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Analysis of the x-Hypernuclear Three-Body Systems*
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An analysis of the h.-hypernuclear three-body systems is made by a variational method with a six-pa-
rameter trial function. An upper bound for the strength of the A-nucleon interaction required to account
for the observed binding of the T= 0 hypertriton ttH' is obtained. This upper bound is 10-20% (depending
upon the value taken for the binding energy) lower than the previous estimate by the same authors. An
improved quantitative estimate of the spin dependence of the A-nucleon interaction (neglecting the possible
influence of three-body forces} is obtained from the results of this analysis and those of a previous analysis
of gHe5; from this estimate it follows that the existence of a bound A-nucleon system is strongly excluded.
The analysis of the T= 1 triplet &He', pH', pn3 indicates that these systems are not expected to form bound
states. It appears that the essential conclusions of this work would not be seriously affected if there exist
moderately strong three-body forces arising from pion exchange processes.

1. INTRODUCTION'

HE hypernucleus ~H', the hypertriton, is a system
of particular interest in the study of the A-

nucleon interaction. On account of the absence of any
bound state for the A-nucleon system and on account
of the difhculty of obtaining experimental information
on the scattering of A particles by nucleons, the hyper-
triton is the simplest system at hand in which a A

particle interacts with nucleons at low energies. The
small total binding energy (=23 XIev) of zH' implies
that it is a very loose structure. When any pair of
particles is close together, the third particle is, on the
average, relatively far away from them. For this reason
the A-nucleon interactions in the hypertriton can be
expected to take place under conditions closely re-
sembling those of free-particle collisions at low relative
energy. In this respect the hypertriton plays a role here
similar to that played by the deuteron in the study of
the 'S nucleon-nucleon interaction. Under these circum-
stances it is reasonable to expect that the properties of
the hypertriton depend primarily on certain over-all
features of the A.-nucleon interactions, such as the well-
depth parameters and the zero-energy scattering lengths,
and that they are insensitive to the details of the
interactions.

The short ranges of the nucleon-nucleon and A.-

nucleon interactions, as well as the small total binding
energy of the system, imply that the wave function of
the hypertriton consists predominantly of S states of
relative motion between the particles. ' The presence of
a tensor force in the A-nucleon interaction will not give
rise to an appreciable D-state component in the hyper-
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triton wave function. The centrifugal barriers effective
in such a D-state motion will strongly suppress the
corresponding component of the wave function (except
possibly in the regions of small separation between the
particles) in the outer regions of their short-range
interactions. This does not imply, however, that the
tensor-force part of the A-nucleon interaction can
simply be omitted; it is well known that a strong tensor
force will contribute significantly to the 5-wave scat-
tering interaction between A particle and nucleon even
at the lowest relative momenta. For this reason the
central potentials which are used in the present work
are to be understood as equivalent potentials whose
low-energy scattering characteristics are the same as
those of the actual A-nucleon interactions including
their noncentral parts. Since we are not concerned with
the calculation of the small D-state component of the
hypertriton wave function, tensor forces have not been
considered explicitly in the present work.

In these introductory remarks the possibility of
three-body potentials between the A. particle and the
two nucleons has been neglected although Weitzner'
and Spitzer4 have recently pointed out that the transfer
of two pions from the A particle, one to each of the two
available nucleons, might give rise to an appreciable
three-body potential. Of all the hypernuclei, however,
the hypertriton is the system for which three-body
potentials are expected a priori to be the least important;
this is both because there is only one pair of nucleons
available Lcompared with (A —1)(A —2)/2 pairs in a
hypernucleus of mass number Aj and also because the
small total binding energy of &H' implies a correspond-
ing small probability for the three particles all to be
found within the range of this three-body potential.
For these reasons we believe that the structure of the
hypertriton is determined primarily by the two-body
A-nucleon interactions and that it is reasonable to

' H. Weitzner, Phys. Rev. 110, 593 (1958).
R. Spitzer, Phys. Rev. 110, 1190 (1958).
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discuss the role of three-body interactions subsequently
by means of perturbation methods.

In a recent paper'" the features desirable in a trial
function for a system such as the hypertriton were
discussed in some detail. It was pointed out that,
although the small value of Bb (the binding energy of
the A particle in bH') implies that the wave function
should have a long tail, the presence of A-nucleon
potentials of short range (&1/2rib ) requires that this
wave function should allow strong correlations in
position between the A particle and each of the nucleons.
It appeared, therefore, that a satisfactory trial function
should have considerable Qexibility in order to represent
adequately both the asymptotic regions in which one
particle is separated by a large distance from the other
two particles and the regions of close approach.

In order to illustrate some of the qualitatively
important features of the hypernuclear three-body
system, a preliminary discussion was given on the
basis of a simple trial function'

lt =pe &&&i+&&~e e&3— —

where r~ and r2 denote the distance of the A. particle
from each of the nucleons and r3, the distance between
the two nucleons. The symmetrical form (n= p) of this
trial function is known to provide an excellent erst
approximation for the S-state structure of the nuclear
three-body systems, H' and He'. ' This trial function
(1.1) is not sufFiciently flexible, however (having only
one variation parameter associated with each inter-
particle distance), to provide a good approximation for
the case in which the binding energy of one particle
(the A particle, in this case) of the system is small
compared to those of the other particles or for the case .

in which the total binding energy of the system is very
small. In a variational calculation for a potential
strength corresponding to a given binding energy (or
vice verse), the region in which the particles lie within
the range of their mutual interactions is more important
for the determination of the optimum parameters of
the trial function than is the asymptotic region of large
separations, where the form of the correct wave function
is governed by the binding energies of each of the parti-
cles of the system. The optimum parameters of the
trial function (1.1) are, consequently, insensitive to Bb
when it is small or to the total binding energy 8 when
it is small. For I' and He' it happens that the optimum
trial function of the form (1.1) with n=p has an
asymptotic form approximately consistent with the
binding energies of these systems. In the nuclear three-
body systems the binding energies B„and B„of a
neutron and a proton, respectively, are nearly the
same (B„=6 Mev and B~=8 Mev for H', and vice versa

for He'), while the characteristic length L(3/4MB„)',
say] of the asymptotic region is approximately the

