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The splittings of the P-doublet states of Li” and N'3, and the
D-doublet states of O, are calculated with phenomenological
two-body vector forces of both Gaussian and Yukawa shapes with
arbitrary ranges and exchange character. It is found to be im-
possible to fit the experimental data with a two-body force of fixed
strength, in agreement with Pearse’s calculations based on a
relativistic two-body vector force. The splittings are then calcu-
lated with a phenomenological three-body vector force of the type
expected to arise from higher order effects of the tensor force. The
predicted ratio of the P doublet splitting in N to that in Li’ is
found to be quite insensitive to the range or shape of the three-
body force, and in excellent agreement with experiment, provided
that the exchange character of the force is not chosen close to‘the
Serber mixture. The O'7 D-doublet splitting, while somewhat more
sensitive to the choice of range and exchange mixture, can also be

fitted simultaneously, with a wide variety of three-body vector
potentials. An attempt is then made to derive the parameters of
the three-body vector force from the Gammel-Thaler tensor force
parameters, but the resultant force has the wrong exchange
character, and is also much too weak, to fit the experimental data.
This is mainly due to the Serber-like exchange character of the
Gammel-Thaler tensor force. A moderate increase in the strength
or range of the odd-state tensor force would give a satisfactory
three-body vector force. The splitting of the 3D states of Li® is also
examined. Here one-, two-, and three-body vector forces all
predict too small a splitting, when the strength of the interaction
is normalized to the Li’ P-doublet splitting. For the three-body
vector force, however, there exists the possibility that the strength
parameter is greater for Li® than for Li?, which would improve
the fitting.

I. INTRODUCTION AND SUMMARY

HE original nuclear shell model! used, mainly for
simplicity, a one-body spin-orbit force, analogous
to the atomic spin-orbit force. It was soon recognized
that to obtain agreement with the observed level
separations, particularly in the p-shell nuclei,? one had
to assume that the strength of the one-body spin-orbit
force increased steadily with 4, the mass number. T'wo-
body vector forces,? as has been emphasized by Elliott
and Lane,? do lead to an effective one-body force whose
strength does increase with A4, and for large 4 in the
manner required by the experimental data.® A two-body
vector force is indeed necessary to explain the high-
energy nucleon-nucleon scattering and polarization
data. However, both the Gammel-Thaler and. Signell-
Marshak forces seem too weak to account for the shell
model.”

In a careful analysis of the nuclei Li?; N*, and OV,
Pearse® found that it was impossible to fit the doublet
splittings of these three nuclei with a two-body vector
force of fixed strength. The experimental ratio of the
P-doublet splitting in N to that in Li7 is 13.3, and
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the ratio of the D-doublet splitting in O to £-doublet
splitting in N* is 0.80.° In Sec. IT of this paper the
theoretical predictions for these ratios for two-body
vector forces of various shapes, ranges, and exchange
character is reviewed. The optimum values predicted
by a two-body force for the N*3/Li7 and O'7/N' doublet
splitting ratios are 4.5 and 1.4, respectively, in rough
agreement with Pearse’s calculations. A one-body force
of fixed strength predicts the values 3 and 5/3, respec-
tively. While the two-body force predictions are an
improvement over the one-body predictions, they are
not significantly better.

It is well known that the tensor force will lead to
doublet splittings in second and higher order,? i.e., to
an effective vector spin-orbit force that might be
responsible for the shell model."15 Such an effective
vector force contains both two-body and three-body
terms, as well as terms of higher order. Recent calcula-
tions'® based on the Brueckner formulation of the many-
body problem,” indicate that the two-body vector force
obtained from the tensor force is much too small, or has
the wrong sign, to account for the shell model. A crude
perturbation-variational calculation by the author®
indicated, however, that the effective three-body vector
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EVIDENCE FOR THREE-BODY VECTOR FORCES IN LIGHT NUCLEI

force derived from the tensor force may have the correct
strength, and sign, to give the observed shell-model
splittings.

It therefore seemed worthwhile to see what a three-
body vector force would predict for the N'®/Li’ and
OY/N% doublet splitting ratios. For this purpose
phenomenological three-body vector forces of the type
given by the theory of references 12 and 14 were used,
with Yukawa or Gaussian radial shapes, and arbitrary
ranges and exchange character. Harmonic oscillator
shell model wave functions are used. Section III
includes some general theory of the three-body vector
force, and the results of the calculations are given in
Sec. TV. Excellent agreement with the experimental
N18/Li7 ratio is found, practically independent of the
shape or range of the vector force, provided the ex-
change character does not approach the Serber mixture.
The predicted O'7/N* ratio is somewhat more depend-
ent on the shape and range of the force, but for both
Gaussian and Yukawa shapes, a wide choice of ranges
and exchange character exists where agreement is found
with the experimental value.

