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The magnetic field variation of the exchange energy of a free-electron gas is calculated by deriving the
form of the “Fermi hole” around each electron. The wave functions which are used exactly diagonalize the
kinetic energy. The resulting charge distribution is integrated to find the exchange energy. The exchange
energy has the same periodicity in the reciprocal magnetic field which is displayed by the kinetic energy.
Hence, it is concluded that the de Haas—van Alphen effect is unchanged by the field variation of the exchange
energy except for a possible shift in the phase of the oscillations.

ECENT investigations by Gell-Mann and Brueck-
ner,! Sawada,? and Sawada e/ al.®> have revived
interest in the calculation of the ground-state energy of
a dense free-electron gas. The ground-state energy per
particle in the presence of a uniform background of
positive charge is

2.21 0.916
E=[————+Ec] ry, (1)
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in which the terms on the right are the mean kinetic
energy, the exchange energy, and the correlation energy
in that order. The quantity, 7., is the radius of the
Wigner-Seitz sphere, measured in units of the Bohr
radius, and the energy is measured in Rydbergs. In the
original work, Wigner and Seitz calculated the exchange

energy,! while the correlation energy was estimated by |

Wigner.5 The recent studies’™® give an explicit quantum
mechanical derivation of the correlation energy.

The magnetic properties of a free-electron gas have
been examined by Wentzel® using the Sawada formal-
ism.2 For weak magnetic fields Wentzel found the
diamagnetic susceptibility to be unaffected by the
Coulomb interactions; that is, the result of Landau and
Pecierls” was verified. However, the perturbation treat-
ment used by Wentzel® is not applicable to the case of
strong magnetic fields, which is also physically inter-
esting. Experimental studies of high-field quantum
effects, such as the de Haas—van Alphen effect, have
supplied valuable information relating to the electronic
structure of metals.

To date, calculation of the de Haas—van Alphen effect
has been limited to consideration of the magnetic field
dependence of the kinetic energy. In this work the effect
of the magnetic field on the exchange energy term is in-
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vestigated. The field variation of the correlation energy,
though probably important, is not considered here.

The wave functions which diagonalize the kinetic
energy term in the Hamiltonian are

Vore=(L.L.) [expi(ka+g3) Jon(y+2%), (2)

in which the static magnetic field, H, is along the x
direction and in which ¢, is the harmonic oscillator
wave function instate 7, \X2=%(mw.) ™, and w,= eH(mc) ™.
The normalization of ¥ is in a box of rectangular cross
section, L.L,, and the eigenstates are designated by #,
and the wave numbers & and ¢. The energy eigenvalues
associated with the wave functions are

€= (2m) 12k -hwo(n4-3). 3

The mean kinetic energy per particle is given by
Exg={2 fo(enr)} 2 €nrfolenn), 4)
in which fy is the Fermi-Dirac distribution function and

the summation is over the quantum numbers, #, &, q.
At 0°K, Eq. (4) yields for the ground-state energy

2.21
Exu=—ro(149) 1y, ®)
7s
where
2 10 hw, nF nr
g=————2% (nr—n)} [ X (nr—m)},  (6)
3 9 g a0 n=0

n=Fermi energy, and nr= (n/%w;) —%. The upper limit
in the summation over » is taken to be the largest
integer <#p. The magnetic field dependence of Exg is
contained in g and is shown in Fig. 1. The periodicity in
n/hw. observed in this plot is characteristic of the de
Haas-van Alphen effect.

This work treats the exchange energy in the presence
of strong magnetic fields by calculating the form of the
“Fermi hole” around each electron in the gas using the
wave functions which exactly diagonalize the kinetic
energy, i.e., Eq. (2). Treating the Coulomb energy as a
perturbation, one obtains as the first order correction to
the energy

736



EXCHANGE ENERGY OF ELECTRON GAS

Ei=3{2 folea)} 22 folens) folensr)

dexlfdxw?\xl—— le_l

X | Wi (X)W i g (%2) ~ Vg (X2) Vi (x1) |2 (7)

This expression contains both an exchange term and a
direct Coulomb interaction, the latter term being can-
celled by the interaction with the uniform positive
charge density. The relative probability per unit volume,
P(r), that another electron with parallel spin will be
found a distance 7 from a given electron is®

P(r)=3{2 folenr)} 22 folenr) folenn)
X I\I/nkq(xl)‘l’n’k'q’(XZ) —Woig(X2) Wi (X1) [ 2, (8)

where 7=|x;—X:|. The evaluation of Eq. (8) using
plane waves (i.e., H=0) for the eigenfunctions gives

P(r)=1—9(kpr)~8(sinkpr—kpr coskrr)?, 9)

in which kr is the value of the wave number at the Fermi
surface. By subtracting the interaction with the uni-
form positive charge background, the exchange energy
per particle is found to be

E=2me? f sinfdf f rdr[P(r)—1]. (10)
0 0

The substitution of Eq. (9) into Eq. (10) yields the
exchange energy term of Eq. (1).