~ R. H. Dalitz and B.W. Downs, Phys. Rev. 110, 958 (1958).
6 H. I'eshbach and S. I. Rubinov, Phys. Rev. 98, 188 (1955).
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If the wave function (1.2) is to give a good represen-
tation of the hypertriton wave function in the asymp-
totic region, then it is clear that the first factor of (1.4)

7 It is of interest to note that increase in the flexibility of the
trial function for the normal triton Lsee, for example, F. .
Brown, Phys. Rev. 56, 1107 (1939)j gives an improvement of
only about 1.5% in the estimate of the nucleon-nucleon potential
strengths corresponding to the observed triton binding energy
over the value obtained with the simple trial function exp[ —n(r~
+rs+ra) g.

same as the range of nuclear forces. For the hypertriton,
however, this fortunate situation by no means obtains;
and it is reasonable to expect that the use of a trial
function with sufhcient Qexibility to account for both
close-in and asymptotic regions at the same time (that.
is, a trial function with more than one variation
parameter associated with each interparticle distance)
would lead to a much greater proportional improvement
in a calculation for the hypertriton than in one for the
normal triton. ~

In the present work, a variational calculation of the
strength of the A-nucleon interactions required to
account for the observed binding energy of the hyper-
triton was made with a six-parameter trial function

(e ari+&—e br&) (e
—erg+&e bra—) (e

—u3ra+— ye
—bgra) (1 2)

This function has considerable Qexibility and should be
capable of giving a good representation of the principal
features of a lightly bound system with short-range
forces because, for each interparticle distance, there is
a factor containing a short-range and a long-range term
in adjustable proportion and with both ranges adjust-
able. In order to satisfy the Pauli principle for the
nucleons with this form of wave function, the factors
corresponding to the i1-e and the A-p separations are
taken to have the same form so that there are, in all,
six variation parameters: a, b, x, a3, b3 and y.

The asymptotic form of the correct hypertriton wave
function for large separations R of the A particle from
the center of mass of the two nucleons is

f-fD(rs)e x/E, — (1.3)

where lf n is the wave function of the free deuteron and
n=[4MMbBb/(2M+Mb)$&. The smaller Bb is, the
more dominant the asymptotic form (1.3) is in the
normalization integral or in the expression for the
probability distribution for the rb-P separation (aver-
aged over all positions of the A. particle). As we have
emphasized in reference 5, however, this does not
justify the use of a wave function of the form (1.3) for
all regions of space for bH' in any situation (such as
the calculation of the potential strength for a given
binding energy or the calculation of matrix elements for
the decay processes of aH') in which the regions of
close il.-rb and A-P approach play an important role.
The asymptotic form of (1.2) for large separation of the
A. particle from the nucleons is
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should not be very different from the wave function for
a free deuteron. The wave function

(~
—ggPg+y~ —Q3P3) (1.5)

does, in fact, give a good representation of the deuteron
for suitable values of the parameters a3, ba, and y (see
Sec. 3), leading to a value for the binding energy
accurate to about 0.2%%u~. It therefore seems reasonable
to expect that the optimum values of the parameters
a3, ba, and. y for the trial function (1.2) should be quite
close to those obtained for the free deuteron with the
trial function (1.5). The R-dependence of the asymp-
totic form (1.4) does not have the correct form (1.3);
this, however, is relatively unimportant for the calcu-
lations of the present work. The e6ect of this inadequacy
on the calculation of other quantities of interest for the
+H' system is discussed briefly in the concluding
section.

There has been no conclusive experimental evidence
requiring the existence of any bound state for the &He'

or ze' systems, and arguments have been given which
make it appear unlikely that such bound states should
exist. These arguments concern the question of whether
the existence of the T=O hypertriton with a certain
binding energy B~ implies or excludes the existence of
bound states for qHe', qe' and the T=1 state of pH'.
In order to answer this question (and to substantiate
the arguments previously given) a variational calcu-
lation has been made with the trial function (1.2) to
determine the strength of the A-nucleon interactions
which would be required to bind the T=1 systems
with zero total energy.

The details of the variational calculation procedure
are discussed in Sec. 2. For the T=O state of qH', the
results for various values of Bq and for two ranges of
the A-nucleon interaction are given in Sec. 3; these
results are a significant improvement (up to 19'Po) over
the estimate previously obtained' for the strength of
the A-nucleon interactions. The results for the T=1
hypernuclear triplet qHe', qH', and ge' are given in
Sec. 4; these results confirm that the absence of these
states is reasonable. In the concluding Sec. 5 the results
of these calculations are combined with those of earlier
calculations on the A-nucleon interactions in gHe' to
obtain an estimate of the A-nucleon interactions neces-
sary in the 'S and 'S states to account for the binding
energies of both qH' and qHe' when the effect of three-
body interactions is completely neglected. Some re-
marks are also made in Sec. 5 on the reliability of these
calculations and on the possible use of the wave function
(1.2) for the calculation of other properties of the
hypertriton.

2. FORMULATION GF THE VARIATIGNAL PROBLEM

In the triangular coordinate system (ri, r2, ra) appro-
priate to a trial function of the form (1.2), the variation

' See reference 5 and also Sec. 4 in the following.

w(y, x) = I y*f(~ir3)xrir2ridr, dridri, (2.2b)

N(y x) = J/y*[g(~r, )+g(~r2)]grir2r3drldr2dr3, (2.2c)

X(y g) =
' y xrlr2r8dridr2dr3 (2.2d)

with
rP+rP r~' J'~y ~—X

&(~j&) =-
I

+ I (")
&Br; Br; Br; Br;

The integrals (2.2) are to be taken. over the domain
consistent with the triangular inequalities ri+r2 r3,

ri+ra~ri and ri+ri~r2. The depth of the nucleon-
nucleon potential is Vo, this is Vo, triplet for the T=O
hypertriton states and Vo, singlet for the T= 1 hyper-
nuclear triplet. Charge symmetry requires the A-p and
A-e interactions to be the same; the depth of the mean
A-nucleon potential in the spin state considered for the
hypernuclear system is denoted by U. The mean depth
U depends upon the relative orientation of the spins of
the A particle and the nucleons. This spin dependence
has been discussed previously'; explicit expressions for
U in terms of the depths of the triplet and singlet
A-nucleon potentials are given in Secs. 3 and 4. The
functions f and g denote the forms assumed for the
nucleon-nucleon and A.-nucleon potentials, respectively;
&3 and If: are the corresponding range parameters.

