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The accurate solution of the Schrédinger equation by means of a combination of the method of correlation
factor and the method using superposition of configurations is discussed. For a many-electron system, the
total wave function divided by the nodeless function g=g (712,715,723 - -) may be expanded in a series of
Slater determinants built up from a complete one-electron set. For a two-electron system, this expansion
becomes very simple and, by going over to principal orbitals, it may be ‘“‘diagonalized’”” and brought to a

particularly rapidly convergent form.

The method is applied to the He-like ions (H™~, He, Li*, and Be?*) by choosing g=14ar12 and by using
a basis consisting of only three s-orbitals. The energies obtained differ from the exact values only by about
0.001-0.002 atomic units. Even the simpler wave functions (#)2(1+4ari2) and (u,7) (14-ar;2) are discussed,
and the forms obtained by truncating the expansion of ¥ in principal orbitals are studied in greater detail.

I INTRODUCTION

N the independent-particle model of a many-electron
system, the interaction of the electrons is taken into
account by an average potential field. Although this
method gives a comparatively small relative error in
the energy, the difference between the experimental
and theoretical value is of the same order of magnitude
as the energy change in a normal chemical reaction.
Therefore, it is of great importance to refine the wave
function by treating the ‘‘correlation effect” in a
correct way, i.e., to take into account the fact that the
electrons, because of their mutual Coulomb repulsion,
try to avoid each other.

In studying the correlation problem in the He atom,
the method of “superposition of configurations” was
first used practically by Hylleraas.! The slow con-
vergence of the Legendre expansion, however, induced
Hylleraas to include explicitly the interelectronic
distance?3 7,5 in the wave function, and his successful
results have had a very strong influence on the later
computations. Hylleraas’ work on helium has been
continued along several different lines.

The method using a power-series expansion in the
three variables s=71+7s, #u=r1, t=7,—r;, has been
extended to a high degree of accuracy in the energy
eigenvalue.? Recently Kinoshita® has pointed out that
one could just as well use a power series expansion in s,
(u/s), and (¢/w), which implies a generalization to
include negative powers of s and #. By means of a
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39-term function, he obtained the energy value
E=2.903 7225 a.u.m., which is in very good agreement
with the latest experimental results with the necessary
relativistic corrections.

It was early found® that Hylleraas’ expansion could
not be a formal solution to the helium wave equation,
but the inclusion of the negative powers has changed
the situation.” Even the inclusion of logarithmic terms
in the wave function has been discussed.® The discussion
of the existence and analytical character of the exact
eigenfunction for the ground state of helium is still
going on.’?

With respect to the energy, the method using
“correlated” basic variables described and discussed
in references 2-9 shows an excellent accuracy for
helium, but unfortunately this method cannot easily
be generalized to systems containing more than two
electrons. In connection with the general theory of
many-particle systems, the helium atom is otherwise of
particular interest, since it provides a simple example
on which various approaches may be tested before
they are applied to more complicated systems.

Considering generalizations to molecules and crystals
the above-mentioned method! using ‘“‘superposition of
configurations” seems actually much more promising,
since it is easily shown that every normalizable anti-
symmetric wave function may be expanded in a series
of Slater determinants built up from a complete set
of one-electron functions.® Because of the revived
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interest in this approach, the helium case has recently
been reexamined in greater detail,' and the results have
confirmed the fairly slow convergence of the Legendre
expansion.? The problem is to improve this situation.
The independent-particle model has the advantage
of having a high degree of physical visuality, and
Hylleraas? showed that it was possible to introduce a
great deal of correlation in this scheme by means of a
“correlation factor” g=g(r12) in the wave function

V=u(r)u(rs)g(r). 1)

Choosing # as a single exponential and g=14ary,,
Hylleraas obtained the surprisingly good energy®
E=-—2.8912 a.u.g.. Later even more general forms of
u and g in (1) have been investigated.™*

