conditioning unit led to rejection of a number of runs while the experiment was in progress. Since there is a possibility that in some cases the erratic behavior was not immediately recognized, no significance should be attached to the behavior of the Ni⁶⁰ curve near 100°.

The energy resolution of the detection system was about 2%. All deuterons scattered from levels more than 1 Mev above the ground state were clearly distinguished as not belonging to the elastic peak. The particle separation was similar to that previously obtained.^{5,8}

III. EXPERIMENTAL RESULTS

The results are shown in Fig. 1.9 The angle is given in the center-of-mass system and the numbers given are the relative differential cross sections in the center-ofmass system multiplied by $\sin^4(\theta/2)$, where θ is the center-of-mass angle. The data were normalized to facilitate comparison, since the targets did not have the same thickness and it was not possible to measure the foils without destroying them. The data were normalized by assuming that the sum of the values of σ/σ_R from 18° to 34° should be about equal. In the case of Ni⁶⁰ the normalization was carried out by equalizing the sum of σ/σ_R from 41° to 60° to that of Ni⁵⁸. Since the differences in the angular distribution, as plotted in Fig. 1, are small, it was desirable to obtain some measure of the internal consistency of the data. The standard deviation in the number of counts in the elastic peak between 80° and 18° was less than 2%; and between 80° and 117.5° it was generally less than 4%. It would appear, therefore, that a plot of $\sigma/\sigma_R - \sigma'/\sigma_R'$ should give a reliable measure of the internal consistency and of the magnitude of the shift between neighboring masses. Figure 2 shows the results of these plots for Ni⁵⁸ and Ni⁶⁰, Ni⁶⁰ and Cu⁶³, and for Cu⁶³ and Cu⁶⁵ together with the standard deviations at some of the points. From this one may conclude that the shift between Ni⁵⁸ and Ni⁶⁰ is the same as that between Cu63 and Cu65 and about $\frac{2}{3}$ of that between Ni⁶⁰ and Cu⁶³. It may be noted that the difference plot between Cu⁶³ and Cu⁶⁵ shows a consistent average slope. This cannot be due to the normalization procedure. It is also to be noted that even as far forward as 18° there is a noticeable difference

ACKNOWLEDGMENTS

between the cross sections for Cu⁶³ and Cu⁶⁵.

We are indebted to W. Ramler and the Cyclotron group for their cooperation. The assistance of W. J. O'Neill and E. Sundahl is gratefully acknowledged.

PHYSICAL REVIEW

VOLUME 114, NUMBER 3

MAY 1, 1959

Search for the Isotope Ir¹⁹⁶[†]

Donald G. Gardner* and W. Wayne Meinke Department of Chemistry, University of Michigan, Ann Arbor, Michigan (Received December 8, 1958)

The isotope Ir¹⁹⁶ has been reported to have a half-life of ~ 9 days and to emit β^- particles with a maximum energy of about 0.08 Mev. Using deuteron-bombarded enriched isotopes of platinum, it is shown that the previous mass assignment was incorrect. It is suggested that the \sim 9-day activity found in deuteron bombardments of natural platinum is due to Ir^{189} and Ir^{190} produced by the (d,n) reaction on osmium impurities. An experimental upper limit of 5 hours for the Ir¹⁹⁶ half-life can be set by these experiments. Rough cross sections for the (d,α) reaction on Pt¹⁹⁴ and Pt¹⁹⁶ are given for several deuteron energies from 9.6 to 20.4 Mev.

I. INTRODUCTION

 \mathbf{B}^{Y} 1953 an isotope of iridium, Ir¹⁹⁶, was listed in isotope tables as having a half-life of ~ 9 days and decaying by the emission of an ~ 0.08 -Mev β ray. A half-life of that order was surprising since Ir¹⁹⁴ has a half-life of only 19 hours. Furthermore, the half-life and β -ray energy indicated that the transition was allowed, an unlikely occurence for this section of the isotopic table. In 1954 Butement and Poe,1 who had contributed

the original information on this isotope, published further information substantiating their previous findings and listed γ rays at energies of 0.58, 0.76, and ~ 1.0 Mev. A search of the literature and isotope compilations^{2,3} through September, 1958 has revealed no further work on this isotope.