The inequality (2.1) has been used as a variational
principle to obtain an upper bound on the strength U
of the A-nucleon interaction potential required to
account for the binding energy 8 of the system. The
potential forms f and g were taken to be Yukawa
functions. ' The range parameter appropriate to the

9 In reference 5 it was found that Yukawa and exponential
forms for g which have the same intrinsic range lead to essentially
the same values for those quantities which are a measure of the
strength of the h.-nucleon potential, such as the well-depth
parameter, scattering length and the volume integral of the
potential.

principle for determination of the wave function P for
a three-particle system consisting of two nucleons
(mass M) and a A hyperon (mass Mz) with total
binding energy 8 can be written in the following way
(see reference 5):

T(4A) ~o~—(PA) »—84)+»&(0A) ~ o (21)
The functions which occur in (2.1) are defined as

1 By Bx ( 1 1 ) (~y ~x
&(yx)= ' — +I +

J M Bra era L2M 2Mii& & Bri Bri

~a* ~x&
+ I+—

I ~(2»)+~(»2)j
Br, Br, J M

1
+ t(123) rir2r3dridridrq, (2.2a)

Mg
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A-nucleon interaction has not yet been established
empirically; the value of this parameter will depend
upon which of the conceivable mechanisms'~ contribute
most to this interaction. In order to span the reasonable
range parameters, calculations have been made here
for the Yukawa shape e "'/err with values of the pa-
rameter 1/ii=1/@sic=0. 4X10 " cm and 1/s=1/2ris
=0.7)&10 " cm, the Compton wavelength of the E
meson and one-half that of the pion, respectively.

It is convenient to write the trial function (1.2) in
the form

(2.4a)

where the coe%cients X; and a; are given by

X;1——1 for alii,
~12 ~22 & ~32

811=821= 8) 831=83)

~12 ~22 ~) +32 ~3 ~

The integral Tg,P) of Eq. (2.1) then becomes

(2.4b)

TgpP)= Q Xg~hr~)se)se), sg, g„T~e~ ~e ~. (2.5)
apy, n'p'y'

The coefFicient T,e~, „e ~ denotes the integral (2.2a);
that is,

ey, a'e'y' = &(exp( atart aser2 as'& 3))

exp( a, r—i ase.r—s as, r—s)) .(2.6.)

The integrals u(/pe), ttg, P), and E(iAP) can be simi-
larly expanded in terms of corresponding coefficients

~ ~

Napy, a'p'y') &apy, a'p'y') and +apy, a'p'y' Explicit expres-
sions for all these coe%cients are given in the Appendix.

For the actual computations, the variation principle
(2.1) was put into the form

computer was programmed to search for the optimum
value of x and then to provide values of C for 8 values
of x in the immediate neighborhood of the optimum
value. The optimum x and the corresponding C were
then obtained graphically and were checked, at least
for the sets (a, b, as, bs) near the optimum set, by
fitting an appropriate polynomial to the calculated
values. The optimum values of a3 and 63 turned out to
be relatively insensitive to changes in the parameters
a and b in the region of their optimum values"; this
property was used to fix values of a3 and b3 from a
preliminary calculation with a fairly wide grid of pa-
rameters. The values of a3 and b3 having been fixed,
values of C minimized with respect to x and y were
then obtained for each set (a,b). For each value of a,
C was minimized with respect to b, and then these
lowest values of C were finally minimized with respect
to a. This last step yielded both the minimum value of
C with respect to the four parameters (a, b, x, y) for the
fixed set (as, bs) and the corresponding optimum value
of a. With this value of a, it was possible to go back
and obtain the corresponding optimum value of b by
interpolation. The values of a and b were fixed at these
optimum values, and the function 4 was then minimized
with respect to (as, bs) in the same manner as it had
previously been minimized with respect to (a,b) for
Axed (as, bs). In every case the optimum values of
(as, bs) obtained in this way were su%ciently close to
the values originally selected from the wide grid to
justify concluding the iteration process at this point.
With the optimum set (a,b, as, bs) determined in this
way, C was minimized with respect to x. With this
optimum x and the optimum set (a,b, as, bs), the opti-
mum y was calculated by the computer, leading to a
direct check on the minimum value obtained for C by
interpolation from its values at the calculated points.

3. THE T=O HYPERTRITON STATES

The function C (P) was obtained as an explicit algebraic
function of u, b, a3, b3, x, and y in the manner described
above. Both numerator and denominator of C Q) are
quadratic functions of y, so that

C (f)= (Ety'+I ry+Mt)/(Esy'+I sy+Ms); (2.8)

the E, I, and M are functions of a, b, a3, b3, and x.
For each set of values (a, b, as, bs, x) considered, the
coefficients E, I, and M were evaluated, and the
expression (2.8) was minimized analytically- with re-
spect to y."These calculations were done by electronic
computer. " For each set of values (a, b, as, bs), the

"The condition dC/dy=0 leads to a quadratic equation in y.
In every case computed, the roots of this equation were of opposite
sign, the positive root being the optimum value of y.

"These calculations were performed at the Cornell Computing
Center. The authors are grateful to Miss V. A. Walbran for having
programmed and run the computer for the calculations reported
here.

U2 ——2V„ if V„)V. (J= -,'), (3.1a)

U, =3V,/2+V~/2 if V )V~ (J=-,'). (3.1b)

"It is clear from the form of the function (e "3"3+ye '3"&) that
a change in a3 or b3 can be compensated, to some extent, by a
corresponding change in y.

"See references 2 and 5 for a summary of the evidence sup-
porting the assignment of spin ~ to the A. particle.