In this paper, we shall try to combine the method
with correlation factor g with the more systematic
approach using superposition of configurations. If
g=g(r15,713,723, - -) is a nodeless and symmetric func-
tion of all the interelectronic distances, we can expand
the antisymmetric function obtained by dividing the
total wave function by g in a series of Slater determi-
nants built up from a complete one-electron set, and
the problem is then to choose the factor g so that the
expansion converges as fast as possible. Hylleraas’
numerical result indicates that, by using a conveniently
chosen correlation factor g, one can essentially improve
the convergence of the configurational expansion. In
principle, the method is applicable to any many-
electron system, but here we shall first test it on the
series of He-like ions: H—, He, Lit, and Be?*,

II. GENERAL DESCRIPTION OF THE METHOD
TRANSFORMATION TO PRINCIPAL
ORBITALS

The nonrelativistic Schrodinger equation for the
He-like ions has the form H,,V=E¥, where H,,
=Top+Vop and

—_ 1 1
Top=—3A1—%Ay,

Vp=————+—  (2)

All quantities are expressed in modified atomic units,
(a.u.z). For a two-electron system, the wave function
may be factorized into a space part and a spin part.
Concentrating our interest on the space function
¥ (ry,r5), we note that, for the ground state, it is sym-
metric in the two coordinates.
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Phys. Rev. 109, 369 (1958) ; H. Shull and P. O. Léwdin, Technical
Note from Uppsala Quantum Chemistry Group, June 15, 1958
(unpublished), J. Chem. Phys. (to be published).

2 Compare also Green, Lewis, Mulder, Wyeth, and Woll,
Phys. Rev. 93, 273 (1954).
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4T, D. H. Baber and H. R. Hassé, Proc. Cambridge Phil. Soc.
33, 253 (1937); P. Pluvinage, Ann. phys. 5, 145 (1950).
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We introduce the correlation factor g=1-ars
proposed by Hylleraas,? and we expand the symmetric
function ¥(ry,rs)/(14ar2) for a>0 in a discrete,
complete, and orthonormal set of real one-electron
functions ¥ (r)

W (ry,r9)/ (14-ar) = kZ; Crapr(r)ya(r). 3)

By multiplying with (1+4ar2) we obtain the wave
function

U (ry,15) = (14aris) 3 Crbi (r)¢u(rs). 4)

The real coefficients Ci; (=Ci) form a Hermitean
matrix C which can be diagonalized by a unitary
matrix U:

UiCU=2. (5)

Introducing a complete orthonormal set of principal
orbitals X; by the relation

Xk=Za HbaUak, (6)
we obtain
W (r,r2) = (14+are) 2op NeXa (D) Xe(r2). (M

The principal orbitals are identical with the natural
orbitals'®15 only in the special case a=0.
For convenience we introduce a few new notations:

orr=Yr ()Y (rs),
o= /V2){r(roi(ra) Hda(r)¥e(r2)},

and

B, (8)

Gkk=Ckk, (7k1=\/7Ckl, k#l (9)
Correspondingly (4) takes the form:

¥ (r,rs) = (14-ar) X Cron(ryr). (10)
1<k

Writing the functions ¢ with /<% in lexicographic
order, ¢11, @21, v22, @31, * * +, we can introduce a single
index ¢ [instead of the double index (%,/)] indicating
the place in this order:

(1)

and correspondingly a;=Cj;. This enables us to write
¥ as a single sum:

U (ry,re) = (14ar) 2: aips(ry,rs). (12)

To approximate the solution of the Schrodinger equa-
tion by means of Ritz’s method, we shall use the
nonorthogonal set ®;= (14ar12)¢; having an overlap
matrix A with the elements

Aij=Ai;0420A;V+a’A;®, (13)

where A;™W= [ @,pr12"dvidve. The energy is repre-
sented by the matrix

Hijz Hij(m +(¥Hij(l)+a2Hij(2),

P1= @11, P2 P21, @3 P22, "7,

15 P, O. Léwdin and H. Shull, Phys. Rev. 101, 1730 (1956).
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TaBLE I. Ground-state energy of the He-like ions.

