
DIFFUSION OF Ru I N SI NGLE CRYSTALS OF Ag

experimental results of Mackliet' who studied tracer
diffusion in the analogous system, iron in copper.
Mackliet found that while iron disused in copper with
a somewhat higher activation energy than that meas-
ured for self-diRusion, the quantitative agreement with
theory was extremely poor, and, in fact, the activation
energy for iron di6usion was lower than that for the
less electropositive impurities, cobalt and nickel. In the
present case, the result is in excellent qualitative and
quantitative agreement with the screening model, par-
ticularly as ampli6ed by the more recent calculations
of Blatt4 and Alfred and March. '

The present result is also qualitatively consistent
with the well known rate-theoretic analysis of Wert and
Zener, s 7 although the quantitative agreement is poor.
Substituting values of P=0.45 and X=0.55 (which give
good results for diQ'usion of electronegative impurities
in silver) into their equation Ds ——a v exp()tPQ/RT ),

' C. A. Mackliet, Phys. Rev. 109, 1964 (1958).
4 F. J. Blatt, Phys. Rev. 99, 600 (1955).' L. C. R. Alfred and N. H. March, Phys. Rev. 108, 877 (1956);

Phil. Mag. 2, 985 (1957).' C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).' C. Zener, J. Appl. Phys. 22, 372 (1951).

TABLE I. Diffusion of ruthenium in silver.

Temperature
('c)

945.5
941.7
916
900.2
856.2
792.8

Tracer

Ruloa
Ru'oo
Ru'
Ruzos
Ruloo
Ru"'

Diffusion coefficient
(cm2/sec)

(2.74~0.08)X 10 Io

(2.21&0.07)X 10 'o

(1.5 ~0.2) X10-Io
(9.6 ~0.3) X10-»
(3.17~0.12)X10 "
(5.5 ~0.5) X10 '~

and appropriate values for the lattice parameter a, the
Debye frequency v, and the melting temperature T,
one calculates a value for the frequency factor Do= 5.9,
considerably less than the measured value.
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The Morse parameters were calculated using experimental values for the energy of vaporization, the
lattice constant, and the compressibility. The equation of state and the elastic constants which were com-
puted using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic
metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals.
This shows that the Morse function can be applied validly to problems involving any type of deformation
of the cubic metals.

INTRODUCTION
'
gl ECAUSE of the widespread use of central pairwise

potential functions in the description of the solid
state, a thorough study of the types of problems to
which this function may be applied is quite desirable.
The purpose of this paper is to investigate the appli-
cability of a special type of pairwise potential function,
the Morse function, to the description of the properties
of cubic metals.

After discussing the conditions which any potential
function must satisfy if it is to describe reality, various
crystal properties are expressed in terms of the Morse
function. These include the cohesive energy, the lattice
constant, the compressibility, the equation of state, and
the elastic constants. Calculations are then done to
determine the Morse function parameters, which are
in turn used to compute the equations of state and the

elastic constants for six face-centered and nine body-
centered cubic metals.

PROCEDURE

A. General Properties of Potential
Functions in Crystals

If ir (r) is the energy of interaction of two atoms a
distance r apart, then, in order that y(r) represent the
interatomic potential of two atoms in a stable crystal,
it must satisfy the following conditions:

(1) The force —rig/rlr must be attractive at large r
and repulsive at small r; therefore, y(r) must have a
minimum at some point r=ro.

(2) The magnitude of ie must decrease more rapidly
with r than r—'.

(3) All elastic constants are positive.
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(4) Ctt —Cts) 0, where Ctt and C)o are elastic
constants.

Conditions (1) and (2) are results of simple physical
considerations. The first arises from the existence of
condensed phases, and the second is equivalent to
requiring that the cohesive energy be finite. The two
conditions taken together guarantee that the crystal
will be stable with respect to infinitesimal homogeneous
expansions and contractions of the lattice.

Born and his collaborators, ' through detailed analyses
of the stability of crystal lattices, give conditions (3)
and (4) for cubic crystal stability. These guarantee that
the crystal be stable with respect to infinitesimal shear
deformations.

B. Crystal Properties in Terms of
the Morse Function

The potential energy po(r;;) of two atoms s and j
separated by a distance r,, is given in terms of the
Morse function by

~(o, )
—DP—sa(r;g —ro) 2e—a(r;g.—ro)g (1)

where n and D are constants with dimensions of recip-
rocal distance and energy, respectively, and rp is the
equilibrium distance of approach of the two atoms.
Since po(rp) = D, D is the di—ssociation energy.