The T=O three-particle hypernuclear states consist
of a A particle interacting with a neutron and a proton
whose total isotopic spin is zero and whose total spin
is 5=1. Assuming the A particle to have spin 2," the
T=O hypertriton state of lowest energy will have spin
J=-, if the singlet A-nucleon interaction is more
attractive than the triplet and J=~3 if the triplet
interaction is the more attractive. Denoting the volume
integral of the A-nucleon interaction in the triplet
state by V„and that in the singlet state by V, the
volume integral of the total h.-nucleon interaction in
the hypertriton ground state is
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TABLE I. The h.-nucleon interaction in the hypertriton.

BA(Mev) a(f 1) a3(f—1)

(iv) (v} (vi) (vii) (viii)

ao(f)

(ix) (x) (xi) (xii)&
U~(Mev f3)

ro(f) U2(Mev fg) (Gaussian) U2(Mev f3)

0
0.25
1.00

0
0.25
1.00

0.093
0.158
0.239

0.047
0.111
0.184

1,135
1.38
1.66

0.59
0.80
0.98

0.382
0.382
0.393

0.380
0.380
0.393

1.13
1,135
1.15

1.13
1.14
1.17

(a) Intrinsic range
2.29 2.22
1.97 2.24
1.74 2 ~ 16

(b) Intrinsic range
2.13 2.21
1.675 2.14
1.42 1.94

0.84» f (.= re.lf-,)
0.635g

—1.03
0.6593 —1 ~ 13
0.694s —1.33

1.4843 f (ff:=2m )
0.550f) —1.30
0.595' —1.55
0.653s —1.96

1.45
1.40
1.32

3.05
2.75
2.49

406.9
421.8
444.5

621.0
672.1
738.1

405
420
444

615
667
736

501

766

' See reference 5.

The total binding energy I3 of the hypertriton ground
state is the binding energy of the deuteron BL)——2.226
4!lev plus the binding energy Bz of the A particle.
There is still considerable uncertainty in the value of
J3+ for the hypertriton; it is almost certain that 8+ is
less than 1 Mev, and it is likely that it is close to zero."

The neutron-proton potential Vtriplet was taken to be
that Yukawa potential whose range is consistent with
the low-energy proton-proton scattering data'5 and
whose depth is determined by the known binding energy
of the deuteron. This potential has an intrinsic range
of 2.4995 fermi L1 fermi (f) =1X1O "cm] and a depth
of 68.104 Mev; the volume integral of this potential is
1403.4 Mev f'.'"

The results of the variational calculations are given
in Table I for the two ranges mentioned above for the
A-nucleon potential and for three values of Bq. The

"Levi Setti, Ammar, Slater, Limentani, Roberts, Schlein, and
Steinberg, Nuovo cimento (to be published) obtain a most
probable value of Bz which is less than zero, namely, Bp= —0.23
+0.35 Mev. It should be noted here that the Q value for the
decay of the free A. particle is not known precisely. The value
used by Levi Setti et ul. was Q&=37.22~0.2 Mev; an increase
in Q& by an amount AQ& would lead to an increase in the value
of Bz given by them by an amount AQ&.

'5 J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
(1950).' The depth of this potential was determined by a variational
calculation using a Hulthbn trial function, one parameter being
6xed by the known value of BD and the other being the variation
parameter. The value of the depth of the potential determined in
this way is about 0.03% less than that given by the relevant
power series of Blatt and Jackson [J.M. Blat t and J. D. Jackson,
Phys. Rev. 76, 18 (1949)]. The particular value of the intrinsic
range quoted above resulted from a choice of the range parameter
to be exactly if.&=0.848 f '. The intrinsic range taken for Vtriplet
is somewhat shorter than the value bf, ——2.96 f appropriate to the
Vukawa potential which 6ts the deuteron binding energy and the
triplet scattering length. Since the potential used was adjusted to
give the correct value of B~, it is clear that small changes in the
intrinsic range will not appreciably affect our estimates of U2.
Values of U2 were calculated with the appropriate Vtr1plet having
an intrinsic range of 2.96 f for Bg=0.25 Mev and the two intrinsic
ranges of the A-nucleon potential. For these calculations the
optimum values of a, b, a3, and b3 given in Table I were used,
while x and y were treated as variation parameters. The values
of U2 thus obtained are 430 Mev f' for ff:=m~ and 684 Mev f'
for a=2m; these values are about 2% larger than the correspond-
ing values in Table I. This seems to be a reasonable con6rmation
of the foregoing statement that U2 is insensitive to small changes
in the intrinsic range of Vtr1plet, particularly since the values of
e, b, a&, and b& used in this check are not necessarily the optimum
values for the Vtriplet in question.

values of the variation parameters corresponding to the
minima are listed in columns (i) through (vi). The
optimum values of as and b3 were found to be quite
close to those found in a variational calculation of the
binding energy of the deuteron with the trial function
(1.5) and the m-p potential described above. These
values, a3——0.380 f ' and b3= 1.120 f ', lead to BD——2.221
Mev with y= 2.27&.'7 For the hypertriton the optimum
value of y depends somewhat on the value of Bq and
on the range parameter of the A-nucleon potential, but
it does not deviate much from its value for the free
deuteron. "

Several measures of the strength of the A-nucleon
interactions are given in Table I as functions of Bq and
the range parameter ~:

"Since the depth of Vtr1plet was determined with a Hulthen
trial function, this value of BD represents a comparison between
the description of the deuteron given by the function (exp( —aar)
+y exp( —bar)) and that given by the Hulthen function. With
y=0, the simple exponential trial function leads to the value
B~=1.621 Mev with us=0. 62 f '.