An attempt to derive the characteristics of the three-
body vector force from the Gammel-Thaler® tensor
parameters, using the theory of references 12 and 14, is
given in Sec. V. The resultant three-body force has the
wrong exchange character, and is also much too weak,
to fit the data. This is mainly due to the Serber-like
exchange character of the Gammel-Thaler tensor force.
Increasing the strength or range of their odd-state
tensor force would lead to a satisfactory three-body
vector force. Section VI contains a general discussion of
the results and also a discussion of the ®D splittings
in Li®.

II. ONE- AND TWO-BODY VECTOR FORCES

A one-body vector force of the form ¢l;-s,, where £ is
a constant, predicts that the P-doublet splitting of N'®
should be equal (but inverted) to that of He®. Experi-
mentally the NS splitting is about twice that of He®
(6.33 Mev compared to ~3 Mev), and it was mainly
for this reason that Elliott and Lane* preferred the two-
body vector force which, for a reasonable choice of
range and shape, and assuming the same single-particle
radius parameter for He® and N5, does predict a ratio
of 2 for the splittings. However, the use of He’ in
determining the nature of the vector force is undesirable
due to its heavy-particle instability and the consequent
uncertain “radius’ to be used for it, the predicted level
splitting for a two- or three-body force being quite
sensitive to the choice of nuclear radius (see Fig. 1).

Due to this sensitivity of the splitting on the value of
the nuclear radius, it is important to have accurate
values (or rather accurate relative values) of the radii
of Li7; N*% and O'. According to the Coulomb energy
analysis of the mirror nuclei by Carlson and Talmi,'8 the

18 B, C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
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Fic. 1. The P doublet
splitting in He5, in units of
Vo, as a function of 7/«
for two-body vector forces 19
(dashed lines) and three-
body vector forces (solid
lines). Curves labeled G and
Y are for Gaussian- and
Yukawa-shaped forces, re-
spectively. The curves are
shown for nonexchange
forces. For two-body vector
forces characterized by the
exchange parameter ¢ [Eq.
(1), the ordinate should be o0
multiplied by the factor
(1—a). For three-body vec-
tor forces characterized by
the exchange parameter g,
the ordinate should be
multiplied by the factor
[1+(18/5)g(e—1)1].

°

g

harmonic oscillator parameter is essentially identical for
all three nuclei. Using harmonic oscillator single-particle
wave functions with radial dependence 7! exp(—a??),
and assuming that « is the same for the s, p, and &
particles in a given nucleus, the Carlson-Talmi analysis,
using the most recent Coulomb energies given by
Kofoed-Hansen," gives o (Li?)=2.31, o 1(IN5)=2.34,
and o 1(0Y7)=2.37 fermis. Use of the exact harmonic
oscillator Coulomb energy formulas for the p shell,?® and
the corresponding formula for O' given by Pearse,?
yields identical results.? High-energy electron scattering
data,” when interpreted in terms of harmonic oscillator
wave functions, yields a somewhat larger value for
a}(Li").2 We adopt the value a1=2.34 fermis for all
three nuclei, Li’, N'5, and OV,

The most general two-body charge-independent vec-
tor force linear in the momentum of the particles is*

[V (ri)+ V' (r12) P (t12X p12) - (014 02) /%,

where V and V' are arbitrary scalar functions of the
nucleon separation, 7y, Py is the Majorana space
exchange operator, and r;» and pis are the relative
position and momentum vectors for the two nucleons.
We shall consider the more restricted form

V(r)[1+aPi ][ (112X pi2) - (01 02) 1/%, 1)

a being an adjustable parameter, and V (r;2) having a

19 0, Kofoed-Hansen, Revs. Modern Phys. 30, 449 (1958).

2 E. Feenberg and E. P. Wigner, Phys. Rev. 51, 95 (1937).

2l Due apparently to a numerical error, Pearse obtains a con-
siderably smaller value for o 1(N'%), and thus concludes that the
d particle in O'7 has a much larger value of o~1. This error does not
affect any of his other conclusions.

