3)

the three possible values of J that are consistent
with this value of L. We express the separation of
M(L,S,L„S„S',S,') into its constituent J contributions
by the equation

M(L,S,L„S„S',S,')
=Pg M(J;L,S,L„S,;S',S,'). (2.16)

The isolation of the individual J value may be achieved
by the use of the projection operators E(J,J„I.,S,L„S,;
L,S,I.,",S,"), defined by

P(J,J„.L,S,L„S,; L,S,L,",S,")
S "L"

XM(L,S,L,",S.";S,S.')

=M(J; L,S,L„S„S,S,'), (2.17)

where J,=L,+S,=L,"+S,"=S,'+L, '=S,'. The van-
ishing of L, is a consequence of the choice of coordinate
system. ' Recalling that the Clebsch-Gordan coefficients
Czs(J,J.,L„S,) are simply the transformation matrices
between diGerent representations, one may easily see
that the necessary projection operators may be expres-
sed as

P(J,J„I.,S,L„S.; L,S,L,',S.')
=Cg (Js,J.; L„S,)Cps(J,J„L,',S,'). (2.18)

For the case J=L the projection operator immediately
isolates the contribution from nLL. For the cases
J=L&1, however, the projection gives, instead, the

ikg'
OLL 1 L ~0 L 1~0 p

2E(2L—1)

&L, L

ikg' —LLQ~+, (x,)
2E(2L+1)

(2.19)
+(L+1)Qr. i(xo) —(2L+1)Qg(xo)],

ikg' —LJ(J+1)j'
2E(2L+1)

XLQg+i(xo)+Qz i(xo) —2Qr(*o)j,
zkg

ng ———[(xo—1)Qz(xo) —bgo7.
2E

3. P-P SCATTERING AT 310 MEV

In this section the application of the modified
procedure to p-p scattering data at 310 Mev is discussed.
A conventional phase-shift analysis at this energy is
given in reference 4, and this is used as a basis of
comparison.

In the conventional analysis, phase shifts up through
II waves were used. Our 6rst step was to take in turn
each of the five "best" solutions of that analysis and

The symbol 5L0 is the Kronecker 6 function. The
contribution from 6L0 in the S state, which arises
naturally in the relativistic Born approximation,
corresponds in the nonrelativistic case to the explicit 6

function appearing in the potential. '

TABLE II. Conventional (g'=0) and modified (g'=14.4) phase shifts' for p-p scattering at 310 Mev.

State 01d
Set 1

New 01d
Set 2

New 01d
Set 3

New 01d
Set 4

New 01d
Set 6

New

lg
1D2
1G
3~0

'F3
3H;
3176
3P,
3F2
62
'F4
3II4
64

—10.1
12.9
1.0—14,3—26.7—4.4
0.1
1.3

16.1
0.8—1.0
3.2
1.5—1.2

—10.9
12.1
1.2—14.0—26.2—4.6—0.4
1.2

16.6
1.3—1.4
3.2
1.7—1.4

—19,5
4.4
1.3—36.1—11.7
0.3—1.4
1.4

18.8—0.5—9.3
2.5
2.1—1.5

—22.1

1.1—34.4—11.1—0.5—1.5
1.4

19.2
0.1—8.6
2.9
2.4
147

—11,0
13.3
1.1—4.1—20.0—2.6
0.9—0.6

22.6—2.0
1.8
0.5—1.1
09

1102
13.4
1.2—4.4—19.8—3.0
0.5—0.3

22.4—1.8
1.4
0.8—0.4—1.4

—27.0
4.9
1.1—25.4
703
1.6—0.9—0.8

23.1—1.4—7.5
2.6—0.7—0.8

2201
4.4
1.1—34.4—11.1—0.5—1.5
1,4

19.2
0.1—8.6
2.9
2.4
1.7

—0.3
12.9—1.1—64.7—13.4
3.1—2.0
0.3
8.2—2.1—0.2
3.3
2.2
1.3

0.4
12.1—1.3—65.7—14.1
2.5—2.0
0.5
8.2—1.3
0.9
3.4
2.3
0.8

' Nuclear bar phase shifts in degrees as defined in reference 4.

'H. A. Bethe and F. de Hoffmann, Mesoes and Fields (Row, Peterson, and Company, Kvanston, 1955),Vol. II, p. 30]., Eq. (13).
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30—

i0 20
2

30

constant we used, in turn, the values 9.4, 14.4, 19.4,
and 28.8. The goodness-of-fit parameter increased at
g'=14.4 by about 15 in all cases. This constituted a
change of between 40% and 80%. Next, with the added
pole contribution unchanged, a search was made for
the new best sets of phase shifts. All partial waves up
through H waves were allowed to vary. For g'=14.4
we obtained what we believe to be improved sets of
phase shifts.