"It should be emphasized that this does not mean that the
probability distribution for the n-p separation in the hypertriton
is the same as that in the free deuteron. The probability distri-
bution is actually given by p(r)r'dr, where

p(r) =Cpa(r) y(2a,0)+4', +2x'$2y(a+5, 0)
3u+b u —b

+.(+))))+4"' +,,"-.")+'.(2,)O) (*')

in which

pn(r) —(s
—agr+ys —bgr)2

,e ~" sinhPr 1 1 1 sinhPr=r —+( ) +( )
cos

and C is a normalization constant. This distribution is obtained
by averaging the square of the wave function (1.2) over the
positions of the A. particle consistent with the triangular ine-
qualities for the interparticle distances. The factor in the braces
of expression (i) is a monotonically decreasing function of r, so
that the distribution p(r) generally appears compressed relative
to the deuteron distribution pD(r), as one would expect. As u
approaches zero, however, the term p(2a, 0) becomes dominant
in this factor, which then varies only slightly over the region in
which pz&(r) is appreciably diferent from zero. According to the
discussion in the Introduction, the distribution p(r) should be
identical with p~(r) when By=0. With the approximate wave
function (1.2), p(r) is compressed relative to pD(r) even at zero
Bg because a does not reach the value zero when Bg goes to zero;
this deviation is related to the incorrect asymptotic form of the
wave function (1.2) (see the discussion in Sec. 5). As Bg increases,
the value of a increases, and the compression of p(r) relative to
pn(r) becomes increasingly more severe.



(a) The effective well-depth parameter s [column
(vii)]. This is the value of the well-depth parameter for
the A-nucleon potential Ug(~r), where U is the depth
of the mean A.-nucleon potential in the hypertriton.
Explicitly, V is chosen so that

2V i g(ar)d)r=U,

where U~ is the volume integral of the total A-nucleon
interaction in the hypertriton.

(b) The scattering length ao [column (viii)] for
A-nucleon scattering at zero energy by the potential
Ug (ar)

(c) The effective range ro [column (ix)] of the
A.-nucleon potential Ug(~r).

(d) The volume integral U2 [column (x)] of the total
A-nucleon interaction in the hypertriton.

(e) The volume integral U~ [column (xi)] for a
A-nucleon potential of Gaussian form which has the
same intrinsic range and leads to the same zero-energy
scattering length ao as the Yukawa potential to which
the volume integral U2 of column (x) pertains.

In column (xii) the values of U2 calculated previ-
ously' with the simple trial function (1.1) (with
Yukawa potentials) are given for comparison. Even
neglecting three-body potentials, the quantities ao and
ro have a direct interpretation in terms of the param-
eters of the A-nucleon system only for the case V„&V
and j=-,' for the hypertriton. In this case ao and ro

are the zero-energy scattering length and the effective
range, respectively, of the 'S state. Kith V,& V„and
j=-,' for zH', the well-depth W is (3U +U„)/4, a
combination of the 'S and 'S well depths, and the
parameters uo and ro of Table I then have no direct
physical interpretation.

From the values of U2 given in columns (x) and
(xii) of Table I, it is apparent that the tria, l function

(1.2) gives a signi6cant improvement over the simpler

trial function (1.1).The smaller the binding energy Bz,
the greater is the relative improvement in the value of

U2,. this was expected from the considerations given in

the Introduction. As a function of Bq, these values of

U2 [column (x) of Table I] now fall on a curve which

has the correct dependence on QBq as Bq approaches
zero. This functional dependence can be represented by
the expression

V2(BA) = U2(0)(1+n(B~)'*+pB~+ ), (3.2)

where (n,p) have the values (0.054, 0.038) for a=md
and (0.140, 0.049) for ~=2nz when Bq is expressed in

Mev. These values of (n,p) are to be contrasted with

those of the earlier work' which led to an unacceptable
Bq dependence for U2 [column (xii) of Table I], the

corresponding coefficient 0. being negligible compared
to the coeKcient p there.

Vg' ——3V„/2+ V,/2. (4.1)

For either V & V„or V„&V, this interaction U~ is
necessa, rily less than U& [ see Eqs. (3.1)], U&' and U&

being equal only if V„=V .
It is the 'S nucleon-nucleon potential which is

effective in the T=1 systems. In the present work, this

potential Vsinglet was taken to be that Yukawa po-
tential which is consistent with the low-energy proton-
proton scattering data. "This potential has an intrinsic
range of 2.4995 f, a depth of 46.17 Mev and a volume
integral of 951 Mev f'.

At present there is no experimental evidence which

requires the existence of bound states for the T=1
systems. Since the total binding energy of the T=O
hypertriton is small (=2.3 Mev) and since both the
nucleon-nucleon interaction and the mean A-nucleon
interaction are weaker in the T= 1 systems than are the
corresponding interactions in the ground state of the
T=O system, the absence of such bound states does
not seem unreasonable. The likelihood of a bound state
for the +He3 system is further reduced by the Coulomb
repulsion between the protons.

For the analysis of the T=1 systems, we confined
attention to the state with total binding energy B=O.
The variational principle (2;7) was used to calculate
the strength V&' necessary for the total A-nucleon
interaction V2' in order that these systems should have
a bound state at zero energy. " If the value calculated
for U&'* were smaller than V2' given by (4.1), then the
existence of bound T=1 systems with B&0 would be
indicated; on the other hand, if U2'*& U2', no bound
states would be expected for these systems. On account
of the considerable variation of U2 with B for the T=O
hypertriton shown in Table I, it was not a priori certain
that a decrease in the required value of B, to zero, for
the T=1 systems would not more than offset the
weaker interactions in those systems and imply the
existence of bound states. "

The calculational procedure described in Sec. 2 was

carried through with the nucleon-nucleon potential

'9The Coulomb energy term appropriate to +He' was not
included; since these calculations show that no bound state is to
be expected for the T=1 systems even in the absence of the
Coulomb repulsion, this omission has no effect on the essential
conclusion.

"The corresponding calculations of reference 5 indicated that
bound states were not to be expected for the T=1 systems.
That evidence could not be considered conclusive, however,
because of the manifestly incorrect Bg dependence of the values
of U2 calculated there with the simple trial function (1.1) (see
the discussion at the end of Sec. 3}.