2 J, F. Streib, Phys. Rev. 100, 1797 (1955); R. Hofstadter,
Revs. Modern Phys. 28, 214 (1956).

2 A serious discrepancy is the fact that the Coulomb energies
indicate that o 1(Li%) is some 209, larger than «1(Li"), while the
electron scattering data implies only a 3%, difference. See W. M.
Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957), for a
discussion of this point.

2¢ L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
27, 281 (1941).
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Gaussian or Yukawa radial dependence:
VG(flz) = V()G exp(— 7'21’122),
VY(r12) = VoYe_”lz/Trlg.

The calculation of the doublet splittings in He®, Li’,
N5, and O due to such a potential is straightforward,?
and the results are shown graphically in Figs. 1-4. The
splittings were calculated in first order only. While this

is exact for He®, N5, and O", it involves the assumption
of pure LS coupling for Li’, which presumably is close

to the truth.?
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25 See J. P. Elliott and A. M. Lane, in Handbuch der Physik
(Springer-Verlag, Berlin, 1957), Vol. 39, for the general techniques
for calculating the matrix elements involved. Specific calculations
using a potential of the form (1) have been given by Elliott and
Lane (reference 4); G. Abraham, Nuclear Phys. 1, 415 (1956);
Visscher and Ferrell (reference 23).
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The dashed curves in Fig. 1 give the He® P-doublet
splitting as a function of the parameter 7/« for the
two-body vector force. Due to the unstable nature of
He’, Fig. 1 is intended only to show the sensitivity of
the splitting to the choice of 7/, and, together with
Figs. 2-7, to determine the absolute magnitudes of the
splittings in Li’, N¥ and O'Y. The curve for the two-
body Yukawa potential in Fig. 1 was originally given
by Elliott and Lane.* For large values of 7/a (6-function
potential) the splitting is inversely proportional to the
fifth power of 7/a. The operator Py, is, for He%, equiva-
lent to multiplication by the factor —1. Hence for
fixed Vo, 7, and «, the He® splitting is proportional to
(1—a), the parameter ¢ determining the exchange
character of the potential (1). The He?® splitting thus
vanishes for a Serber mixture (a=-1).26 The Li?, N,
and O' doublet splittings vanish for different 7/ values
for @ near +1, and this is the cause of the wild fluctua-

3
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tions in the curves of Figs. 2-4 for such ¢ values. The
value @=2 corresponds to the symmetric mixture,
- %2, discussed by Elliott and Lane.*

The curves for the Li’/He® doublet splitting ratio,
Fig. 2, should not of course be compared directly with
the experimental value of ~0.2, since the curves are
computed on the basis of the same value of a for
both nuclei, but serve mainly to fix the scale of the Li’
splitting when used together with Fig. 1. Correction for
the 39, difference in the value of a going from Li’ to O"
would reduce the values of the N'/Li’” and O'7/N
doublet splitting ratios given in Figs. 3 and 4 by at most
89, The experimental D-doublet splitting in O'7 of
5.08 Mev should perhaps be increased to allow for a
possible Ehrmann-Thomas shift of the upper level.?” If
we take 1 Mev as an arbitrary upper limit for this
shift, then the “experimental” O'/N® doublet ratio

26 Compare with K. M. Case and A. Pais, Phys. Rev. 80, 203

(1950).
27W. M. Visscher and R. A. Ferrell, reference 23.
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would be increased from 0.80 to 0.96. It is seen from an
examination of the computed N'/Li’7 and O'/N!®
ratios of Figs. 3 and 4 that for either Gaussian or
Yukawa shape two-body vector potentials, it is im-
possible, for any choice of 7 and g, to fit simultaneously
the experimental values of the ratios. This is in agree-
ment with Pearse’s conclusion, based on a relativistic
two-body vector force,? that a two-body vector force of
fixed strength cannot explain the Li?, N and OY
doublet splittings.

III. THREE-BODY VECTOR FORCE
Consider a tensor force of the form
tie=Tof (r12)S12X12, (2

where Sy, is the tensor operator,

S12=3(112- 01) (t12° 09) /71— (01 02),
Ty is the strength of the potential, f(r12) is the shape,
which again we take to be either Gaussian, exp (— %1%,
or Yukawa, €~7"12/7715, and X;» describes the exchange
character, X12= (1—g)+gP12, where P;» is the Majorana
space exchange operator and g is a mixing parameter.
The exchange character has been so written that the
effect of the tensor force on the deuteron ground state
is independent of g. According to the theory of reference
14, such a tensor force will give rise to an effective
three-body vector force of the form