II. EXPERIMENTAL PROCEDURE

The radioactive iridium was produced by the (d,α) reaction from deuteron bombardment of metallic

⁸ J. L. Yntema and B. Zeidman, this issue [Phys. Rev. 114, 815 (1959)].
⁹ The tabulated angles and cross sections are contained in J. L. Yntema, Argonne National Laboratory Report ANL-5936 (unpublished); available upon request.

[†] This work was supported in part by the Michigan Memorial Phoenix Project and the U. S. Atomic Energy Commission.

^{*} Present address: Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.

¹ F. D. S. Butement and A. J. Poe, Phil. Mag. 45, 31 (1954).

² Strominger, Hollander, and Seaborg, Revs. Modern Phys. 30, 585 (1958).

³ K. Way et al., Nuclear Data Cards (National Research Council, Washington, D. C., 1958).

platinum. Therefore, a chemical separation was needed to obtain the iridium free from contamination by platinum and gold activities produced by (d, p) and (d,n) reactions on the platinum target, and also from activities produced by reactions on the impurity elements.

After bombardment the platinum target was dissolved in boiling aqua regia, and 3 mg of iridium carrier as well as 10 mg each of copper, nickel, zinc, and gold carriers were added. After evaporation, the solution was made $\sim 0.5N$ in HCl and gold was removed by extraction with ethyl acetate. Pt(IV) was reduced to Pt(II)with SnCl₂ and then removed by extraction with ethyl acetate. The solution was next evaporated to dryness with aqua regia, and 5 mg of inactive platinum carrier added. After removal of NO₃⁻ the solution was made $\sim 0.5N$ in HCl and saturated with NH₄Cl, precipitating (NH₄)₂PtCl₆ and (NH₄)₂IrCl₆. The precipitate was dissolved, NH4⁺ removed, and IrO2 precipitated with NaOBr. After washing, the precipitate was dissolved in HBr and the iridium mounted as the bromide by evaporation onto $\frac{1}{4}$ -mil Teflon films.

Both natural and isotopically enriched platinum metal targets were used. The natural platinum was 1.05-mil thick "commercial grade" foil, 99.5% pure, obtained from Baker and Company, Inc., Newark, New Jersey. No numerical estimates of the impurities were available. The enriched material was obtained from the Isotope Research and Production Division, Union Carbide and Carbon Chemicals Company, Oak Ridge, Tennessee. In this material the percentage of Pt¹⁹⁸ [parent of Ir¹⁹⁶ in the (d,α) reaction] was increased from the normal 7.2% to 60.95% while the isotope Pt^{194} (parent of $\mathrm{Ir}^{192})$ was reduced from the normal 32.8% to 3.57%. Thus the principal interfering iridium activity, the 75-day Ir¹⁹², was reduced by almost a factor of 100 by using the enriched target material.

Decay curves were taken on $4\pi \beta$ -ray counters and γ -ray scintillation counters. Beta-spectral information was obtained using a 180° magnetic spectrometer,⁴ as well as from aluminum absorption curves. Gamma radiations were examined with the γ -ray spectrometer and coincidence apparatus described previously.⁵

III. NATURAL PLATINUM BOMBARDMENTS

Using stacks of two and three platinum foils separated by copper absorbers of appropriate thicknesses, a total of seven platinum targets were bombarded by deuterons at various energies ranging from 9.6 to 20.4 Mev at the Argonne National Laboratory cyclotron. The decay curves of eight separate samples obtained at various bombarding energies showed the presence of only three components, with half-lives of 19 hours, ~ 8 days, and 75 days. Beta and γ -ray measurements

TABLE I. Cross sections in barns for the (d,α) reaction on platinum.