4. THE T =1 HYPERNUCLEAR TRIPLET

Each member of the T=1 hypernuclear triplet +He',
gH', qe' consists of a A particle in interaction with two
nucleons of total isotopic spin 1 and total spin S=O.
Since the nucleon spins are paired, the volume integral
U2' of the total A-nucleon interaction in these states is
just twice the volume integral of the spin-average
interaction:
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Vsinglet and with B=0. In the case of the T=O hyper-
triton, an initial estimate of the parameters u3 and b3

could be obtained from a study of the deuteron. In
the case of the 7= 1 systems a corresponding estimate
was obtained from the 'S nucleon-nucleon system by
using the trial wave function (1.5) to calculate the
strength of the interaction required to give a resonance
at zero energy, The values of the parameters aa and b3

obtained in this way were not so close (and were not
expected to be) to the optimum values for the three-
body system as were those in the case of the T=O
system; they did, however, provide a rational starting
point in the search for the optimum parameters. The
minimum value of the function C was determined with
a grid of parameters (a,b, ub, bb) which was considerably
more open than that used for the T=O hypertriton.
The precise location of the minimum with respect to
the six parameters is not of prime interest in this case
because there is no apparent application for the wave
function itself. It is the minimum value of C which is
important here, and this could be obtained suKciently
accurately with a little refinement in the grid in the
region of the minimum.

The minimum values of 4 are 520 Mev f3 for i&= m~
and 880 Mev f3 for ~=2' . These estimates of U2'*
are 17% and 19% higher than even the largest values
(for Bb= 1 1VIev) of U2 given in Table I for the cases
g=nz~ and 2m, respectively. This means that, even
in the most favorable case possible (that is, assuming
B&=1 Mev for the T=O hypertriton and no spin
dependence at all), the existence of bound states for
the T=1 systems is excluded.

bH' —+ He'+vr —, (5.1)

5. DISCUSSION

The use of the trial function (1.2) has led to a
substantial improvement in our estimate of U2 for the
hypertriton. The values of U2 for B&=1 Mev given in
Table I Lcolumn (x)] are about 10% lower than the
previous estimates' Lcolumn (xii) of Table I); and those
for B&=0 are about 20% lower than those previously
obtained. It seems reasonable to believe that these
present values of U2 are quite close to the exact ones
appropriate to the physical assumptions underlying our
calculations. Since a deviation of the trial function
from the exact wave function by an amount ~ leads
only to a deviation in the estimate of U2 by an amount
of order e', it follows that the hypertriton wave function
we have obtained Lthe function (1.2) with the optimum
parameters given in Table I] is not so close to the exact
one. This is, of course, a characteristic of the variational
method. In the present case, so far as applications to
other properties of the hypertriton are concerned, the
most important defect in the wave function (1.2) is
the incorrectness of its asymptotic form. For example,
in the calculation of the matrix element for the decay
process

The quantities n and n3 are chosen to give the correct
asymptotic forms; that is

2cl= Qb) cz+cxb= G~. (5.5)

The variation parameters are b, b3, x, y, A, and C.
Unfortunately the amount of labor involved in a
variational calculation for V2 with this function would
greatly exceed that of the present work with the trial
function (1.2). The integrals occurring with the use of
(5.4) are not at all simple although they can all be
expressed in terms of derivatives of the basic integral

t exPL (+lrl+ ~2r2+ +br3)]
dr~dr2drb, (5.6)

(rg+A g) (r2+A ~) (rb+A b)
D

where D is the usual domain r~+r2~rb, r2+r, ~rq,
rb+rz~ r2.

An ad hoc method of normalizing the wave function
(1.2) in a manner appropriate for such applications as
the calculation of the matrix element for the hypertriton
decay (5.1) is the following: Each factor of (1.2) is

the main contribution to the integral involved comes
from the inner regions of the pH' wave function where
the form of the wave function is probably described
adequately by (1.2); however, with the small value of
B~, the normalization of the wave function is determined
to a large extent by the form of the wave function in
the asymptotic region. Consequently, with the incorrect
asymptotic form of the wave function (1.2), the matrix
element for the process (5.1) calculated with this wave
function will di6er from the correct one by an undeter-
mined factor exceeding unity. This is apparent for the
limiting case of By=0, for which the matrix element for
this process should be zero, whereas use of the function
(1.2) leads to a nonzero value.

It is, of course, possible to construct a trial function
which does have the correct asymptotic form in the
regions of large separations. For a large separation of
the A particle from the center of mass of the nucleons
(with r~ r2 E) such a wave function should be
proportional to exp( abR)/R—, with

ay= {4MMbBb/(2M+Mb)} l. (5.2)

For a large separation p of either nucleon from the
center of mass of the A particle and the other nucleon
(with r~ rb p) the wave function should be propor-
tional to exp( —a p)/p, where

a„={2M(M+Mb)B/(2M+Mb) }b, (5.3)

and B denotes the total binding energy of the system,
Bz&+Bb. An example of such a trial function with the
correct asymptotic forms and with the Qexibility of the
function (1.2) is

(r, ar1+gr, brl) (r—, ar2+ge—, brb) (r, a—brll+yr, b—br3)— —

(5 4)
{(rg+A) (r2+A) (rb+6) }&
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TABLE II. Spin dependence of the A-nucleon interaction.

Range U2(Mev fg)

420~15
667~52

U4(Mev f3)

695~25
910~45

V, &V.
V~(Mev fg)

210~ 8
334~26

V.(Mev fg)

65~34—90~90

S&

0.66
0.60

V(Mev f3)

156~10
174+21

V.&V,
V (Mev f3)

228~12
386~39

S&

0.72
0.69

The most probable value given for U2 in this table corresponds to BA =0.25 Mev; the uncertainty given for U2 is such that the lower limit equals
the value of U2 corresponding to Bg =0.

replaced by the corresponding asymptotic form of the
function (5.4) beyond the point at which the logarithmic
derivatives of these two functions are equal. For the
factor containing rt, for example, e "'+ae '"' is to be
replaced by e "'/rr'* for rr) sr, where si is defined by

1
=n+

2$y
(5.'I)

The wave function (1.2) having been modified in this
way, the normalization constant for the wave function
)determined from the normalization integral (2.2d)]
will have the correct dependence (that is, proportions, l

to Bzl) on Ba for sufficiently small Bz.
These remarks on the defects of the trial function

