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A theory of the (p,d) pickup reaction is described in which the nuclear interactions of the incoming and
outgoing particles are considered. Two different formal expressions that give the transition amplitude are
derived, and the wave functions in this amplitude are approximated by an optical-model procedure in which
it is assumed that the initial- and final-state particles scatter elastically in the nucleus. Several closed forms
for these optical-model wave functions are derived on the basis of a WKB approximation for a complex
square-well scattering potential. The use of these wave functions, along with an approximation that gives
the form of the transition amplitude in terms of Gaussian functions, allows a closed-form solution for the
differential cross section.

It is found that the elastic-scattering processes are not negligible, since they affect considerably the
magnitude and the shape of the differential cross section. By comparing the theory with recent pickup
experiments on C'2 at 95 and 145 Mev, one obtains a nuclear-momentum distribution that, unlike the Born
approximation analysis, is in good agreement with the results of other determinations of momentum dis-
tributions. It is found that a neutron number of from 4 to 6 neutrons and a momentum distribution of
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exp(—E/14) are required to fit the data.

I. INTRODUCTION

: HE theory of nuclear-rearrangement collisions
has been developed and refined to a considerable
degree over the past ten years due to both the “direct’’-
interaction picture given by Serber! and the scattering
formalism introduced by Lippmann and Schwinger.?
The two particular processes that have received perhaps
the greatest amount of attention during this period are
that of deuteron stripping, and its time reverse,
deuteron pickup. The theoretical treatments of both
these processes have enjoyed remarkable success with
the models of Serber,® Butler,* and Chew and Gold-
berger,5 and there have recently been several investi-
gations, based on scattering formalism, which obtain
more exact results than these earlier theories. Compre-
hensive reviews of the current status of stripping reac-
tions have been written by Huby!® and by Butler.!

In extending the earlier theories such as the Butler
theory for stripping or the Chew-Goldberger theory for
pickup, one might wonder whether the nucleus has any
appreciable effect on the incoming or the outgoing
particles. Certainly one would expect these particles to
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presented in partial fulfillment of the requirements for the degree
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scatter from the nucleus and change the observed
angular distributions. The Butler and Chew-Goldberger
theories assume that the nucleus is completely trans-
parent both to incoming and to outgoing nucleons.
This presumably accounts for the fact that the Butler
cross sections are larger than the experimental results,
since the nucleon mean free path at Butler’s energies is
small compared with nuclear dimensions, and absorp-
tion effects should not be negligible. At high energies,
where the nucleon mean free path is long, it would be
expected that the nucleon-nucleus scattering contribu-
tions would not only affect the magnitude of the cross
section, but also alter the angular distribution of the
observed stripped neutrons.

To include the aforementioned scattering contribu-
tions and give an exact treatment of the pickup reaction
is by no means easy. The first step, to derive an exact
formal expression that is believed to represent the
process, is made possible with the results of the
Lippmann-Schwinger formalism. However, the exact
calculation of such an expression is usually impossible,
since the simple Born-approximation description is no
longer applicable, and one must either use higher orders
in Born approximation, or, better, describe the distorted
states by means of the results of multiple-scattering
theory.? In either case, there is the additional mathe-
matical problem of evaluating the matrix elements,
since the integrals that appear are usually quite
formidable. Thus it would be desirable to find a formal
description of the scattering of particles that is reason-
ably exact and at the same time not too difficult to
handle mathematically.

Among the various methods that aim for this goal,
the optical-model approach of Fernbach, Serber, and
Taylor'® appears to be a good approximation to use in
rearrangement collisions. (If this method is used, one
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must show that the inelastic processes comprise a small
part of the total scattering contributions to the matrix
element.) This approach to the stripping problem has
been suggested by Francis and Watson? and calculations
for low-energy processes have been made by Cheston,
who also considered polarization effects.

For the sake of clarity, the specific process under
consideration here is that in which a proton picks up a
bound neutron to form a deuteron, leaving the final
nucleus in the ground state or in a low excited state.
Then, following Chew and Goldberger, the differential
cross section depends on two factors: (a) the probability
that the neutron to be picked up has a momentum
k, in the initial nucleus, and (b) the probability that
this momentum, k,, combined with the incident
proton momentum through the mutual interaction,
Vap, can be found in a deuteron. By describing the
nuclear scattering of the incident proton and outgoing
deuteron, the optical model referred to above adds
another factor to the Chew-Goldberger expression for
the differential cross section—the probability that the
incident proton (outgoing deuteron) has elastically
scattered into a different momentum state before (after)
the neutron is picked up. Implicit in this factor is the
probability that the particle may be absorbed by the
nuclear medium. It is assumed in the following discus-
sion that the energy of the incident proton is high, so
that the surface reflection and refraction, as well as the
effects of the nuclear Coulomb potential, can be
neglected.