The calculations were carried out on the IBM-704
electronic computer, the code being the same as that
of reference 4 except for the inclusion of the pole
contribution. The results of the new search are given in
Tables I, II, and III, and in Figs. 1—7.

Table I gives the goodness-of-fit parameter x' for
the five new sets of solutions. In the first column are
the values of p' for the conventional analysis. This
corresponds to the modified analysis with g'=0. The
various values of y' are also shown in Fig. 1. For
Solutions 1 and 2, parabolas through the lowest three
points are also given. These have minima at g'=13.48
for Solution 1 and g'=15.42 for Solution 2. It will be

Fio. 1. Goodness-of-Gt parameter vs pion-nucleon coupling
constant for the 6ve "best" solutions of the modified analysis
of p-p scattering at 310 Mev. For Solutions 1 and 2 a parabola
was drawn through the points at g'=9.4, 14.4, and 19.4;
these parabolas have their minima at g'=13.48 and g'=15.42,
respectively.

Observ-
ablea

Old
value

One-pion term,
old phase shifts

changeValue

One-pion term,
new phase shifts

Value change

TABLE III. The value of the observables as determined by the
phase shifts, for p-p scattering at 310 Mev, Set No. 1.

Solution l---- Solution2

I.O—

0.9-

I

o.e-
I

I

I

I

I

I

I

I

I

I

I

I

I

I

0.4—
I

I

0.5-
I

0.2-
I

I

I

O. l

COa 0y-
CP

C7
C. 0.6-
40

CL

0.5-

0 I I I I I I I I

0 lO 20 30 &0 50 60 70 80 90
e(deg)

Fro. 2. Plot of P/sine cosa ss e for Solutions 1 and 2 at g'=14.4.
Experimental values are shown for comparison.

so(90')
r(9.1')
r (11.3')
r (14.8')
r(18.6 )
r (23.4')
r(31.9 )
r (36.0')
r(44.8 )
r (52.4').(60.8 )
r(64.0 )
r(71.4')
r (80.2')
s(76.2')
s(63.9')
s(53.4')
s(42.9 )
s(32.3')
s(21.6')
t(23.0')
t(25.8')
s(36.5 )
t(52.0')
t(65.2 )
t(80.5 )
N(22.3')
u(34.4')
~(41.8')
u(54.1')
N(70.9 )I(80.1')
v (25.4')
v(51.4')
v(76.3')
O.g~ 20'

3.72 mb
1.041
1.034
1.079
1.094
1.079
1.044
1.033
1.012
0.993
0.985
0.986
0.994
1.000
0.622
0.628
0.661
0.734
0.850
0.956
0.760
0.702
0,519
0.469
0.530
0.512—0.226—0.173—0.006
0.314
0.521
0.606—1.148
0.01.1
0.436

22.14 mb

3.85 mb
1.076
1.057
1.090
1.105
1,097
1.052
1.024
0.958
0.916
0.911
0.921
0.955
0.988
0.602
0.645
0.697
0.747
0.820
0.915
0.749
0.721
0.570
0.409
0.499
0.557—0.249—0.152
0.007
0.294
0.505
0.613—1.202
0.095
0.379

22.1.4 mb

3.5
3.4
2.2
1.0
1.0
1.7
0.8—0.9—5.6—8.4—8,1—7.1—4.1—1.2—3.3
2.7
5.4
1.8—3.7—4.5—1.5
2.7
9.8—11.5—6.2
8.8—10.2

13.8
216.7—6.8—3.2

1.2—4.7
863.6—11.5

0

3.72 mb
1.055
1.028
1.058
1.076
1.075
1.055
1.042
1.012
0.988
0,980
0.983
0.992
0.999
0.603
0.631
0.677
0.737
0.821
0.916
0.724
0.700
0.576
0.448
0.500
0.528—0.213—0.103
0.050
0.314
0.517
0.623—1.315
0.005
0.381

22.)0

0
1.3—0.6—2.0—1.7—0.4
1.0
0.9
0—0.5—0.5—0.3—0.2—0.1—3.2
0.5
2.4
0.4—3.5—4.4—5.0—0.3