(1.2) apply more strongly to its use for the 7=1
three-body hypernuclear systems with 8=0 than they
do to the T=O hypertriton. For the T=1 systems, the
use of the wave function (5.4) with cr=ns ——0 should
result in some further reduction (perhaps by several
percent) in the estimate of the critical value Us'*. The
values obtained for U2'* on the basis of the function
(1.2), however, are already between 15 and 20% higher
than the values obtained for U2 even with the assump-
tion of a value for Bq (1 Mev) above the range at
present consistent with the AH' data. Even if there were
no spin dependence in the two-body A-nucleon inter-
action, this result implies that the existence of a bound
state is highly improbable for Ae'; and the additional
Coulomb repulsion makes the existence of a bound state
for AHe' even less probable. Any spin dependence in
the two-body A-nucleon interaction makes this conclu-
sion stronger. Moreover, it appears unlikely that this
conclusion would need any modification if three-body
potentials due to pion exchange processes were to
contribute appreciably to the interactions in the three-
body hypernuclear systems. "

It is of interest to compare the values of U2 obtained

"Wei&zner' and Spitzer4 have found that, in the lowest approxi-
mation of meson theory, the central, static three-body potential
between a A. particle and two nucleons has the form o'~ o'2g1

ssa(r&, rs}. This potential may contribute as much as 10 or 15'Po
to the value of U2. Since e~ e2cI e2= —3 for both T=O and
T=1 S states, however, the contribution of this three-body
potential to U2'* will have the same sign as and magnitude
comparable with its contribution to U2, so that the above discus-
sion would be essentially unaffected by the presence of such a
three-body potential. In the next approximation of meson theory,
there will arise three-body potentials whose sign will be opposite
for T=0 and T= 1 states; but these are potentials of shorter
range whose contributions to U2 and U2'* will be an order of
magnitude less than that of the simplest three-body potential.

here with the values recently obtained' for U3 and U4
from the analyses of the &H4, AHe4 doublet and of +He'.
On account of the uncertainty of the value of BA for
the hypertriton, we can only say that it is unlikely that
U2 lies outside the range 407 to 430 Mev P for z=ml;
and outside 621 to 700 Mev f' for ~=2m . A further
uncertainty in this comparison arises from the fact that
the calculations of U„ for the heavier hypernuclei were
carried out for a A.-nucleon potential of Gaussian form,
whereas the use of a Yukawa potential was more
convenient for the calculations of U2 reported in this
paper. In column (xii) of Table I volume integrals Us
are given for the Gaussian potentials equivalent to the
Yukawa potentials used here, in that they have the
same intrinsic range and give rise to the same zero-
energy scattering length. It is with the volume integrals
U2 of these equivalent Gaussian potentials that the
following comparisons are made.

Neglecting the possible contribution of three-body
potentials, the volume integral U4 of the total A-nucleon
interaction in ~He~ is

U4 ——3V„+V,. (5.8)

The expressions for U2 in terms of I/'„and I/', are given
by (3.1a) for V„)V, and by (3.1b) for V,)V„. The
values of V„and V„deduced from expressions (3.1)
and (5.8), are given in Table II. The value s& of the
well-depth parameter of the more attractive potential
is also given in the table; the improved estimates of U~
have led to a reduction in the values of s& by 10—20%
from the values previously obtained. ' From the present
results it appears that the existence of a bound state
of the A.-nucleon system is strongly excluded. " The
essential features of the spin dependence shown in
Table II are the same as those of the previous work,
although the spin dependence is now somewhat weaker.
The values expected for the volume integral Ua of the
total A-nucleon interaction in the AH4, AHe4 doublet are

Us ——(U4+ Us)/2 for V„)V., (5.9a,)

Us=3(U4+2Us)/8 for V,)V». (5.9b)
~ T. Truong, Phys. Rev. (to be published) has found that the

presence of hard cores in the h.-nucleon and nucleon-nucleon
interactions in the hypertriton sensibly increases the predicted
value of s&. The conclusion that no bound state exists for the
A-nucleon system would not be affected unless the hard core
radii were greater than 0.6 f. See also the previous work of D. B.
Lichtenberg, Nuovo cimento 8, 463 (1958),which is an adaptation
to the hypertriton of the work of Kikuta et al. (Kikuta, Morita,
and Yamada, Progr. Theoret. Phys. (Japanl 15, 222 (1956)J on
the nuclear three-body system with hard cores.
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The values predicted by (5.9), based on the present
values of U~, are not in disagreement with the values
obtained for U3 from the earlier analysis' for either
V„&V, or V,& V~."The evidence from the ~H', ~He'
doublet, in addition to that from qH' and qHe5, there-
fore does not allow a decision to be made as to whether
the singlet or triplet A.-nucleon interaction is the
stronger. Such a decision can, however, be made on the
basis of the observed mesonic decays of &H' and &H'.
From the high proportion of two-body decay events it
can be concluded" that the ground-state spins of AH4

and zH' are 0 and —,', respectively. This means that
V,& V„and that the well-depth parameters s=0.72
(s= m&) and 0.69 (s= 2m, ) of Table II are appropriate
to the 'S A-nucleon state. "

It is appropriate to emphasize the uncertainty in
these remarks on the A-nucleon potential which arises
from the possibility of three-body potentials. Although
three-body potentials may have a moderately small
effect for sH', contributing e (say) to Us, their effect
may be appreciable for &He', with a contribution of at
least 6N to U4. The existence of moderate three-body
potentials could, therefore, appreciably modify our
conclusions on the amount of the spin dependence of
the A-nucleon interaction. A repulsive three-body po-
tential would mean that the values of U4 and U2 could

be accounted for with less spin dependence in the
two-body A.-nucleon potential, and vice versa. The
essential conclusion of this paper, that the two-body
potential is not strong enough to bind the A-nucleon

system, could seriously be brought into question only
in the case V & V~ and then only if the three-body
potential were so strongly attractive that the &He'

binding energy required a very weak or repulsive 'S
A-nucleon potential.

One question w hich depends sensitively on the

"The values of U3 obtained from +H4, +He4 depend considerably
on the rms radius R3 assumed for the H', He' core of these hyper-
nuclei, a parameter for which there is no direct measurement yet
available. With the range 1/mx for the A-nucleon potential, values
of 600 and 695 Mev f' were obtained for U3 with values of R3 of
1.38 f and 1.58 f, respectively; with the range of 1/(2' ), the
corresponding values of U3 were 820 and 915 Mev f'. The value
of U3 predicted by (5.9b) for V )V„(the case which appears to
be appropriate to the actual situation) would require a value of
R3 close to the smaller of the two values considered. More adequate
allowance for the distortion of the H', He' core by the presence
of the A. particle than was made in reference 2 would lead to some
reduction in the values of U3 obtained there. It is possible that
such improved values would agree satisfactorily with the U3
predicted for t/' ) t/'„, even for a value of R3 the same as or larger
than the rms radius of He4.