Part IT shows the development of the matrix element
that describes the pickup process. The optical-model
restriction that the incoming and outgoing particles
scatter coherently is imposed, and it will be shown that
the Chew-Goldberger expression can be obtained as a
special case of the more general matrix element
presented.

General forms for the wave functions that can be
used to describe the elastic scattering in a central
nuclear potential are developed in Part ITI. The
derivation is based on a WKB approximation to obtain
results that are as easy to handle mathematically as
the Born approximation’s plane waves. Finally the
differential cross section is obtained in closed form by
using Gaussian expressions to approximate the functions
in the matrix element.

In Part IV, calculations are made to fit the theory
with recent pickup experiments on C!2.1%:16 Tt is shown
that by the inclusion of particle interactions with the
nucleus, a fit can be obtained without using the high
neutron momenta that are required in the Chew-
Goldberger analysis. Furthermore, since the optical
model accounts for particle absorption, Part IV shows
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that a reasonable value is obtained for the magnitude of
the cross section.

An alternative expression for the matrix element that
describes the pickup process is given in the Appendix.
A form is obtained that duplicates Francis and Watson’s
results, which were derived by applying time reversal to
the stripping process. This form is compared with that
of Part II.

II. FORMALISM

In order to obtain information on the cross section,
energy, spin, etc. of the deuterons produced from nuclei
bombarded with protons, it is most convenient to use
the scattering formalism introduced by Lippmann and
Schwinger.? This formalism provides a method for
obtaining the transition-matrix elements that contain
the desired information about the final-state deuterons
in terms of the initial conditions (momentum, spin, etc.)
on the incoming proton-nucleus system. It is necessary
first to define explicitly the noninteracting initial and
final states in order to describe the operations that later
lead to the transition matrix.

Consider an initial state consisting of a proton, whose
momentum is %k, in the center-of-mass system, in-
cident on a nucleus which is described by a wave
function xo(x4). Here =4 represents the coordinates of
the 4 nuclear particles, and the subscript 0 designates
a nucleus in its ground state. For clarity of notation, all
spin indices have been suppressed for the present. The
wave function for the proton-nucleus system,

$i(Ta,1p) =x0(za)ee TP, (1
is the solution of the Schrodinger wave equation
(H0+ Tn+ Tp+ Vn)d’i(':A;rp)=Ei¢i("A:r1’)> (2)

where Hj is the total Hamiltonian for 4 —1 nucleons,
and T, and T, are the kinetic energy operators for the
neutron and proton respectively. The neutron to be
picked up is bound to the core of A —1 nucleons by the
potential V.

The final state, which consists of a free deuteron of
momentum %K, and 4—1 nucleons in some nuclear
state 7, is described by the wave function

¢7(24,15) = xn(Ta-1)Pa(r)e® X, (3)
which is the solution of

(HoATot-T ot Vap)ps(tatp) = Emps(va,ry), (4)

where ®,4(r) is the wave function of the bound deuteron,
and V,, is the neutron-proton potential.

The total wave function, ¥, which describes the
complete interacting proton-nucleus system is the
solution of the wave equation involving the total
Hamiltonian, H :

Hl//= (H0+ Tn+ Tp+ Vn"" Vp+ Vnp)\(/: Eﬂ/’- (5)
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The potential V, of Eq. (5) describes the interaction of
the proton with the 4—1 core nucleons.

Following Lippmann and Schwinger, we can write
the expression for the solution of Eq. (5) corresponding
to incoming plane waves and outgoing spherical waves:

YD =0Dg,

1
|14 V47, )]@., (©)
[ eV V=V,

1
= ¢’i+___'(Vp+ szp)\//(+), (63)
aH—V.
where the notation has been condensed by setting
aP=FE,—Hy—T,—T ,+ie. (7)

The transition amplitude is then
=@Vt Vap| o). (8)

We may use Eq. (8) and proceed to derive the same
form for the transition amplitude that was obtained
in a different way by Francis and Watson. This deriva-
tion can be found in the Appendix. Although the result-
ant transition matrix can now be used to obtain the
desired information about the outgoing deuteron states,
there are two objections that may be raised concerning
its form:

(a) Within the limits of the optical-model approxi-
mations, Francis and Watson’s result is still not an
exact expression, owing to the additional approximation
that neglects the last V., interaction in the scattering
of the incoming proton from the 4 nucleons.