The evaluation of Eq. (8) for an electron in a mag-
netic field can be carried out using the Landau wave
functions of Eq. (2). The result is

P(x,p)=1— {,nZF VN (np—n)i) 2

np
XA{> sin[V2Ax(np—n)i]
n=0

Xexp[—p*/4N*]La(o%/2V)}F,  (11)
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Fi1c. 1. Magnetic field dependence of the mean kinetic energy of
a free-electron gas. 1-4-g is proportional to the mean kinetic energy
per particle and (7/%w.) is the Fermi energy relative to the
magnetic energy.

8 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
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F1G. 2. Magnetic field dependence of the exchange energy. 1+4
is proportional to the exchange energy per particle and (n/%iw,) is
the Fermi energy relative to the magnetic energy. The dashed
curve for (n/#w.) >2.5 has been inferred from the integrals calcu-
lated for (n/#wc) <2.5.

in which the cylindrical coordinates, p and %, are used
because of the symmetry of the problem, and L, (x) is
the Laguerre polynomial of order » defined by®

© X3
2 Lu(x)z"=(1—3)" exp(——). (12)
n=0 1—2
In the limit of zero magnetic field, Eq. (11) can be
shown to reduce to Eq. (9) if the summations are re-
placed by integrations and the asymptotic expansion for
large 7 is used for the Laguerre polynomial,
exp(—a%/2) L(#%) =J o[ 2x(n+3)1], (13)
in which J, is the zero-order Bessel function.
The exchange energy per electron is obtained by
substituting Eq. (11) into the integral of (10), yielding

0.916
Ey=— (14+7) ry, (14)
¥s
where
2 7 nE . nF
= o o - —2 L.
’ 1+(9) (;m {nZ=O (nr—m)'} % Sas (15)
and

3“=2f dv y=2 sin[ 20 (nr—14)*] sin[ 20 (np— )]

X f wdis(22) 4 exp(— ) L) L (). (16)

Inserting the generating function for Laguerre poly-
nomials (12), one obtains

9 A. Erdélyi et al., Higher Transcendental Functions (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. 1, Chap. 6.
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Xf dv v2sin[2v(np—0)¥] sin[2v(np— P W 345, 302, (A7)
0

gl 3 (=1) %50 (nHA 1T (34 )
Sii=T

vV kL= T+ 1T (= I1—k4+ )T (j—I+k—n+ DT (n—i+I4+ DT (n+1— j+1)
where

Y+, 350

1 © (n=% exp(—v¥)dt
[ (18
0

rG+n) (149

and thefactorialshave been written as gamma functions.

The field variation of Ee in the limit of high fields is
presented in Fig. 2 by plotting % vs 5/%w,. In the interval,
0< (/Aw;)<0.5, & has a logarithmic singularity. The
use of a screened Coulomb potential would obviate this
singularity.f

The results of Fig. 2 can be understood qualitatively
as follows. The condition,

nF:(n/hwc)—%=071;27 T (19)

corresponds to a given harmonic oscillator state’s being
exactly filled. When the condition (19) is satisfied, the
helical orbits of the electrons fill coordinate space with
a maximum overlap of the electronic wave functions;
hence a maximum in the exchange energy is produced.
As the magnetic field, H, decreases just below the value
needed to satisfy condition (19) (i.e., #r increases),
there is a rapid decrease in E... When electrons start to
fill a new oscillator state, they position themselves so as
to minimize E.. Since the overlap of the wave functions
increases with increasing population of the unfilled
oscillator state, E. increases until the state is filled.

t Note added in proof.—The singularity in % at large fields is a
result of allowing the number of electrons to vary so that all the
states labeled by ¢ are filled. The result obtained here is thus an
upper limit on the exchange energy for an electron gas containing
a fixed number of electrons. For fixed concentration the exchange

energy should vanish for infinite fields because in this limit the
electrons are so localized that no overlap exists.

For H=0, Exg and E., are opposite in sign and their
relative magnitude depends on the electron concentra-
tion [see Eq. (1)]. For example, for the alkali metals,
Eo/Exn=—0.4157,~—1.5. Almost the entire correla-
tion between electrons of parallel spin is contained in
E.x, while the electrons with antiparallel spin contribute
to E¢ ([Ec/Exe]=—0.3987%/(r,47.8)~—0.5 in the
alkali metals).

Although Exg and E. exhibit the same periodicity as
a function of H, the two terms are of opposite sign and
have a different dependence on electron concentration,
as is seen in the following equation:

2.21 0916 2.21
Expt L= — +~2—[g—0.415rsh] ry. (20)

7s Vs Vs

Since g and % are generally of opposite sign, the effect of
E is to increase the magnitude of the field dependence
of the total energy, with the contributions from Exg and
E.x being approximately equal.

In experimental studies of the de Haas—van Alphen
effect, the periodicity in A= and the phase of the
oscillations of the susceptibility, x, are observed. The
inclusion of E in a calculation of x leaves the period of
the oscillations unchanged, though their phase may be
altered. Previous work* has shown that for H=0, Exg,
Eex, and E¢ are of comparable magnitude. The present
study has, furthermore, yielded a comparable field de-
pendence of Exg and Ee.. The details of the de Haas—van
Alphen effect may be affected by Eex and probably also
by Ec.