In order to obtain the potential energy of a large
crystal whose atoms are at rest, it is necessary to sum
Eq. (1) over the entire crystal. This is most easily done
by choosing one atom in the lattice as an origin, calcu-
lating its interaction with all the other atoms in the
crystal, and then multiplying by N/2, where N is the
total number of atoms in the crystal. Thus the total
energy C is given by

tND Q$~ 2u(rg ro) 2e o. ,(rj —ro)$—'— —
(2)

where r, is the distance from the origin to the jth atom.
It is convenient to define the following quantities:

(3)

r; = $mp+e, '+1)s$*g=M;g,

C'(«) = Uo(«), (9)

where Up(gp) is the energy of sublimation at. zero
pressure and temperature,

(dC'/«). p
=0

and the compressibility is given by

1 )d'Upy ~
d'C q

& d V' )) op ) d V'3 opEpp

(10)

where t/"p= volume at zero temperature, and Epp= com-
pressibility at zero temperature and pressure. Using
the relation

V/N = cg',

where @=4 for body-centered crystals and c=2 for
face-centered crystals, (11) may be written

1 1 |'g", C ~

Epp 9cNgp 4 dg 3 a=op
(12)

It is possible to compute the equation of state from
C. If it is assumed that the thermal part of the free
energy can be adequately represented by the Debye
model, then the Helmholtz free energy is given by

A=C+3NkT ln(1 e') ) NkTD—(g/T), —(13)

where k= Boltzmann's constant, T= absolute tempera-
ture, 8=Debye temperature, and

(8 ) (Tqo )o/T ao

(T) i. P) J, e —1
(14)

TABLE I. Morse potential constani. s for the pairwise atomic inter-
action in cubic metals, y=DLe ~'") "o)—2e

d2@/«2 —4g2LPs P ~2e , s—noMg

2&2Jp p 3II 2e—aaMj (8)

If, at absolute zero, ap is the value of g for which the
lattice is in equilibrium, then C (gp) gives the energy of
cohesion, fdC/dgjap vanishes, and [d'4&/«'j„ is related
to the compressibility. That is,

Metal cap P 1.(ev) )&10» a=A ' rp =A n(ev)
where m;, e;, l; are position coordinates of any atom in
the lattice. Using (3), (4), and (5) in (2), the energy
can be written

@(g)—LPs g e saosr~ 2LP g e ~ojri— —(6)

' M. Born, Proc. Cambridge Phil. Soc. 36, 160—172 (1940).

The 6rst and second derivatives of (6) with respect to
a are

j@/« — 2~LPs Q ~ e saosrg. —

+2LPn P M;e ~~ (7)

Pb
Ag
Ni
CG
Al
Ca
Sr
Mo

Cr
Fe
Ba
K
Na
Cs
Rb

2.921 83.02
2.788 71.17
2.500 51.78
2.450 49.11
2.347 44.17
2.238 39.63
2.238 39.63
2.368 88.91
2.225 72.19
2.260 75.92
1.988 51.97
1.650 34.12
1.293 23.80
1.267 23.28
1.260 23.14
1.206 22.15

7.073
10.012
12.667
10.330
8.144
4.888
4.557

24.197
29.843
13.297
12.573
4.266
1.634
1.908
1.351
1.399

1.1836
1.3690
1.4199
1.3588
1.1646
0.80535
0.73776
1.5079
1.4116
1.5721
1.3885
0.65698
0.49767
0.58993
0.41569
0.42981

3.733
3.115
2.780
2.866
3.253
4.569
4.988
2.976
3.032
2.754
2.845
5.373
6.369
5.336
7.557
7.207

0.2348
0.3323
0.4205
0.3429
0.2703
0.1623
0.1513
0.8032
0.9906
0.4414
0.4174
0.1416
0.05424
0.06334
0.04485
0.04644
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Since the pressure is given by I'= —(8A/8V)&, (13)
leads to the equation of state:

~ 08-

p7-

OI6

—.PI4

1 dC 3yRT /8

3ca2 da V I Tl
(15)

06—

.05—

—.OI2

—.OIO

where y is Gruneisen's constant and V is the volume.
In his first paper on the stability of crystal lattices,

Born (reference 1) developed equations by which the
elastic constants of cubic monatomic crystals, whose
atoms are all at rest and interact according to a central
pairwise force law, can be computed from the inter-
atomic potential energy. These equations are

04hY
Yo

.03

.02

~OI

SQOIUM t 0
I

0

.008 hY
Yo

.006

.004

.002
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Cii ——— P m D4'q (r;),
2V ~'

(16) FIG. 1. Equation-of-state curves for copper and sodium.

Cis ——C44 —— Q m,' 22 D,'p(r, ),
2V ~'

(17)

where the operator D, is defined by

D;=—
r, dr,

Cil =
2Dn2g2p2 m 4e 2auM~ . —Dn2a2'p m, 4e—auM~

v V M,'
DnaP' m, 4e ' 'M~' DnaP m, 4e

V m, U

2Dn2a2P2 m 222 2e—2auMi

Ci2= C44=
V ~ M

Dn2a2P m.222,2e—auMi

Dnap2 m 2+ 2e—2auMj

V

and V is the volume per atom.
Substituting the Morse potential for ic(r,) results in

the following:

mental values were taken from compilations by Furth'
and Slater. '

Equations (15), (19), and (20) permit a straight-
forward calculation of the equation of state and the
elastic constants. Experimental compressibility data,
for purposes of comparison, were taken from works by
Bridgman', values of 8 and D(8/T) were taken from
existing tables. ' ' In order to compensate for errors in
the selection of 0, and to give a consistent set of values
of p, p was obtained by calculating it from the require-
ment that at one atmosphere pressure, Eq. (15) must
lead to the correct molar volume. The values of y
computed in this way are given in Table II.