Z E ““Bexact” E —Eexact
H~ 1 —0.526 37 —0.527 562 +0.001 19
He 2 —2.902 28 —2.903 76> -0.001 48
Lit 3 —7.278 07 —7.279 93°4-12 ~+0.001 86
Be*t 4 —13.653 48 —13.655 43°+-46 -+0.001 95

a L. R. Heinrich, Astrophys. J. 99, 59 (1944).
b See reference 5.
¢ Semiempirical, reference 19.

where

Hij(°)=f¢iHop<dev1d'L‘2,
H;V= f"12(ﬁ0iH0p @it @iHop o) dvidvs, (15)

Hy;®= f 7120 (Hopr120;)d01d0s.

The coefficients a; in (12)
system of linear equations
2; (Hij—EAy)a;=0, (16)
and the eigenvalues E are determined by the determi-
nantal equation
(17)

are found by solving the

det{Hij—EAi]'} =0.

III. TRUNCATED BASIS: SCALING PROBLEM
AND CHOICE OF PARAMETER

In the numerical computation, it is not possible to
use an infinite set {{+}, so we are forced to truncate the
one-electron basis to finite order M. This implies that
the series (12) will contain only M (M+1)/2 terms.
This procedure can be dangerous, since the truncated
set may not be appropriate for the physical problem
under consideration. It may be “out of scale” with
respect to the dimension of the system, and many
fundamental relations, as for instance the wvirial
theorem, are then no longer fulfilled. Following
Hylleraas,* we shall adjust the truncated set by intro-
ducing a scale factor 7, so that

®; (it Xz) =1°P; (nr1,mre) =1° (1+anri2) ei(rynrs). (18)
It is easily shown that A;;(n) =A;;(1) and further
Ti(m)=n"T;Q1), Vii(m)=2Vi(Q). (19)

The characteristic roots of the truncated secular
equation (17) will be functions of both of the parameters
n and a. Equation (16) may be written in matrix form:

Ha=EAa, (20)

where a is a column vector formed by the coefficients a;.
Multiplying by the row vector af, we obtain

(21)

Differentiation with respect to any parameter « leads

P. LOWDIN AND L. REDEI

to the relation'®:
oK oH dA
—={——F—). (22)
ok dk Ik’ 4
Choosing k=7 and k=« respectively, we obtain
OE/on=2n(T)s+(V)a, (23)
OE/da=2a(H® — EA®) +(HO —EAD),. (24)
These relations are useful in the evaluation of E,,.

IV. CHOICE OF BASIS AND EVALUATION OF
THE MATRIX ELEMENTS

As one-electron basis {yx}, we have chosen the

discrete, complete, and orthogonal set, recently sug-
gested by Shull and Lowdin'":

[nlm]={ (n+1+1) 3 H (n—I—-1)1}}
Xrte Ly P () Vim(0,0),  (25)

where Ly 1122 are the Laguerre polynomials of order
(214-2) and Y3, are normalized spherical harmonics.

The evaluation of the matrix elements was carried
out by means of a theorem? that, if f is a function of
only the variables 71, 72, and 715, then

ff("l,7’2,712)d‘01d1)2

W% A7ty
:87r2f f f f(rl,7’2,rlg)rlfzhgdﬁd?’gd?’m.
(] |r1i—ral

It is easily shown that, in using the basis (25), all the
matrix elements involved may be expressed in terms of
the quantities

0 0 ritre
A (p,q,n) = f f f e—2(r1tr2)
[} |r1—r2l

Xr1Pro%r19"dridredrys,

(26)

27

which can be calculated by elementary methods. For
details we refer to the Appendix. Since the energy
depends on the two parameters, 7 and a, it is convenient
to evaluate the matrices A, T, and V(™ for
n=0, 1, 2 separately.

In the actual calculations, we have chosen a truncated

TaBLE II. Optimum values of the parameters 7 and «.

@ 7 an

H~ 0.458 0.7648 0.3503
He 0.146 1.9729 0.2880
Lit 0.0855 3.1456 0.2689
Be?* 0.0607 4.29746 0.2609

16 For a detailed treatment of the scaling problem, see P. O.
Lowdin, Technical Note from Uppsala Quantum Chemistry
Group, January 20, 1958; J. Mol. Spectroscopy (to be published).