(b) The final-state wave function defined in their
Eq. (27) and in Eq. (56) here (see Appendix) appears
rather unsymmetric in that it represents an outgoing
deuteron in which only the neutron interacts with the
residual nucleus. It would be desirable, then, to find a
new form for the transition matrix which requires no
approximations beyond the optical-model assumptions
and represents the outgoing-deuteron state so that both
the neutron and proton interact symmetrically with
the residual nucleus.'” An expression that fulfills both
of these requirements has been partially developed by
Gell-Mann and Goldberger® and is derived below.

We define a wave function x™ representing an
incoming proton wave in which the proton interacts
with the core only through the potential V:

XD =it V. ©)

Here x™ is related to the total wave function ¢ by

17 The author would like to express his appreciation to Professor
Geoffrey Chew for bringing up this point, and to Dr. Leonard
Rodberg for his help and interest in the derivation.
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the integral equation
1
AP =V, =Vaup=V,

Y =5 )4 Vapx.  (10)

By substitution of Eq. (9) into Eq. (8), we obtain
Tri=y I Vapt VP!X(+))

1
() )
-(v [(Vnp+vp> oy ) ay
Rearranging terms, we have
=@ Vap|x®)

1

(e )
a®

Using Eq. (6a), we finally obtain
=@ Vaun[x )+ (0:] Vo | xP),
which is equal to
=@ Vap|x )+ Vale).  (13)

Equation (13) is the same as Eq. (4.4) of Gell-Mann and
Goldberger.® The first term in Eq. (13) gives the transi-
tion amplitude for the pickup process occurring via
the V,, interaction. The incident proton interacts with
all nucleons except the neutron to be picked up, and
both the neutron and proton in the emerging deuteron
interact with the residual core nucleons. The second
term in Eq. (13) gives the amplitude for proton scatter-
ing from the nucleus via the interaction V , with just the
A—1 nucleons of the core. This term, therefore, should
not lead to final-state deuterons, since the deuteron
binding potential, V,,, does not appear in the final-state
wave function, x. A formal proof that this term is
indeed zero has been given by Lippmann.'® Thus, we
obtain

=W Vap| xP).

We may now make our optical-model approximations:

(14)

1
By o) = it —————Vepxe™®, 15
X Px oM =it —r el (15)
and
1
YO o=
d(_)—‘ I/n'_coCpT_iOCn]L
X (Vept+Venl)ds, (16)
which yield our desired symmetric expression,
= Y| V| xe™). 17)

18 B, Lippmann, Phys. Rev. 102, 254 (1956).
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The optical model operators V¢, and Ve, are defined
to be diagonal with respect to the energy of the core.
They describe only elastic proton- and neutron-nucleus
interactions, respectively, and can be deduced from
multiple-scattering theory, or may be replaced by the
phenomenological optical potential of Fernbach, Serber,
and Taylor.B

There are several qualitative arguments that support
this approximation. First, the Pauli exclusion principle
forbids “hard” nucleon-nucleon scatterings in a nucleus
except for those that leave the particle in unoccupied
momentum states beyond the Fermi sphere. Conse-
quently, the inelastic collisions that do occur must be
associated with large momentum transfers at large
scattering angles, and can thus be experimentally
separated from elastic effects which describe the
scattering at small angles. Secondly, the experimental
fact that the pickup process usually leaves the final
nucleus in its ground state gives a strong argument for
neglecting inelastic scatterings. For a particle incident
on a nucleus in its ground state, there are many channels
open for inelastic scatterings to excited states where the
density of states is large, but there are few channels
back to the ground state. Thus it is improbable that an
inelastically scattered particle will find its way back to
a state of low or zero excitation. Finally, one may argue
that the inelastic scattering of the outgoing deuteron
will not contribute to the pickup cross section, since it
tends to break up the deuteron. This is because such
inelastic effects arise from “hard” scatterings of the
individual neutron and proton in the deuteron. Unless
these two particles scatter coherently in “hard” inter-
actions, the small deuteron binding energy should not
be expected to keep them together. An approximate
estimate!® of the inelastic corrections to the cross section
gives a value on the order of 1/100 the magnitude of the
elastic terms. It will be assumed in the rest of this
paper that, for the purposes of describing the pickup
reaction, the elastic-scattering approximations give an
adequate and reasonably accurate description of the
true scattering.