All lattice summations were calculated using an
IBM-653 digital computer.

RESULTS AND CONCLUSIONS

In applying the four stability criteria to the Morse
potential function, the following results are found:

1. Condition (1) is satisfied. This is obvious from
inspection of Eq. (1).

2. Condition (2) is satisfied. This stems from the
fact that 6nite values of the Morse parameters are
obtained when a finite value of the energy of vapori-
zation is assumed. A list of the calculated parameters is
given in Table I.

3. Condition (3) is satisfied. All the calculated elastic
constants are positive as can be seen from Table II.
Also contained in Table II are the experimental values

DnaP m.srs.se—auM;

U
(20)

C. Numerical Calculations

Calculation of the three constants, n, L, and P, in the
Morse potential was performed by solving Eqs. (9),
(10), and (11),using experimental values for the energy
of sublimation, the compressibility, and the lattice
constant. The results are listed in Table I. the experi-

~ R. Furth, Proc. Roy. Soc. (London) A183, 87—110 (1944).
3 J. C. Slater, Introduction to Chemical Physics (McGraw-Hill

Book Company, Inc. , New York, 1939).
4 P. Bridgman, Proc. Am. Acad. Arts Sci. 58, 151-161 (1923);

60, 385—421 (1925); 60, 305—383 (1925); 67, 345—375 (1932); 74,
11—20 (1940); 74, 21—51 (1940); 74, 425—440 (1942).

5R. H. Fowler and E. A. Guggenheim, Statistical Thermo-
dyriarascs (Cambridge University Press, Cambridge, 1939l.

N. Mott and H. Jones, Properties of Metals and Alloys (Oxford
University Press, London, 1936).' C. Kittel, Introduction to Solid-State Physics (John Wiley R
Sons, Inc. , New York, 1953).

.
' W. P. Binnie, Phys. Rev. 103, 579-80 (1956).
E. J. Post, Can. J. Phys. 31, 112—119 (1953).
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TABLE II. Values of Gruneisen's constant y and the elastic constants.

Metal

Pb
Ag
Ni
Cu
Al
Ca
Mo
W
Cr
Fe
Ba
K
Na
Cs
Rb

CII )(10»
(theory)

0.5565
1.3239
2.3292
1.7424
0.9396
0.2079
2.9408
3.3828
2.0128
1.8586
0.10579
0.0345
0.0712
0.01800
0.0233

CII)&10»
(expt. )

0.67 (0 K)
1.240
2.50
1.762 (O'K)
1.129

4.6
5.01

2.37

0.0459 (77'K)
0.0945 (90'K)

C»X10 "
(theory)

0.3705
0.8959
1.6348
1.2309
0.6721
0.1509
2.8944
3.2773
1.9625
1.6735
0.0919
0.0282
0.0578
0.0146
0.0187

C12 X10-»
(expt. )

0.57 (O'K)
0.934
1.60
1.249 (O'K)
0.665

1.79
1.98

1.41

0.0372 (77'K)
0.0779 (90'K)

C44)&10»
(expt.)

0.189 (O'K)
0.461
1.185
0.818 (O'K)
0.278

1.09
1.514

1.160

0.0263 (77'K)
0.0618 (O'K}

0.951
2.287
3.252
2.108
1.000
0.925
0.0
0.0
0.0
0.164
1.497
1.932
1.216
0.619
0.635

of the elastic constants. "The experimental and theo-
retical values of C11 are in reasonable agreement. The
theoretical values of C» are generally in closer agree-
ment with the experimental C12 values than the
experimental C«values. The Cauchy relation C»= C44,
which is a consequence of any central force law, is of
course not satisfied experimentally in metals.

4. Condition (4) is satisfied.
It is also found that the theoretical equations of state

compare quite favorably with experiment. Figure 1
gives a typical comparison between the theoretical and
experimental equation of state curves. Equation-of-
state calculations for the other metals show about the
same degree of agreement between theory and
experiment.

It can be concluded, therefore, that for cubic metals,
the Morse potential can be applied to problems in-

' J. deLaunay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1956},Vol. 2.

volving any kind of a lattice deformation, that is, either
homogeneous expansion or contraction, or shear
deformation.

The estimates of the validity of the Morse potential
in metals given in the preceding paragraphs apply to
a perfect crystal. An additional complication is intro-
duced if defects are present. The Morse constants
computed from the energy of vaporization, the lattice
constant, and the compressibility refer to a perfect
lattice, and reAect its electron distribution. The presence
of a defect, however, alters the electron distribution,
and it is dificult to estimate how this altered distri-
bution would affect the Morse constants of the atoms
in the vicinity of the defect. It would be expected,
however, that this eGect would be more serious for
body-centered than for face-centered materials.

For a more detailed treatment of the calculations
mentioned in this paper, the reader is referred to an
NASA report No. 5, 1958, by L. A. Girifalco and
V. G. Weizer.