Uzz xfjro (i)jk)xikv

ik

V(1,23)=Vof (r12) f(r1s) [ (112 113) (r1aXx13) /71571152 ]  (3)
{(e2X 03)+3i[401(02- 03)

—0'2(0'3'61)‘0'3(01’“2)]}~

The sum in (3) is to be extended over all triples of
nucleons 7, 7, k. For the nonexchange case (g=0),
X12=X;3=1 and the spin terms in (3) that are multiplied
by the factor 7z may be omitted.!*

According to the theory of reference 14, the strength
parameter V) is given by

Vo=—(9/2)T#/E, 4

where E is the “average” excitation energy of high-lying
states connected to the low states via the tensor force.?8
From the work of references 12 and 13, the calculated
value of V' was too small to account completely for the
multiplet splittings in Li® and Li’. However, Tamura?®
has shown that by slightly modifying the wave func-
tions, considerably larger effects can occur.®® In the
present paper we are primarily concerned with the
ratios of the doublet splittings in different nuclei, and

28E', as defined here, is identical with the expression (£ —8&o) of
reference 14. The right-hand side of Eq. (25) of reference 14 should
be divided by the factor (8y—FE).

2 T, Tamura, Phys. Rev. 105, 1808 (1957).

# Tamura’s calculations specifically refer only to -the singlet-
triplet separation in Li® produced by the tensor force in second
order, i.e., the scalar part of the operator # (see references 12-14),

and not to the effective vector operator. But it seems reasonable
to expect similar effects on the strength of the vector operator.
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thus shall consider Vy as an adjustable parameter so
chosen as to fit, say, the N'® P-doublet splitting. _

A serious difficulty, however, is that in principle E,
and hence V,, are functions of the mass number, 4.
This dependence is difficult to estimate, but from a
review of earlier calculations on the nuclei from He*
through Li"® it appears to be small. This possible
dependence will be unimportant for the O'/N5 doublet
splitting ratio but might be considerable for the N'#/Li’
ratio. /, and hence V, can also be expected to depend on
the type of nucleus, i.e., whether 4=4n, 4n+1, or
4n+2, since the supermultiplet structure® will almost
certainly affect . Since He5, Li?; N*5, and O'7 are all of
the same type, this effect will not occur here. Some
possible evidence for such a structure effect will be
discussed below in Sec. VI in connection with Li% ¥ can
also be expected to depend on the parameters o and 7.
Earlier calculations'? indicate that this dependence is
much smaller than the o and = dependence of U itself
(with fixed V). We can therefore safely neglect this
source of variation in V. For most of what follows, we
shall use (3) as the form of the three-body vector force,
with Vy constant.

For the calculations on He?, N5, and O'7 we shall use
the nlmgmm, representation, as this makes the appli-
cation of hole theory particularly simple. Consider such
a state in a nucleus consisting of closed shells (total
number of particles 7) plus e particles in an incomplete
shell. A properly antisymmetrized wave function for
the state A4 is then

1
2 (=D)?PPur(1)- - - thye(m+e),
(4Dt P
where the #’s are single-particle wave functions, the
subscripts being particle labels, the numbers in paren-
theses the state labels, P represents a permutation of
the particle labels, and p is the signature of the permu-
tation. The diagonal matrix element of a three-body
operator, O=2_.% 0(1,7k), is then

044=(u1(1) - - tmye(m+e) [ ®|
X% (=1)2Puy(1) -+ - thppye(mte))

= Zk (w1 () o (f)us (k)

Ya=

0(1,23)]
| XE (=P ()
1T G hu®)| o
XE (— )Py us(8)
- T Gum(u®]o’
XZP: (— 1) P Pus (D)us(f)us(k))
= T L=t S Lk
% E. P. Wigner, Phys. Rev. 51, 106 (1937).
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where ©'=3_p P0(1,23). Note that [47%] is independ-
ent of the ordering of 7, 7, and k. Now

m+e m mt-e m+te m
> [ijk]= Z + Z +32 X 3 X X
i7k=1 ijk=1  ijk=m+1 =1 jk=m+1 =m+1 jk=1

For 0=, a three-body vector force, the sum over
closed shells vanishes, leaving

mte m
=3 Z +33 Z +3 2 X3 O
17k=m+1 =1 jk=m+1 =m+1 jk=1

For a single particle outside closed shells, such as He®
and OY, the first two sums in (5) vanish, leaving