The differences between Eq. (56) [or Eq. (27) of
Francis and Watson] and Eq. (17) are now apparent.
The initial state of the former describes a wave of
incoming protons interacting with all 4 nucleons of the
initial nucleus, while the latter represents interactions
with only the 4—1 nucleons of the core. But, to com-
pensate for this difference, the final-state wave function
of Eq. (56) has only neutron interactions, whereas the
corresponding wave function of Eq. (17) has both
neutron and proton interactions. Therefore some of the
proton interactions that seem to be missing in the initial
state of Eq. (17) are included in its final state. Thus it
is evident that, within the optical-model approxi-
mations, Eq. (17) is more exact and more aesthetically
appealing than Eq. (56).

9 This was carried out following the method of reference 12.
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On the other hand, for practical reasons, Eq. (56)
may in many cases offer a more suitable form for
numerical calculations. If we approximate the deuteron
as a single coherent particle, the optical parameter
Ven used in Eq. (56) is much better known than Ugq,
the deuteron optical potential, which would be required
in Eq. (17). One would then conclude that Eq. (17) is
formally a more desirable form for the transition
amplitude, but practical necessities may often favor the
use of Eq. (56).

III. EVALUATION OF THE MATRIX ELEMENT
FOR CENTRAL POTENTIAL INTERACTIONS

It is now necessary to find manageable forms of the
optical-model wave functions of Part IT so that the
required integrations may be performed without exces-
sive difficulty. In this section some explicit forms for the
wave functions x¢™ and ¢ are derived. Separating
the nuclear and proton coordinates in Eq. (2), we
obtain an equation for the proton wave function (with
Vp=Veyp):

h?
(_2 Vr,?—l-’oc,,(rp)——Epo)l//o(fp)=0, (18)

m

where we have
Ep0= h2k02/2m.

Solving Eq. (18) in a one-dimensional WKB approxi-
mation, we obtain

1: z
\//o(x)NeXP{;Lf {2m[ Epo—Vep(x) J}idx p. (19)

We make the substitutions

ko= (szpo) %/h,

and
n1(x)ko=[2m(Epo—DVe, (%)) 1/, (20)
where
12 (x)=1—V¢p(x)/Enpo, (20a)

defines the index of refraction in the nuclear medium.
Equation (19) becomes

l,bo(x)~exp{ iko f () } (21)

To find the three-dimensional form of ¥/(r,), we need
to assume some distribution and shape for U¢,(r,). For
the case of a hard spherical nucleus, we may write for
r<Ry:

‘UCp(l')Z‘U(),

and for 7> Ry:
Vep(r)=0, and n4(r)=1,

which, for an incoming wave parallel to the x axis,

and  7,(r)=mn,

(22)
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become, respectively,

for x<—(RiZ—7r*sin20), ni(x)=1,

and (22a)

for a>— (R2—72sin20)}, ni(x)=mn1.

Substituting x=7 cosf, we can evaluate Eq. (21) to
obtain a closed form solution for ¢ (r):

1//0(r) = eXp{’i?’leo . r—}-i(m—— 1)k0(R02—"72 sinzﬁ)’f} . (23)

We note that Eq. (23) obtains the classical result for a
particle following a trajectory through a spherical
region that is characterized by an index of refraction #.
The fact that the classical expression is obtained is not
surprising, since we have used the WKB solution of
zero order in %.

By approximating #?sin?d<<R¢?, we arrive at an
easily integrable expression,

lpo (r):exp{z(nl— 1)k0R0+’L’VL1k0 . I'} ;

which has the same form as the scattering wave
functions of Hart and Montroll® if one neglects the
internal reflected wave. For #50.10, one obtains results
from Eq. (24) that compare favorably to more exact
numerical calculations that use Eq. (23). For larger
values of 7, Eq. (23) may be approximated by

Ip() (r)&exp{inlko . r+i(n1— l)ko
X[Ro—7(1—[cost]) 1},

which is, however, a less manageable function than that
of Eq. (24).

In the outside region, > R,, the wave function is
merely exp (¢ko-r). The small contribution of the trans-
mitted wave has been neglected here.