'4 A qualitative discussion of the two-body decay of &H4 was
given in reference 2. A quantitative calculation for the two
systems has been made by R. H. Dalitz, Phys. Rev. 112, 605
(1958), and for &H' by M. Leon, Phys. Rev. (to be published).

Note added in proof. —Further investigation of the effects of the
Pauli principle on the zH' decay modes by R. H. Dalitz and L.
Liu (report in preparation) shows that this conclusion cannot be
based on the gH4 branching ratio data alone. If further arguments
concerning the branching ratio for nonmesonic modes of pHe
decay are accepted, it appears probable that this conclusion is
still valid.

existence and character of three-body potentials is that
of the existence of an excited bound state qH *. This
question is primarily of interest for the case V,& V~,
where the spin of the ground state of sH' is zero (see
reference 2). In this case, the potential appropriate to
the interaction between A and H' in the J=1 state is
measured by the volume integraP5 U3' '.

Us' ——Us —(V,—V„). (5.10)

There will then be a bound state zH'* with J=1 only
if Us' exceeds a certain critical value Us* Lgiven in
reference 2 as Us (By=0)). The greater the spin
dependence of the two-body A-nucleon potential, the
smaller is the value of U3' and the less likely is the
existence of a bound state gH'*. The spin dependence
found here neglecting three-body potentials would
mean that the existence of this bound state is almost
certain, especially for a triton radius R3 smaller than
the radius of the alpha particle. The presence of a
repulsive three-body potential would reduce this spin
dependence and require an +H4* state with an appreci-
able binding energy. On the other hand, the presence
of an attractive three-body potential, such as that
computed by Spitzer, 4 would call for a stronger spin
dependence in the two-body potential and would make
it unlikely that a J= 1 bound state should exist.

APPENDIX

The coefficients T p&, p ~ required in the expression
(2.5) for T(PpP) and the corresponding coefficients
required in the corresponding expressions for N(lt, p),
s(lt', ll'), and /t/(/pe) can all be expressed in terms of the
algebraic functions

( I) l+m+n

where

)l g na g n

xI I I I I I
I »(A&c), (AI)

Ec)A ) & c)B) E BC)

less(A++) ~ p (Atr+Brs+cra)A id'—sk,s.
(A2)

(A+8) (8+C) (C+A)

25 Note that a three-body h.-nucleon potential of the form
corresponding to the simplest possible pion exchange processes
will contribute equally to Us and Us' (see footnote 21).
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The required coeKcients are

Tapy, a'p'y'
2M

Mq
2ao gaol'+

~
1+

~
(alaala'+aopaop') Illl(A, B&C)

+ (a2paoy'+a87a2p') {I120(A)B)C)+I102(A)B,C) —I800(4BC)}
4M

1
+ (aoyala'+alaaoy'){I012(A)B)C)+I210(A)B)C) I080(ABC)}4'

+ (alaa2p'+a2pala') {I201(ABC)+I021(ABC) I008(ABC) }j (A3)
kg

0 p~, p ~ ——I 11(0A, B, C+K8)/K8,

p& ~p~&l = {Ip 1(A1+ &KB&C)+Ilol(A& B+K, C) }/K;

N pv'p'v, '=I»1(A»~C)

(A4)

(A5)

(A6)

The arguments A, B, and C are combinations of the one of the I~ „which it includes. These combinations
parameters a; given in Eq. (2.4): are

Ipll(x, y,s) =Illp(y, s,x) = Illp(s, y, x),

Ilpl (x,y,s) =I»o (s,x,y) = Illo (x,s,y),
(A9)

where

Illo(»y s) =4{(x+y) (x+y+&)+ (x+s) (y+s) }
X{(+y)'(y+ )'(+ )'} '. (A10)

Each of the combinations of I~ „occurring in the second,
third, and fourth terms of (A3) can be expressed as a
single function which is no more complicated than any

A =ala+al, , B=aop+a2p, C=ao, +a» . (A7)

Explicit expressions are given here for the various
Il „which appear in (A3)—(A6) and for the combina-
tions of Ii „which appear in (A3).

I»1(x,y,s) =8{x(x+y)(x+s)+y(y+s) (y+x)
+s(s+x) (s+y)+2(x+y) (y+s) (2+x)}

X{(x+y)'(y+s)'(s+x)'} ' (A8)

The functions Ilio, Iipl, and Io», which aPPear in (A4)
and (A5), differ from one another only by permutations
of their arguments, that is,

I120(A,B,C)+I102(A,B,C) —Iopp(ABC)
=J(B,C,A) =J(C,B,A),

I012(A,B,C)+I210(ABC) I080 (A pB)C)
=J(C,A,B)=J(A,C,B),

I2pl (A,B,C)+Ip21 (A BC)—I'op 8 (A BC)
=J(A,B,C) =J(B,A', C).

where

J(x)y)s) = 16{(x'+y')z2+ (x'+y') (4z8+xys)

+ (x+y) (4s4+ 7xys)+s'+3x'y's+10xys'}
X{(x+y)'(y+s)'(s+x)'}-' (A»)

The use of the function J(x,y,s) reduces the number of
functional forms necessary for the evaluation of all the
coefficients to the three of (A8), (A10), and (A12).

A simplification in the explicit expressions for T(P,f),
0(p,p), N(p, lf), and N(p, p) can result from the evident
symmetry of the functions Iyyy, Iyyp, and J if their
arguments have common values. In the problem treated
in this paper the set of values of A and 8, given in
Eqs. (A7) and (2.4) are the same. This reduced from
27 to 18 the number of coefficients N p„p ~ which
had to be evlauated for N(P, f). Similar reductions were
possible for TQ,P) and v Q pP).


