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Coherent Atomic Scattering Factors for the Lithium Hydride Crystal Field*
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This paper describes an effort made to evaluate the coherent atomic scattering factors for the lithium and
hydride ions as they exist in the LiH crystal field. The two electron wave functions chosen to describe these
ions are each in turn optimized in the field of positive and negative point charges arranged as the corre-
sponding ions are arranged in the crystal. Using the orbital exponents obtained from the minimization
process, atomic scattering factor calculations are made in the usual way. The factors for Li are unchanged.
Interesting eGects are noted for the H scattering factors.

The energy of the ions in the field of point charges is related to the crystal cohesive energy. Specifically,
neglecting the zero-point energy correction, the calculated open configuration results were —236.3 and
—227.4 fecal/mole when compared with computed and experimentally determined free H reference en-

ergies, respectively. The experimental cohesive energy is —218.5 kcal/mole.
Finally, it was noted that the H ion contracts in the crystal field. A possible explanation for this eA'ect is

given.

I. INTRODUCTION

'HE atomic scattering factor or form factor may
be thought of as a measure of the scattering due

to the individual atoms. By nature and definition it is

essentially an atomic property. Perhaps on the basis of
this notion most of the recent effort expended in at-
tempting to improve existing tables of these factors has
been limited to using better atomic wave functions. To
mention just a few examples, Thomas and Umeda' have
recently published a very extensive table based on the
Thomas-Fermi-Dirac model, Berghius' et a/. have com-

puted Hartree-Fock self-consistent field (SCF) factors
for a large number of atoms and Hurst, Miller, and
Matsen' 4 have considered radial correlation for a
number of two-, three-, and four-electron systems.

En view of the increasing interest of x-ray crystal-
lographers in obtaining experimental information re-

garding the nature of chemical bonding, it seems

necessary that the effects of the crystal field on the
scattering factor be more fully treated. With this goal,
the present effort is to evaluate the coherent atomic
scattering factors for the lithium and hydride ions as

they exist in the lithium hydride crystal field.

used in the scattering factor calculation. Finally, this
process is repeated for the case that the Li+ species is
the central ion. Essentially, in this model the crystal is
assumed to be entirely ionic with no exchange between
charge clouds of adjacent ions. These assumptions are
supported at least partially by three lines of indirect
experimental evidence which suggest an ionic type
model:

(a) X-ray diffraction studies of the lithium hydride
crystal indicate that this crystal is of the well-known
sodium chloride type, with lithium positive and hy-
drogen negative.

(b) The physical properties of crystalline lithium
hydride are much like those of the halide salts of the
alkali metals. For example, lithium hydride is a color-
less, crystalline solid with a high melting point (680'C).

(c) Electrolysis of molten lithium hydride yields
hydrogen at the anode.

III. METHODS AND CALCULATIONS

A. Formulation of the Problem

The wave function for the central ion is the so-called
"open configuration" function of the form' '

II. THE MODEL

The model chosen for this problem is a central two-

electron ion surrounded by an infinite lattice of positive
and negative point charges arranged as the correspond-

ing ions are arranged in the crystal. First the wave

function for the hydride ion is minimized with respect
to the energy in the field of point charges and then the
orbital exponents obtained by this minimization are

*This work is being reported under contract AT (11—1)-298
with the U. S, Atomic Energy Commission.

t Part of this work was completed at the Theoretical Chemistry
Laboratory of the University of Texas.
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where A and 8 are 1s hydrogenic atomic orbitals cen-
tered on the central ion and having effective nuclear
charges u and b, respectively. That is
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This wave function was chosen as it allows for some
radial correlation and enables one to obtain a reason-
ably good energy, at least in atomic calculations, with-
out an unreasonable amount of labor. In particular,
recent calculations ' " have shown that this type of
function gives lower atomic energies than usually is
obtained from the Hartree-Fock SCF method. The
corresponding "closed configuration" wavefunction is
obtained from Eqs. (1) by restricting the orbital ex-
ponents such that a= b.