We now turn to the problem of obtaining a form for
the final-state wave function of Eq. (17) or Eq. (56) of
the Appendix. If we use Eq. (56) we write the wave
equation for Q¢, ¢, specifying the coordinates
explicitly :

EHO (1A~l)+ TK (R)+ Tr(r) + Vnp(r)+eo CnT (rn> - E‘if]
XQcn (#)d’f (rrR)1A~1) = 07 (26)

where E;;= (2 K2/4M)— Ba, and B, is the magnitude of
the deuteron binding energy. In order to solve Eq. (26),
we assume R>>r, so that we have

©CﬂT (rn) = UC'/LT (R—— r/Z)g‘U CnT (R)

This means that we approximate the deuteron as
behaving like a single coherent particle in the nucleus,
or, more exactly, we assume that the average neutron-
proton separation in the deuteron is small compared
with the nuclear dimensions. If we use the transition
matrix of Eq. (17), and assume that the deuteron
propagates as a single particle, then Eq. (26) is changed
by replacing Ve.' (rn) by Ves' (R), and the approxima-

(24)

(25)

(27)

2 R. Hart and E. Montroll, J. Appl. Phys. 22, 376 (1951), and
I. Montroll and J. M. Greenberg, Phys. Rev. 86, 889 (1952).
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tion of Eq. (27) is no longer necessary. We may simplify
the notation then by letting V¢'(R) stand for either
Vea'(R) or cUc,["(R).

Following our method for the proton wave function,
we separate the nuclear and deuteron coordinates, and
subtract the equation for the bound state of the
deuteron. We are left with

h?
[——VRLI—’UCT— (Eif_Bd)]X(_) (R)=0, (28)
4m

which can be solved by the WKB method outlined
above. However, the form will not be quite the same as
the result in Eq. (23), since Q¢ ¢, or ¢ is a solution
that is asymptotic to outgoing plane waves at infinity
and to incoming spherical waves.? For a spherically
symmetric, square-well potential, we find

Yo (R)=exp{iny’ K- R—i(ny/’— 1)K

X (RP—R2sin%0)}}, (29)
where
(n'=1=0,"/E,, (30)
and
E,=nmK2/4M. (31)

The approximations of Egs. (24) and (25) may then
be applied to Eq. (29) in order to obtain an easily
integrable expression for the outgoing deuteron wave
function.

It should be pointed out that, for small %, wave func-
tions of the form of Eq. (24) can be handled with no
more difficulty than the plane waves of the Born
approximation. These wave functions may now be
substituted into Eq. (17) or (56), in order to find the
transition amplitude, 7'y, for the pickup process.

The differential cross section is

do 3 m? KA(A—1)
dQ T 42m by (A1)

| Tsil*. (32)

The factor of  is due to spin statistics, and the sum is
over all final states. The sum can be written

; [T 2=¥ | (X7 (2 4-1)Pa(0)¥e (R)

XNV ap(0) | xi(va-1, t)Po P (1)) |2,

or

2| Tfil2= fd‘cA—1
7

f dtudr, (0o (R)

2

XV np(O)xi(ra—1, )PP (r,)| . (33)

We need next to evaluate the integral, M, inside the
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absolute value signs. By allowing V,,(r) to operate on
®4(r), we obtain [ (A2/m)V2— By ®.(r), in accordance
with the Schrodinger equation for the deuteron ground
state. Therefore we denote

1
(2m)t

V p (DBa(0) =B () = f dk B (k)eiks,  (34)

and we use the partial Fourier transform of the initial
state nuclear wave function:

fd'vA_ﬂXi(TA—l; r,) |2

2

.f“nm@dﬁhﬂ,

(27)}

(35)

where x;(k,) is assumed to be the square root of the
neutron momentum density distribution in the nucleus.
Using these expressions in Eq. (33), we have for M,

Mz_l)_g [0 [a itk

(r

X f dR ¢~ik—2kn) Ry ) (R)

derp gi(Zk——kn)~r,;¢0(+)(rp). (36)

It should be pointed out here that Eq. (36) reduces to
the Born-approximation expression of the Chew-Gold-
berger theory for #;=mn,=1. Since the incoming proton
is then represented by a plane wave, the integral over
r, gives a delta function, §(2k—k,+ky), and the
integral over R gives §(2k—2k,+K), which permits
immediate evaluation of the integrals.

Since some effort has been spent to obtain integrable
wave functions for use in the matrix element, it would
obviously be desirable to continue further and use ana-
lytic expressions in Eq. (36) that allow its solution in
closed form. To accomplish this, we have assumed
Gaussian forms for the factors in the integrand,

x(k,)=C exp[—c(kn—l—P;qko) ],

where we have accounted for nuclear recoil by defining
the parameters

q=(A—1)/4;

(37

p=(4+1)/4.