17H. Shull and P. O. Léwdin, J. Chem. Phys. 23, 1362, 1565
(1955) ; Phys. Rev. 101, 1730 (1956).
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Taste ITI. Coefficients a; in the expansion (12). Note that these functions are chosen so that a1=1; N= /| ¥|%dv:dvs.

a1 az as as as as N
H- -1.000000 —0.055653 —0.099281 +0.154719 -+4-0.006903 +0.002494 4.999788
He -+1.000000 —0.128136 —0.023678 +0.051264 -0.000082 —0.003645 1.917904
Lit -+1.000000 —0.148801 —0.008957 +0.036321 —0.000594 —0.002768 1.517154
Be?t -+1.000000 —0.153931 —0.002832 -+0.029888 —0.000876 —0.002161 1.364091

basis consisting of only three functions: [1s7], [2s], [3s],
where Vo= (47)~%. This corresponds to an expansion
(12) of six terms, and a secular determinant (17) of
order six.

The calculation of the lowest eigenvalue £ and the
associated eigenvector a;, was carried out by an
iteration-variation procedure.'® The parameters o and
a were varied independently until the optimum energy
was found.

V. RESULTS OF THE CALCULATIONS

The results of the calculations are condensed in
Tables I-V. Table I gives the lowest energy E in
comparison to the exact value FEexact associated with
the nonrelativistic Hamiltonian (1). The latter is
obtained either from accurate calculations (H—, He)
or from spectroscopic data!® corrected for relativistic
effects. All the results are expressed in modified atomic
units.

The parameters 5 and a corresponding to minimum
energy are listed in Table II, and the associated coeffi-
cients a; are condensed in Table III. The transforma-
tion to principal orbitals according to (6) is straight-
forward and the A values are listed in Table IV.

We notice how A, becomes more dominating in
comparison to A; and As as Z increases. This indicates
that the radial correlation looses some of its importance
as we go to higher nuclear charges.

Finally in Table V we have given the unitary matrix
U which transforms the set (1s), (2s), (3s), into the set
X3, Xo, and X; of principal orbitals. The high diagonal
coefficients in the U matrices indicate that the original
basis chosen does not differ very much from the
principal orbitals in this case.

TaBLE IV. The values of the coefficients A in expansion
(7) of a normalized wave function.

VA A A2 As
H- 1 +0.4532 —0.0454 —0.0038
He 2 +0.7888 —0.0231 —0.0033
Lit+ 3 +0.8212 —0.0163 —0.0025
Be2t 4 +0.8666 —0.0126 —0.0020

18P. O. Lowdin, Technical Note from the Uppsala Quantum
Chemistry Group, April 23, 1958 (unpublished).

18 Atomic Energy Levels, National Bureau of Standards Circular
No. 467, edited by C. E. Moore (U. S. Government Printing
Office, Washington, D. C., 1948), Vol. I.

VI. SIMPLER WAVE FUNCTIONS. TRUNCATION
OF THE EXPANSION (7)

In this section we would like to discuss the energy
values obtained by interrupting the expansion (7)
at different values of £.2° Truncating the sum to contain
only a single term, we have

W (ry,re) = (14ariz)M\iXa(r1)X1(r2). (28)

Using the first principal orbital X; and the a value
givenin Sec. V, we obtain the energies listed in Table V1.

The wave function (28) is of the general form
(14-ari2)u(ri)u(rs). From the point of view of com-
parison and generalization to more complicated systems,
it is interesting to study the simplest possible functions
#, namely 1s orbitals (simple exponentials) and SCF
(self-consistent field) functions.?

The results of such calculation using unscaled
functions # and varying «, are condensed in Table VII.
We note the improvement in the energy as we vary a.
Much better results are obtained by introducing a
scale factor 5 according to Sec. III. The energy values
are given in Table VIII.

We also investigated the case when # is a sum of two
exponentials:

u(r)=Are~ "+ A=, (29)

where in addition to the normalization constant and
the scale factor, we have two variational parameters.
The corresponding energies are given in Table IX.