11.0—4.7—6.0
3.1
6.1

68.0
933.3

0—0,8
2.8—14.5—54.5—14.4—0.2

simply add the pole contribution in the angular-
momentum states beyond the H waves. For the coupling

a r(x) =I0(x)/Io(90 ); s(x) =P(x)/sinx cosx; S(x) =1 —D(x); N(x)
=R(x)/cos(yx); e(x) =A (x)/sin(-', x).
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)

0.9 &

0.8 -I

I

I0.7 -I
I

I

I0.6 -I
I

I

I

0.5-I
I

I

0.4-II

I

0

0.2—

0. 1
—

I

-0.1—

Solution l——- Solution2

l
1
l
1
l
1

(I
I

I
I

t

1

1 I I

I I

y
1

0.8 -
i

0.7- '

0.6- '

0.5- I

04- i

I

0.3- I

I

0.2-
i

O. l -
(

-0 I- i

-0.2-
i

-0.3-

J.

Solution l——- Solution 2

\
'l

\
\
\

l
\
\
1
1
1
l

1
'I

l

-0.2 I I I I I I I I

0 20 40 60 80 100 120 140 160 180
g(deg)

IY I I I I I I I

0 20 40 60 80 100 120 140 160 180

g(deg)

FIG. 3. Plot of D es 0 for Solutions 1 and 2 at g'=14.4.
Experimental values are shown for comparison.

Fzo. 4. Plot of R vs 8 for Solutions 1 and 2 at g'= 14.4.
Experimental values are shown for comparison.

observed that the plot of the goodness of-6t parameter
for Solution 4 contains only the g'=0 and g'=9.4
points. For the larger values of g' the solutions were
identical with those obtained from Solution 2. This
indicates that for g'=0 Solution 4 was probably a
relative minimum separated from Solution 2 by a
rather low barrier and that the addition of the g'
contribution either eliminated the relative minimum or
distorted the contours enough to give the eRect
observed. Similarly Solution 3 goes over into Solution 1
at g'=28.8. These effects are not surprising if one
considers that even at g'=0 the predictions4 of Solutions
1 and 3 were quite similar for the various observables
even in the region where no experiments exist. Similarly,
the predictions of Solutions 2 and 4 at g'=0 are also
similar.

Table II gives the new sets of phase shifts themselves
and also, for comparison, the corresponding sets from
the conventional analysis. Finally, Table III gives,
for set No. 1, the observables (a) as given by the
conventional analysis, (b) as given by the conventional
phase shifts (unchanged) plus the pole contribution
in the angular-momentum states above H waves, and
(c) as given by the new phase shifts plus the pole
contribution in angular-momentum states above H
waves. This table is given to show the detailed effect
upon the observables of the modifications involved in
the present scheme.

Figures 2—7 give the predictions of Solutions 1 and 2

at g'=1.4.4 for the various observables as defined in
reference 5. It is clear from these figures that the
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FIG. 5. Plot of A vs 8 for Solutions 1 and 2 at g'= 14.4.
Experimental values are shown for comparison.

two solutions diRer markedly for some range in some
of the observables, so that even a qualitative experi-

ment, if properly chosen, could distinguish between the
two solutions.
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4. CONCLUSIONS

The significant features of the results contained in
Tables I, II, and III are as follows.

1. The goodness-of-fit parameter y' decreased appre-
ciably only for Solutions 1 and 2. This is the behavior
expected of the correct set of phase shifts.

2. For solutions 1 and 2 the parameter y', considered
as a function of g', is represented by a smooth second-
order function that shows a minimum near 14.4, the
presently accepted value of this parameter.

3. The inclusion of the pole contribution in higher-
angular-momentum states produces changes ranging
from about 0% to about 80'Po of the experimental
errors. These changes are significant enough to warrant
incorporation into analyses of experiments of this
nature.

4. Although the observables changed significantly,
the new best sets of phase shifts differ generally by less
than a degree from the solutions obtained in reference 4.

Work is under way to extend the present scheme in

a number of directions. First we plan to fix the H and
G phase shifts at the values given by the pole contribu-
tions, since these values do not diGer markedly from
the values obtained in the calculations presented here.
This procedure reduces the number of free parameters
and should increase the sensitivity with respect to the
value of the coupling constant. Also this procedure
may further help to resolve the ambiguity with regard
to the various sets of phase shifts. We also plan to
extend the application of the present method to other
energies and to I-P scattering. Finally, work is in
progress on the incorporation of the two-pion exchange
contribution into the above scheme, and it is hoped
that eventually other processes may also be included.
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