Assuming a Hulthén wave function for the deuteron,
we find

(38)

dr R 1
D)= A (e F)X
2m)¢ m k*+-52

(39)
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TaBLE I. Optical-model parameters for the process C?(p,d)CH.

Ejab Vep UVca or Ucn Ro X107  Ey Neutron

(Mev) (Mev) (Mev) cm (Mev) number
95 —25 —15 —20 —15; 34 14 4t06
145 —13 —18; —20 —152 3.4 14 4to6

where we can approximate

1
_—6—2[().902 exp(—0.729%%/%)

k*+p?
40.0971 exp(—0.0313k%/8%) 7], (40)
and we have chosen 8=0.2a.

Finally, the integrations over r, and R give spherical
Bessel functions, which also may be approximated by a
sum of Gaussian functions. The first-order spherical
Bessel function may be written

J1(x)/xe~F{exp(—0.111x?)
—0.121exp[ —0.290 (x— 5.20)%]

+0.038exp[ —0.460(x—9.00)27}, (41)

which is accurate to x<10. It turns out that at the
energies under consideration, - j1(x)/x is required only
for values of x less than 3; therefore the first term of
Eq. (41) is sufficiently accurate.

The integral of Eq. (36) now becomes very simple if
we substitute the approximations of Eqs. (37) through
(41). Our matrix element will be the sum of several
integrals over both k and k, of the form

fdk exp(—dk2+2k~9’1‘)=6Xp(m2/d)(2)%, (42)

where the vector Ji is a linear combination of the
incoming proton momentum ko, and the outgoing
deuteron momentum K. The actual values of i and 4
in Eq. (42) depend on the parameters given in Eqs. (37)
through (41) for the particular Gaussian considered.
Then these Gaussian terms, when summed, constitute
the solution of Eq. (36). Finally, Eq. (32) allows the
calculation of the differential cross section.

IV. COMPARISON OF THE CENTRAL POTENTIAL
THEORY WITH EXPERIMENT

Measurements of the deuteron-pickup cross section
have been reported by Selove!s and by Cooper,'® who
have obtained angular distributions for the process
C2(p,d)C1, at 95 and 145 Mev, respectively. The
results of the optical-model analysis are obtained by
using the parameters listed in Table I, and the resulting
angular distributions are shown in Curve 4 in Figs. 1
and 2. The values of the nucleon optical potentials are
taken from Glassgold.” It should be noticed from Eq.
(30) that ny'*=mns if Vg is in the form shown in Table I

2L A, Glassgold, Revs. Modern Phys. 30, 419 (1958).
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100F v T T T T T

Fic. 1. Compari-
son of the optical-
4 model treatment for
the reaction C2(p,d)-
Ci with Selove’s
data. Curve A4 is
obtained by using
the parameters listed
in Table I. Curve
B shows the effect
for ne=1, and curve
C gives the Born
approximation  re-
sults with ne=n,=1.
A nuclear momen-
tum distribution of
exp(—E/14) is used
{ ineach case. The sta-
tistical errors on the
experimental points
are reported to be
2o approximately ==6%.
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above, i.e., a real and an imaginary part. This follows
from the fact that 7’ was obtained from U¢4f. Thus if
ne’ is merely the complex conjugate of 7., then ns'* is
equal to #7s.

To obtain the results shown in Figs. 1 and 2, the
nuclear radius was chosen to be 1.54#X 10~ c¢m, and
the nuclear momentum distribution of the initial
neutron state was of the form exp(—E/E,) [see
Eq. (37)]. Table I shows that the fit at both energies
was obtained with E,=14 Mev, which is in general
agreement with the scattering results of Wilcox and
Moyer,? and Cladis, Hess, and Moyer.? Selove reported
that in order to fit the Born approximation (Chew-
Goldberger) theory to the results of his pickup experi-
ments he required high-momentum components in the
nucleon momentum distribution, which had the form
exp(—E/7)4+0.15 exp(— E/50). These high-momen-
tum components (Ey=50 Mev) were needed to re-
produce the observed wide-angle distribution of deu-
terons. In the Born-approximation theory, the deuteron
momentum is just the sum of the incident-proton
momentum and the bound-state neutron momentum.
In order to observe deuterons at appreciably large
angles, therefore, one must have a nucleus that contains
neutrons whose energy is about as large as the incident-
proton energy.