Energy of deuterons in Mev	Target nuclei	
	Pt194	Pt^{196}
9.6 ± 1.3 11.3 + 1.6	$(1.2\pm0.4)\times10^{-5}$ $(1.1\pm0.5)\times10^{-4}$	$(1.4\pm0.6)\times10^{-4}$ $(3.3\pm1.6)\times10^{-4}$
15.9 ± 1.5 19.2 ± 1.6 20.4 ± 0.8	$(1.7\pm0.8)\times10^{-4}$ $(3.8\pm1.2)\times10^{-4}$ $(2.3\pm1.0)\times10^{-4}$	$(4.4 \pm 1.5) \times 10^{-4}$ $(2.0 \pm 0.8) \times 10^{-4}$

showed that the 19-hr activity is due to Ir¹⁹⁴, while the 75-day activity comes from Ir¹⁹². A half-life of 8.3 ± 0.5 days was obtained for the intermediate activity by averaging the values from eight curves. This may be compared with the value of ~ 9 days found by Butement and Poe.

The presence of only three half-lives indicates that the chemical separation was adequate, and that the 8.3-day activity was indeed due to iridium as claimed by Butement. This was further confirmed by the fact that repeating the chemical separation did not change the ratio of the three activities. Finally, the relative reaction cross-section values for the 8.3-day activity obtained on four different samples at bombardment energies of 19.2 and 20.4 Mev were all equal to within experimental error.

Rough cross section values for the (d,α) reaction on Pt¹⁹⁴ and Pt¹⁹⁶ to produce Ir¹⁹² (75-day) and Ir¹⁹⁴ (19-hour) are given in Table I. The errors are estimated standard deviations. No corrections were made for the self-absorption of the β rays in their sources. The values at 20.4 Mev are the means of three observations for each isotope.

Beta spectral information⁶ taken at several times after the end of bombardment is in accord with the literature values for Ir^{192} and Ir^{194} which emit β rays with maximum energies of 0.72 and 2.2 Mev, respectively, and with Butement's observation of an ~ 0.08 -Mev β ray ascribed to Ir¹⁹⁶.

Aluminum absorption curve data substantiated the above spectrometer data. By following the decay of a portion of the β -ray spectrum at about 0.05 MeV it was found that the lowest energy group was decaying with a half-life of $\sim 10 \pm 2$ days. The decay was not followed long enough to define the half-life more exactly.

Gamma-ray spectrometer data⁶ showed the presence of several γ rays which could not be ascribed to either Ir¹⁹² or Ir¹⁹⁴, although the large background due to Ir¹⁹² made measurements difficult. Coincidence data also proved inconclusive, again due to the interference from Ir¹⁹².

In general though, the above results correlate well with those obtained by Butement and Poe who ascribed the 8.3-day activity to Ir¹⁹⁶. In hopes of obtaining more accurate information that would allow a decay scheme

⁴ Meinke, Cassatt, and Hall, Atomic Energy Commission Report AECU-2944 June, 1954 (unpublished). ⁵ W. A. Cassatt and W. W. Meinke, Phys. Rev. **99**, 760 (1955).

⁶ A more complete record and exposition of experimental data can be found in D. G. Gardner, Ph.D. thesis, University of Michigan, 1957 (unpublished); also in Atomic Energy Commission Report AECU-3514 May, 1957 (unpublished).

to be formulated, it was decided to bombard a sample of enriched Pt¹⁹⁸ to reduce the interference caused by Ir¹⁹².

IV. ENRICHED PLATINUM BOMBARDMENT

Fifty mg of the powered platinum metal were bombarded with 23.5-Mev deuterons in the University of California 60-in. cyclotron. Six days after bombardment the sample was worked up and a decay curve started. Only a relatively small amount of activity was found in the iridium fraction after bombardment. Gamma-ray data showed that the primary activity was still Ir¹⁹², with the addition of a small amount of γ radiation in the 0.7–0.9 Mev range. A large amount of γ - γ coincidence information was obtained, but all of it could be explained by the presence of Ir¹⁹², whose decay has been studied extensively.⁷

The decay curves for this bombardment were followed for about 50 days. When resolved they showed only two activities to be present, the 75-day Ir^{192} and a small amount of a 3–4 day activity which probably was a mixture of Au¹⁹⁶ and Au¹⁹⁹. No indication of an 8.3-day activity was found.