The Hamiltonian can be written as the sum

H= Ho+%+Ho+Ho+

Here Bp is the Hamiltonian for the two electrons in the
field of the central ion, B~ represents the perturbation
terms due to the group of 6rst nearest neighbors, B2 the
perturbation due to the second nearest neighbors, etc.
Thus, Bp for electrons i and j of the central ions with
nuclear charge Z is given in atomic units by

Ho= ——',7'P ——',VP ——— +
fj fj Fjj

(3)

In explanation of the notation employed it is necessary
to specify the electron, the particular group of neighbors
involved, and the particular member of that group of
neighbors. Thus, to keep the notation consistent the
two electrons are specified by the letters i and j, the
group of neighbors by an Arabic subscript, and the
member of the group of neighbors by a Greek subscript.
In addition, p is the total charge on the central ion,
i.e., p= 1 for Li+ and p= —1 for H . Then, for example,
PL1/r&(i)+1/r&(j)j gives the interaction of the elec-
trons with the n member of the group of 6rst nearest
neighbors and —6Zp/R& gives the energy of attraction
or repulsion between these first nearest neighbors and
the nucleus of the central ion.

Since the approximate wave function LEqs. (1)] is
antisymmetric with respect to electron interchange, one
can replace the terms 1/r&(i)+1/r&(j) of Eq. (4) by

The perturbation B~ due to the group of six neighbors
nearest the central ion is given by

1 1 1 1H=!I . + . I+! . +
l (r&(i) r&(j)) (r&(i) rz(j)] p

1 1 1 1
+I + ! +I +

Erg(i) r, (j)) ~ (r, (i) rg(2)) o

p1 1q )1 1
+ I + I +! + i

—6— (4)
Erg(i) rg(j) I, Erg(i) rg(j) ~ r Eg

Similarly for the next 12 nearest neighbors,

2 Z
H2= —12p

r2(i) Ro
(6)

This can be generalized by comparing with the well-
known Madelung series. For a sodium chloride type of
crystal, such as is considered here, the Coulombic
energy E. due to a system of point charges is given in
atomic units (a.u.) by

1 ( 6 12 8 6 24
+ +..«+1 Q2 +3 Q4 +S

1 (mg mo mo m4
~ ~ ~

(7)

Here r is the distance between nearest neighbors or half
the length of the unit cell, A is the Madelung constant
1.747558, and E„ is the distance from the central ion
to the eth layer of neighbors having ~m„~ ions. Then,
by comparison with Eq. (7), we have

Z.=rgm

( 2 Z)
H„=m„p! ——

~; N&0
&r„(') Z„&'

so that m~=6, m2= —12, ma=8, m4= —6 . . etc.
One might suppose that the energy E could be com-

puted in the usual way from

E= C H@d7. (10)

This, however, is not practical due to the extremely
poor convergence of the following sum comprising the
numerator:

~OH+dr= I@Ho+dr

+ %H,+dr+ %H,+dr+ . (11)

2/r&(i). Further, since the approximate wave function
is spherically symmetric the perturbations due to the
nearest neighbors are equivalent. Thus, we can omit
the Greek subscripts and combine like terms to obtain,

( 2 Z )
Hg ——6p

Er, (i) a~

QHarrison Shull and Per-Olov Lowdin, J. Chem. Phys. 2S,
1035 (1956).' Hurst, Gray, Brigman, and Matsen, Mol. Phys. 1, 189 (1958).

"Brigman, Hurst, Gray, and Matsen, J. Chem. Phys. 29, 251
(1958).

This is to be expected as it is well known that special
techniques are required to evaluate the Madelung
constant. This convergence difhculty can be overcome
by making use of the asymptotic form of the interaction
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integrals. That is, since

' O'H„+dr ~~dr

2m„p
2 —(1+aR„)e '~~" (1+—bR )e 'P~"

Next, the energy Eo, representing the energy of the
central ion plus the Coulombic interaction energy that
would result if the central ion were a point charge is
computed from

A I1
Ep=Epp+E, =

i
EppN N—

)
——,

R, i N'

128(ab)' p (a+b)
+ 1—

~
1+ R ~e

('+P&z

(a+b)' E 2 )
m„pz

R. '

where E is the normalization integral

where A is the Madelung constant and E, is the Cou-
lombic energy as given in Eq. (7).

Next, Eo is improved by correcting the interaction
energy due to the group of first nearest neighbors. Thus,
E& is obtained from Eo by subtracting out the incorrect

e)0 (12) value —nsi/Ri, which was taken as the interaction
energy of these six nearest neighbors with the central
ion, and putting in its place f%'Hi@dr/f Wdr. Here
again Hi is given by Eq. (5). Then Ei is obtained from

128(ab)'
N =2+

(a+b)'

we have for large R„

(13)

where

(pz 1)N
IEi= EpN 6 —+2pBi

R, I
N' (18)

o'H„%'d7
rw„p(2 —Z)~dr —+

d7.
ri(i)

(19)

or
J

O'H„+dr

R„
mn

I ~dr —+ ——, (14)
R.