Such energetic neutrons are not required in theory
presented here, since the wide-angle distribution of
deuterons can be obtained by allowing the incident and
final particles to scatter in the nuclear field. For
example, an incident proton may have scattered
through a considerable angle with respect to the initial
ko direction before it encounters the neutron. Conse-
quently, after the pickup of a low-energy neutron from
inside the nucleus, a deuteron may emerge at an even
larger angle. By further allowing this deuteron to

2 J. M. Wilcox and B. J. Moyer, Phys. Rev. 99, 875 (1955).
% Cladis, Hess, and Moyer, Phys. Rev. 87, 425 (1952).
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scatter while leaving the nucleus, one can obtain very
broad angular distributions.

If one integrates the neutron momentum-density
distribution over all momentum space, he obtains the
number of neutrons that are effective in the pickup
reaction. This number depends on the value of the
constant C in Eq. (37), where C is usually chosen so
that the magnitude of the theoretical cross section fits
the experimental results. In the fit to the experimental
data shown in Curves 4, a neutron number from four to
six is required at both 95 Mev and 145 Mev. These
results, which approximately account for the six
neutrons in CY2, are in striking contrast to the 0.061
neutron obtained by Selove, and the 0.76 neutron
obtained by Chew and Goldberger in their Born-
approximation analyses. The reason for the large
differences is, of course, the inclusion of absorption
effects in the optical-model theory.

Curve B in Figs. 1 and 2 shows the result of neglecting
the deuteron potential, i.e., of setting n,=1. The
general shape of the differential cross section is obtained
by considering only the interaction of the proton with
the nucleus,® but the diffraction dip at about 20° can
only be obtained by allowing the deuteron to interact
with the nucleus through the potential V¢y (Curve A4).
Furthermore, the normalization of Curve B gives a
neutron number in the carbon nucleus of about 0.4
neutrons at 95 Mev and about 1.0 neutrons at 145 Mev.
These values are smaller than the corresponding
numbers for #,#1, since in ignoring the deuteron
absorption by the nucleus, we obtain matrix elements
whose magnitude is too large.

Curve C shows the result of the Born-approximation
analysis®!® (ny=mn,=1) for Ey=14 Mev. The normaliza-
tion here requires a neutron number of about 0.25
neutrons at both 95 and 145 Mev. These values are
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2 For a somewhat different calculation using this approximation
see Kenneth R. Greider, University of California Radiation
Laboratory Report UCRL-8357, July 7, 1958 (unpublished).
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smaller than either those for Curves A or B because no
nuclear interactions and hence no absorption is con-
sidered. It should be pointed out that the Born approxi-
mation does predict the gross features of the process,
and can obtain reasonable results for small angles.

It is not quite clear what exact value of the deuteron
potential, Ocg, is required to fit the experimental curve,
because the numbers listed in Table I are only one set
of several that obtain a reasonable fit. However, an
upper limit may be obtained, since for a good fit, both
the real and imaginary parts of U¢q must fall between 0
and —20 Mev. If the matrix element of Eq. (56) is
used to calculate the cross section, then the deuteron
potential is just Uea, the potential felt by the neutron in
the deuteron. Values of U¢, within the limits mentioned
above are quite consistent with information on nucleon-
nucleus potentials.> However, if the matrix element of
Eq. (17) is used, then one requires values for U¢q which
are not readily available in the literature.

It appears that in a first approximation, the effective
deuteron optical potential should be merely the sum of
the neutron and proton potentials. However, in at-
tempts to fit deuteron scattering data,?® such a simple
sum is not adequate for the deuteron potential, as
higher-order effects are not negligible. These effects
describe the coherent scattering of both neutron and
proton by the nucleus, and thus tend to lower consider-
ably the effective deuteron potential from the value
given merely by the sum of the single-particle potentials.
In this case the value of VU¢q required in the present
analysis could be compatible with the actual effective
deuteron potential.

It should be mentioned that because of the nature of
the approximations used in this treatment of the pickup
process, it is unlikely that any exact information can be
obtained for the deuteron potential. The general effect
of the square-well approximation is small, as can be seen
by averaging the scattering amplitudes for several
values of the radius parameter, Ro. But still it can lead
to a change in the required deuteron potential by about
5 Mev. More important, as one requires a larger
deuteron potential on the order of the deuteron kinetic
energy, the requirement that ne~1 is no longer met,
and the wave function of Eq. (29) is no longer valid. In
order to avoid these difficulties, a more exact treatment
would be necessary in which one would use wave
functions of the form of Eq. (23), and (or) higher
orders in WKB approximation. Certainly, a numerical
integration of the matrix element would be inevitable.