V. CONCLUSIONS

While the natural platinum bombardments strongly supported Butement and Poe in their assignment of the 8.3-day activity to Ir^{196} , the enriched isotope bombardment completely disqualified this assignment. The results of this work, however, indicate that the 8.3-day activity does belong to some isotope of iridium.

The following reinterpretation of the data can be made. The presence of a relatively large amount of platinum x-rays indicates that the 8.3-day activity decays primarily by electron capture, since little or no positron emission was indicated by the β -ray spectrometer data. This assumption allows the assignment of the ~0.08-Mev β particles to fluorescent electrons, or conversion electrons from a low-energy γ ray. Hence the difficulty of demanding that the β decay be allowed, as would be necessary if $E_{\text{max}} \approx 0.08$ Mev and the half-life were ~8 days, would be removed.

Decay by electron capture requires that the iridium activity be on the neutron deficient side of stability. Here Ir¹⁸⁹ and Ir¹⁹⁰ appear as possibilities, since each has an isomer with a half-life of the right order of magnitude. Neither of these isotopes has been completely characterized, but Aten and co-workers⁸ have presented some information on Ir¹⁹⁰, Smith and Hollander⁹ have reported on Ir¹⁸⁹, and Diamond and Hollander² recently list unpublished information on both Ir¹⁸⁹ and Ir¹⁹⁰.

The γ rays found in this work correlate quite well with those reported by the above workers and permit the assumption that the observed 8.3-day activity is the result of the presence of both Ir¹⁸⁹ and Ir¹⁹⁰. Ir¹⁸⁹ could not be obtained by the (d,α) reaction on platinum, and Ir¹⁹⁰ would have to come from Pt¹⁹² with a natural isotopic abundance of 0.78%. Furthermore Ir¹⁹⁰ has a 3-hour isomer which would further reduce the amount of 8.3-day activity. In the enriched platinum target Pt¹⁹² was reduced to 0.042%, almost a factor of 100 less than Pt¹⁹⁴ which produces the 75-day Ir¹⁹² activity. It is quite understandable that in the enriched isotopes bombardment no 8.3-day activity was found.

Neither Ir¹⁸⁹ nor Ir¹⁹⁰ can be produced by the (d,p) reaction on iridium. Therefore, to account for the 8.3-day activity found in the natural platinum bombardments, it is suggested that a small amount of osmium impurity was in the platinum targets. This would produce iridium activities by the favorable (d,n) reaction. Hence both Ir¹⁸⁹ and Ir¹⁹⁰ could be produced from Os¹⁸⁸ and Os¹⁸⁹ with natural abundances of 13.3% and 16.1%, respectively. Os¹⁹⁰(26.4%) and Os¹⁹²(41.0%) both yield stable iridium isotopes. Os¹⁸⁶(1.6%) would produce a small amount of the 12-hour Ir¹⁸⁷ which would be difficult to resolve from the much more intense 19-hour Ir¹⁹⁴. Os¹⁸⁷(1.6%) would yield some 41-hour Ir¹⁸⁸, which would be masked to a certain extent by the Ir¹⁸⁹ and Ir¹⁹⁰ activities.

A re-examination of the decay curves did indicate that a small amount of the 41-hour Ir¹⁸⁸ might have been present. Since the (d,n) reaction is more favorable than the (d,α) reaction by a factor of 10²-10³, the amount of osmium impurity needed to account for the results would only be 0.01 to 0.1%.

Concerning the true Ir¹⁹⁶ activity, the present work suggests that an upper limit for the half-life would be about 5 hours. Actually, a much shorter half-life would be anticipated, perhaps in the range of minutes.

ACKNOWLEDGMENTS

The authors would like to thank the crews of the Argonne National Laboratory cyclotron and the University of California at Berkeley cyclotron for their cooperation in furnishing the bombardments.

⁹ W. G. Smith and J. M. Hollander, Phys. Rev. 98, 1258 (1955).

⁷ M. W. Johns and W. V. Nablo, Phys. Rev. **96**, 1599 (1954). ⁸ Aten, DeFeyfer, Sterk, and Wapstra, Physica **21**, 740 (1955).