'

since when p= 1, Z= 3, and when p= —1, Z= 1.That is,
at su%ciently large R the interaction energy as com-
puted from Eq. (12) is equal to that which would be
obtained if the central ion were a point charge.

Essentially then, in using this fact to obtain con-
vergence of Eq. (11), the energy is initially computed
from the assumption that all neighbors view the central
ion as a, point charge. Later, for those neighbors sufFi-

ciently close to the central ion that the interaction
energy cannot be computed in this way the incorrect
interaction energy is subtracted out and the correct
value for the interaction energy as given by Eq. (12)
is added in.

This process is performed as follows. First Eoo, the
energy of the central ion by itself, is computed. Eoo is

given by

Similarly, by correcting the second nearest neighbor
interaction energy one obtains E2 from Ej using

(pz —1)
Ep= EiN+12 N+2pB p

R2 S (20)

and E3 from

(pz —1)
E3= E2S—8 N+2pBp

R3 .E

By induction one may show that in general

(21)

t
(pZ —1)

t
1

E +i——E„N'—rN„N+2pB„~ —, n)0. (22)
R

Again, the numbers m are taken from the terms in the
Madelung series Lsee Eq. (7), R„=(e)&r, p is the total
charge on the central ion, N is the normalization con-
stant given by Eq. (13), and B„is given by

where

+Hp+dr ~dr = +Hp+dr N, (15)
4 J J "r(i)

+Hp+dr=2 a(-,'a —Z)+b(-', b —Z)
4

64(ab)' ( ab ) ab(a'+3ab+b')—z [+
(a+b)' &a+b ~ (a+b)'

(ab)'
+20

(a+b)'-

= ——2—(1+aR.)e "~" (1+bR„)e "~"—
R

128(ab)' ( (a+b)

(a+b)' L 2 ) (23)

The iterations indicated by Eq. (22) were applied
until E„2, E ~, and E„agreed with each other to at

(16) least six significant figures. This limiting value of E„
will hereafter be referred to as E.
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Two cases were considered, H as the central ion and
Li+ as the central ion. For both cases E was minimized
with respect to the orbital exponents a and b by a
scheme previously developed for minimizing atomic
wave functions. " Essentially, in this method a set of
orbital exponents Xl', X»', Xl', , Xl" are chosen and
a calculation of the energy 8 is made. (In this case
there are only two exponents a and b.) Next, energy
calculations are made using the orbital exponents Xo',

and X2 Xl ~ ~ ~ X" where Xo —Xl
= —6 and X2'—Xl' ——6 and where 6 is an arbitrary
difference roughly the same order of magnitude as the
expected error in that orbital exponent. Then these re-
sults are used to obtain an improved orbital exponent
X~i from the equation

(28)

or

(29)

Thus, on adding Eqs. (28) and (29), we have

2N 2N

4=s E Z4e. (30)

and jth ions by g,;. Since a given ion cannot react with
itself, it is convenient to define p;, =0.

Then, adopting these conventions, the total inter-
action due to the 2E ions in the crystal is given by p,
where

Xo'+Xi' A[X(X,")—B(Xp')]
E(Xo') —2E(Xi')+E(Xs')

i=1, 2, e. (24)

Next, to isolate the types of interaction involved,
Eq. (30) is regrouped to give

2N N

Using this improved result for Xl', the next exponent
Xl' is improved and so forth until all the exponents
have been improved. Finally, one begins again with the
erst exponent, gradually reducing 6 until no changes in
the exponents are obtained.

Using the optimized orbital exponents a and b ob-
tained by the process just described, the atomic scatter-
ing factors were computed in the usual way from' "

or
i=1 j=l j=N+1

N 2N

i=1 j=N+1

i=N+1 j N+1i=N'+1 j=l

2N N 2N 2N

+s 2 Z4e+s 2

(31)

f= 4*P e'~ --&"&%dr %*%dr,
a

(25)

N 2N

i=1 j=N+1

2N 2N

i=N+1 j=N+1

32a4 256(ab)'

(4gs+~2) 2 [(g+b)2+ps]2 (@+b) s

32b4

Neglecting surface eGects, each lithium is equivalent
to each other lithium ion and each hydride ion is
equivalent to every other hydride ion so that Eq. (32)
can be written+, (26)

(4 br+. ~s) 2

N 2N 2N

4=&[-' ZsA~+ 2 A+s E 4.~3, (33)

where E is given by Eq. (13) and

@=4rr sine/X (a.u.) '. (27)

where

j N+1

k &S, r&E.

j=N+1

B. Re1ation Between E and the
Crystal Energy E„,

An important check on the correctness of this model
is the comparison of the computed lattice energy E„~
with the experimentally determined Born-Haber cycle
energy. We will now consider how the energy E as
computed in Sec. III-a is related to E.,~.