Let us now consider the expansion (7) truncated to
contain the first two principal orbitals X; and X,. Since Ay
and A\, have opposite signs, we can write A= @? No= —b?
and we obtain

W= (1+4arw) {a®X1(r)Xa(rs) — b*Xo(r1)Xa(r9) }

= (14-ar1p) (u,2), (30)
where
(u,0) =u(r)v(r:) +u(re)v(r1), (31)
and
u(r)=aX1(r) —bXy(r), (32)

v(r) = aX1(r)+0Xs(7).

Wave functions of the type (14-ar12) (#,v) have been
previously investigated by Chandrasakher? who pointed
out that excellent results are obtained for H—, if » and

2 Compare the corresponding treatment of the expansion in
natural orbitals. See reference 15.

2 For the He-like ions, we have used analytic SCF functions.
P. O. Léwdin, Phys. Rev. 90, 120 (1953) ; Green, Lewis, and Woll,
Phys. Rev. 93, 757 (1954).

2 S. Chandrasakher, Astrophys. J. 100, 176 (1944).
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TaBLE V. The unitary matrices U defined in (5).

H- He
40.993613 —0.034676 +4-0.107382 +0.995542 —0.038326 +0.035624
+0.044852 +0.994576 —0.093843 +0.090966 -+0.988809 —0.118254
—0.103546 ~+0.098060 +0.989779 +0.024899 —0.120967 —0.992344
Lit* Bez+
+0.994409 —0.102543 —+0.025222 +0.994083 —0.106621 -+0.020778
—+0.104985 +0.985725 —0.131619 +0.108449 4-0.985057 —0.133800
—0.011366 +0.133531 +0.990980 —0.006202 +0.135261 -+0.990791

TaBLE VI. Energy corresponding to wave function (7) containing
only the first principal orbital.

E®

H- —0.5174
He —2.8973
Lit —7.2733
Be*t —13.6488

TaBLE VII. Ground-state energies corresponding to the wave
function (28) with « given by unscaled 1s orbital or SCF function.

u =1s-orbital, n =7 — 5 # =SCF function

z Ea =0 Eut opt. @ Ey=0 Ey opt. @
H- 1 —0.4727 —0.4964 0.246 —0.4878 —0.5022 0.152
He 2 —2.8477 —2.8748 0.199 —2.8617 —2.8807 0.156
Lit 3 —7.2227 —7.2507 0.188 —7.2364 —7.2566 0.154
Bezt 4 —13.5977 —13.6261 0.184 —13.6113 —13.6320 0.153

v are approximated by single exponentials having
different exponents. The case of He and Li* has been
treated similarly by Green ef al.t?

In Table X are listed the energies corresponding to
the first two principal orbitals. For comparison we have
included also the results obtained by using single
exponentials for % and ». The values for a=0 are taken
from Shull and Lowdin.?

We note that the two-term principal orbital result in
the last column of Table X is better than the best
corresponding exponential wave function with optimized
a. This is so even though the « used in the truncated
function is optimized with respect to the complete wave
function and not with respect to the energy of the
truncated basis. This seems to imply that, in the method
using correlation factor, the principal orbitals play an
important role similar to that of the natural orbitals
in the case a=0.

VII. CORRELATION EFFECTS. PROPERTIES
OF THE WAVE FUNCTION

Let us now study how the correlation effects are
implied in the wave function treated in this paper. The
introduction of the correlation factor g= (14ar12) means
that, in the two-electron probability density,

| W (r1,12) | 2= (14ario)® 2k NiXe (1) Xe (1), (33)
one will give pairs (ri,rs) with large 712 a higher proba-

23 H. Shull and P. O. Léwdin, J. Chem. Phys. 25, 1035 (1956).

bility in comparison to pairs (ryr:) with small 7y,
The importance of this “Coulomb hole” becomes clear,
if we consider the special case |ri|=|r;| and vary r,.
The factor g= (14-ar1) is therefore of main importance
in treating the angular correlation.