However, discounting the failure of the theory with
regard to the points mentioned above, it is felt that by
an optical-model analysis as presented here, one can
adequately describe the nuclear scattering effects in
rearrangement collisions such as the pickup process. It
should also be quite apparent from the results here that
the neglect of the initial- and final-state scattering

25 H, P. Stapp, Phys. Rev. 107, 607 (1957).
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contributions to the matrix element is not justified at
these energies, if one is interested in finding accurate
information concerning the details of nuclear structure.
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APPENDIX: ALTERNATIVE DERIVATION OF
THE TRANSITION MATRIX

We may rewrite Eq. (6) as

Y =g+ Vops

e =Vp—V,
1

_._~___~_._~__VP¢(+)’
e —V,,—V,

(43)

and verify that it satisfies Egs. (2) and (5) by direct
substitution. The Green’s function in Eq. (43) repre-
sents outgoing deuterons in which the neutron interacts
with the core through the potential V,. We can there-
fore define a wave function &, to describe this:

1
‘bn(_)zﬂn(_)d)f:d’f’*“'(“) VnT‘I’n(“), (44)
o=

—Vup
where

1

A=V, y— Vit

Vat.

Q2. =1+ (45)

Now by expanding (¢ —V,,—V,)™" of Eq. (43) in
the usual way in outgoing deuteron states (in which the
neutron interacts with the core), we obtain the exact
transition-matrix element for the pickup process:

Tri= (22| Vap| )+ (@0 [V [ D).

It should be noted that no approximations have been
used in deriving Eq. (46). This transition amplitude,
however, is not a very tractable expression as yet, since
only the functional forms of V., and ¢; are reasonably
well known. We begin with the optical-model approxi-
mations by replacing the last term of Eq. (46) by an
expression that describes only elastic or coherent
scatterings of the proton in the nucleus:

Vol ¥)>Veyp| Qe Do),

where we have

(46)

(47)

Qe, P =14 —Vep,

— (48)
a®—V,—Vep
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and V¢, and Q¢ are defined to be diagonal with
respect to the energy of the core. [See discussion in
Sec. I1.]

Since, in Eq. (48), ¢ —V, is diagonal and represents
states of all 4 nucleons, V¢, then gives the elastic
proton interactions with all 4 nucleons. It might be
argued therefore that to make Eq. (47) more exact, we
should have an additional term, V, ¢, on the left
side, since V, includes the proton interaction with
only 4—1 nucleons. We can justify Eq. (47) by
expanding ¥ and seeing that the proton interacts
through V,+ V., for all but the last scattering, in
which V,, is absent (i.e., the neutron does not interact).
If 4 is large we can assume that the omission of the
neutron from the 4 nucleons in the last scattering will
not affect the elastic description of the proton scattering.
Substituting Eq. (47) into (46), we obtain the transition
matrix

Tri= (B Vap| )+ (@07 [ Vep| QepPi).  (49)

We may now condense Eq. (49) into a more compact
expression. We note from Egs. (2), (4), (7), (44), and
(48) the relations

(@ =V o= Va2, T = —iegy, (50a)
(@D =TV ,)pi=1eps, (50b)
(@D —=V=Vep)QeprPpi=1iedh;. (50c)

In Egs. (50), we have used IZ;=I;. Using (50a) and
(50b) in the first term of Eq. (49), we obtain

(CI’n(—) [ Vnpl Bi)=1e€ ((pn(—) { ¢'1> —ie(py [ ®i). (51)
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Likewise, using (50c) and (50a) in the second term of
Eq. (49), we obtain

(@2 Vep|QepP0)
= (B0 Vaup| Qo) Fie(ds| Qo Ppi)
—ie($, | ¢).
Substituting Egs. (51) and (52) into (49), we find
Ti= (@ T¢s| Vap|QepPepi)
Fiel (@/]QeryPdi)— (07]¢4) ],

(83)

(52)

or
Tri= QD07 | Vip|Qepr Do),

since the term involving the factor e is asymptotically
zero for final-state deuterons.®
Our second elastic-scattering approximation is to
replace ®,), defined by Eq. (44), by ®¢,¢, where
(an(_)'__QCn(_)qsfa (54)

describes a wave of deuterons in which the neutron
interacts elastically with the core nucleons, and where

1
Venl
a =V, ;—Vent

Qe TV =14+

(55)

Here Q¢, and V¢, are optical-model operators
similar to Q¢,™ and V¢, of Eq. (48). We finally
obtain the transition matrix,

Tri= Qca b Vap| Rep i),

which is the same as Eq. (27) of Francis and Watson.”

(56)