First of all we shall assign to each hydride ion a
number in the range 1, 2, , S and to each lithium
ion a number in the range X+1, X+2, . , 2X. Fur-
ther, we shall denote the interaction between the ith

'2 The middle term on the right-hand side of Kq. (26) has previ-
ously been incorrectly reported as 256(ab)4/{{ (a+b)'+psj'(u+b)').
See reference 3.

To clarify the meaning of this result, Eq. (33) can be
written,

4=s Z (&s—&~)+ E (&s Lr)—
j=N+1

+s 2 (L —li) (34)
j=N+1

The erst and second terms on the right side of Eq.
(34) represent the interaction of the kth hydride ion
with the other hydride and lithium ions, respectively.
Similarly, the last term gives the interaction of the rth
lithium ion with the other lithium ions. The interactions
are to be expressed in atomic units per mole thus
eliminating the necessity of multiplying by Ã.
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TAnLE I. Crystal energy results (in atomic units,
except where otherwise specified).

Epp
Ep
E1

E3
E4

5

E6
Es

E10
Ell
E12
E13
E14
E16
E17=E

E„„'(calc. H )E„' (exp. H )
Born-Haber Eery

Open configuration
a =1.0074; 5 =0.57146

—0.481560—0.934296—0.886192—0.898068—0.896340—0.896711—0.896208—0.896399—0.896416—0.896396—0.896404—0.896400—0.896401—0.896400—0.896401—0.896401—0.896401—236.3 kcal/mole—227.4 kcal/mole—218.5 kcal/mole

Closed configuration
a =b =0.77242

—0.465445—0.918180—0.886345—0.891334—0.890852—0.890924—0.890855—0.890874—0.890875—0.890874—0.890874—0.890874—0.890874—0.890874—0.890874—0.890874—0.890874—260.6 kcal/mole—226.2 kcal/mole

or

Finally, E„y is given by

E„r=BErr+EEr,+g,

N

E.,„=DErr+DEr,+,'Q Hs —H;-

a The computed and experimental energies of the free H ions were taken
from Shull and Lowdin LJ. Chem. Phys. 25, 1036 (1956)g.

b Frederick Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 390.

calculation and a=b=2.6875 for the closed-con6gura-
tion calculation. For this ion the mean electron dis-
tribution is su%ciently near the nucleus that E is given
by Es LEq. (17)$. This means that to the accuracy of
the calculation the lithium ion is a point charge and is
not polarized by the crystal field.

In view of these results it would seem most consistent
with the model to take AEr, =p in Eq (3. 5) when com-
puting the lattice energy E„y.Further, since the lithium
ion is much smaller than the hydride ion, as is evidenced
by the relative sizes of the orbital exponents, the Li+-H
interactions are best computed when the lithium is
taken as the point charge rather than when the lithium
is represented as a two-electron distribution and the
hydride ion is taken as the point charge. Thus, in com-
puting E„y we shall not average the interaction energies
obtained for H and I.i+ in the field as might seem sug-
gested by Eq. (35).

The differences E +r E„ t see E—q. (22)j represent
the correction due to the fact that the n+1 group of
ions does not view the central ion as a point charge.
Since this difference is always about zero for the case
that Li+ is the central ion, by applying Eq. (35) we can
express E„y in the following form:

E-r =Er—Ea-+ s (Es—Er)+ (Es—Es)+ s (E4—Es)
+ (Es—E4)+ s (Es—Es)+ s (Es—Es)

+ (Es—Es)+ (36)

TAaLE II. Atomic scattering factors for the hydride ion.

+ Q Hs L,+ ', Q L„—-L, -(35) Sing jp Open configuration Closed configuration Hydrogen atom
(A' I) Crystal field Free ion Crystal field Free ion Field-free

where d,EII and DEI, are the differences between the
energies of these ions in the crystal field and the free
ion energies. The manner Eq. (35) is actually applied
to compute E„y is best understood in terms of the
numerical results, hence this explanation will be de-
ferred to the next section.