In order to study the radial correlation, we place the
two points r; and r; on the same straight line through
the nucleus and keep one of them fixed. In this case, the
variation of the factor g= (14-arys) is very small around
the point ;=0 in comparison to the large change in
the second factor in the right-hand member of (33);
and one can conclude that the essential part of the
radial correlation must be embedded in the second
factor. )

Let us now study the one-electron density defined
by the relation

v(r)= f [ (r1,12) | 2d,, (34)

for a wave function of the form (7) and compare it

TaBLE VIII. Ground-state energies as in Table VII, but with
scaling. n=scale factor. a=7« optimized.

u =scaled 1s-function u =scaled SCF function

7 E 7 I3 E n a
H- 1 —0.5088  1.2010  0.493 —0.5164  1.2400  0.477
He 2 —2.8011  1.0962  0.366 —2.8954  1.0958  0.322
Lit 3 —7.2682  1.0631  0.337 —7.2712  1.0593  0.290
Bett 4 —13.6441 1.0467 0322 —13.6465 1.0427 0.277

TasBLE IX. Ground-state energy corresponding
to u=A4 670+ 4 e,
a1 a: Ay A2 E

H- 0.51086  1.13717 0.34290  1.42201 —0.520500
He 1.56317  2.49720 2.70716  2.56910 —2.898063
Lit 2.60065  3.92698 6.79381  3.11156 —7.273847 .
Be?™  3.64318  5.64693  12.45402 298896 —13.64918

TaBLE X. Ground-state energies corresponding to wave functions
of the form (u,7) (1+ari2).

Simple exponentials Two principal

a=0 a optimized orbitals
H- —0.5133 —0.5259 —0.5262
He —2.8757 —2.9014 —2.9020
Lit —7.2490 —7.2772 —7.2778
Be?* —13.6230 —13.6531
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with the same quantity in the Hartree-Fock approxi-
mation. For this purpose, we have used an analytic
self-consistent field function.? The quantity v (r1)7:? for
He has been plotted for both cases in Fig. 1. We note
that the two curves have the same general shape. Their
difference is everywhere less than 0.08 at every point.
The “correlated” density is more contracted than the
SCF curve, which shows a larger extension of the
electronic cloud. This trend is also reflected in the
quantities (r*)p, defined by

rmm= f ¥y (r)rm+drs. (35)
0
The results for He are condensed in Table XI.

TaBLE XI. Average values (r")a for He for a correlated wave
function based on Table III in comparison with the SCF values.

Correlated SCF

wave function function
(v 0.897 0.930
(P 1.141 1.193
(7 1.901 1.944

An investigation of the influence of correlation on
the atomic “form factor” for He is now also inprogress.

APPENDIX. CALCULATION OF MATRIX ELEMENTS

In calculating the matrix elements, we put =1 in
the functions [#lm ] defined by (25) for /=0. Each one
of the products ¢;¢; may now be expressed in the form

X b(pg; ifriorste o, (A1)

PiP;i=
T (r) e

Let L., be the nuclear attraction operator and Co, the
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electronic Coulomb repulsion operator, so that
L=—27Z/rn—2Z/rs, C=1/r1, (A2)

and V=L+C. Expressing the matrix elements in the
quantity (27), one obtains

A O=0y,

Aij =32 b(pg; ) (A3)
XA(p+1, ¢+1,n4+1), n=1,2.

L;O=~Z3 b(pg; ij) (p+2)!(g+1) !/ (27HH),

Lij™m=—nZ 3 b(pg; 1)) (A4)

XA(p, ¢+1,n+1), n=12.
Ci.’i(O):% Z b(?% 7‘])A (P_l_l) (I“|' 17 0)7
C,‘j(l) = ZA,','(O) = 26i,-, (AS)

Cii®=A;0,

The matrix elements of T, are slightly more compli-
cated. It may be convenient to introduce also the
expansion

1

(A6)

> X b(pg;ij)rirryteiitd,

2
(p .T (P ;=
e (41r)2 p=—1 ¢=—1

The matrix T;® requires some consideration, but, by
application of vector operator formulas, we obtain

T;®=3 ij+%ff 12 @iTop @it @i Top@ildvidve.  (AT)

This gives the result
Ty == b(pg; if) (p+2) (g+DY (277,
TW=—13 [b(pg; if)+b(pg; ji)]
XA(p+1, ¢+1, 2),
Ty®=—3% % [b(pg; ij)+b(pg; 7i)]
XA(P+1; ¢1+1; 3)+5u)

and the evaluation is straightforward.

(A8)
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