IV. RESULTS

The energies E were obtained as is indicated by Eqs.
(15)—(23) and the optimum orbital exponents a and b

were evaluated using Eq. (25). The calculations were
made for the experimental lattice parameter r=as/2
=3.86 a.u. All computations were made on an IBM
CPC computer.

In the case of the hydride ion the optimum orbital
exponents in the crystal field are a=1.00746 and
b=0.57146 for the open-configuration calculation and
a= 0=0.77242 for closed-configuration calculation.
These values may be compared with the free hydride
ion exponents a=1.0392, b=0.28319, and g=b=0.6875
for the open- and closed-configuration calculations,
respectively.

For the lithium ion the optimum orbital exponents in
the crystal field are the same as those for the free ion,
i.e., g=3.2949 and b= 2.0789 for the open-configuration
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Here the E„are computed from Eq. (22) with H
chosen as the central ion, E&- is the energy of the free
hydride ion, and the polarization energy of Li+, DEL, , is
taken to be zero.

In Table I are summarized the crystal energy results
for the open and closed configuration calculations. In
Table II are given the scattering factors for H as com-
puted from Eqs. (26) and (27). The factors for Li+ have
previously been published, ' and hence will not be given
here. Finally, the factors for the hydride ion are com-
pared graphically in Fig. 1.

R.O

I.P

V. DISCUSSION

Nonempirical calculations of the lattice energy of
LiH have previously been made by Hylleraas" and
Lundquist. "Hylleraas obtained the result —219 kcal/
mole and Lundquist's work gave —205 kcal/mole. In
addition, Ewing and Seitz" have considered the general
symmetry problems of constructing a proper wave
function for this crystal.

In the present work the emphasis has not been on
obtaining a good description of the lattice energy Per se,
rather it has been on attempting to approximate the
charge clouds of the ions as they exist in the crystal
so that the scattering factor calculations could be made.
Nevertheless the open-configuration lattice energies are
still in fair agreement with the Born-Haber cycle energy.

In this work no correction has been made for the
zero-point energy as the various treatments for this
quantity have given widely diGering results. " Even
with this correction the computed lattice energies still
would be too large. This is as should be expected from
the nature of the model used. It is reasonable to sup-
pose, if the neighbor ions were replaced by distribution
functions, that the lattice energies would be somewhat
improved without radically changing the effective
nuclear charge on hydrogen.

Finally, it is of interest to note that the hydride
ion contracts in the crystal field as is evidenced by the
larger orbital exponents for this ion in the field as com-
pared with those for the ion out of the field. Since the
hydride ion is surrounded by six nearest neighbor
positive charges, superficial examination might suggest

~' E. A. Hylleraas, Z. Physik 63, 771 (1930).' O. Lindquist, Arkiv Fysik 8, 177 (1954).
'5 Douglas H. Ewing and Frederick Seitz, Phys. Rev. 50, 160

(1936).' Thomas R. P. Gibb and C. E. Messer, Atomic Energy Com-
mission Report NYO —3957, 1954 (unpublished). These authors
give a comprehensive summary of the work done on lithium
hydride, both theoretical and experimental, up to that time.

.2
sine/ A

.8.

FH:. 1. Comparison of atomic scattering factors for I .

that the charge cloud would be spread out. It is well to
note in this connection, however, that the magnitude of
the interaction between these first nearest neighbor
point charges and the electrons of H would be at a
maximum if the central ion were a point charge. For
this reason, the central hydride ion contracts until the
interaction is offset by the increases in kinetic energy
and electron-electron repulsion energies. This is analo-
gous to Weinbaum's" findings for the hydrogen mole-
cule. In his treatment using a wave function consisting
of a Heitler-London type covalent term plus an ionic
structure, the optimum effective nuclear charge is 1.193
for both structures together while the optimum eGective
nuclear charges are 1.0000 and 0.6875 for the free hy-
drogen atom and ion, respectively. Here the presence of
the other positive nucleus contracts the charge cloud.
Weinbaum's finding have been largely confirmed by the
later work of Altmann and Cohen. "

"S.Weinhaum, J. Chem. Phys. 1, 593 (1933).
' S. L. Altmann and N. V. Cohen, Trans. Faraday Soc. 50,

1151 (19S4).
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