Vaa= 3 [m+1, k] (©)

k>7=1

Hole Theory

Consider now the ‘“complementary” state in the
“complementary” nucleus, 4’=m-+n—e, where 7 is the
total number of possible states in the incomplete shell,
and where we have replaced the occupied states in the
incomplete shell by holes, and vice versa. The 2P; states
of N*® and He® are such a pair of complementary states,
for example. The relationship between the diagonal
matrix element of a three-body force for the comple-
mentary state and the original state in the nucleus,
A =me, is readily found by an extension of the original
method used by Shortley for one- and two-body forces.?
We have

mtn

Oarar=% >

i7k=1-..m,m+tetl

[2jk]

m+tn

e{Z+ 2z

k=1 ijk=m+tetl

m+n

33 Z 3T )

=1 jk=m+et1 t=m+etl jk=1

m  mtn m  mtn

G{Z_l_ Z 32X X 33X X

k=1  ijk=m+1 =1 jk=m+1 =1 k=m+1

m mte m m+-e

—Z+3ZZ-3ZZ

7k=m+1 =1 jk=m+1 =1 k=m+1

m+n mt-e m+n

-3 2 XA+ X Z

y=m+1 k=m+1 i=m+1 jk=m+1

m  mtn m+t-€

=1 j=m+1 k=m+1

where € is the number of holes in the complementary
nucleus, 4’. Again for 0=, a three-body vector

3 G. H. Shortley, Phys. Rev. 40, 185 (1932); E. U. Condon and
G. H. Shortley, Theory of Atomic Spectra (Cambridge University
Press, Cambridge, 1935).
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operator, the sums over closed shells vanish, leaving

m m-+-e€ m  mtn m+e€

Vaa=—0VaatH X 2 —2 X X

i=1 jk=m+1 =1 j=m+l k=m+1
mtn m+-e m-n m+-e
+2 2 - X 23} (O

=m+1 j>k=m+l i>j=m+l k=m+1

For the case of a single hole in a closed shell, as in N5,
(7) reduces to

m+n
Varar=—Vaa— 2 [m+1, jk]
k>j=m+2
m  mtn .
-2 X [m+1, 5kl (8
k=1 j=m+2

For a one-body force, the two sums in (8) are absent and
one has the well-known result that the one-body vector
splitting for a hole is the same in magnitude, but
opposite in sign to that for a particle. We shall use
formula (6) to calculate the P- and D-doublet splittings
in He® and OY, respectively, and formula (8) to obtain
the P-doublet splitting in N, The Li’ P-doublet
splitting is most easily computed by using the method
of reference 12, where similar matrix elements (called
V1 and Vs there) were computed.

Formulas for a two-body vector force, analogous to
(5) and (7), are®

m  mite mte
=2 2 Ui+ X [y)

Va4 (59
=1 j=m-+1 i>j=m+1
m  mite m+n m+-€
Vpa=—2 X + Z -2 X, (M
=1 j=m+1l >j=mt+l i=mtl j=m+1

where
i 1= (ur (D) ua(5) |0 (12) | w1 (d) 12 () — w2 (D)1 (7))

The second sum in (5’) and (7') vanishes for the case
of a single particle (or hole) outside closed shells. The
addition term present in (7’), which represents the
interaction of the hole with the entire unfilled shell, is
the origin of the larger hole splittings compared to
single particle splittings for a two-body vector force, as
found by Elliott and Lane.? For the three-body vector
force, there are two additional sums, which have the
same origin, in formula (8) for a hole as compared to a
particle [formula (6)]. We can therefore expect that
the ratio of hole to particle splittings will be larger for
the three-body vector force than for a two-body vector
force.3

3 Formulas (5’) and (7’), which follow directly from Shortley’s
calculations (reference 32) on the electrostatic energy, have also
been given by D. M. Brink and G. R. Satchler, Nuovo cimento
4, 549 (1956) and by Visscher and Ferrell (reference 23) using the
second-quantization formalism.

34 The different hole-particle relationship for a three-body
central (scalar) force as compared to that for a two-body force has
been used by S. P. Pandya and J. B. French, Ann. Phys. 2, 166

(1957), as evidence for the existence of three-body scalar forces in
the effective nuclear interaction.
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IV. APPLICATION TO He5, Li’, N5, AND O

~ Some details of the calculations of the P-doublet
splittings in He® Li7, and N'*, and the D-doublet
splitting in O', are given in the Appendix. The results
are given in Figs. 1, 5-7 as a function of 7/« and the
exchange parameter g for both Yukawa- and Gaussian-
shape three-body vector forces. The solid lines in Fig. 1
show the strong dependence of the He® P-doublet
splitting on the parameter 7/« for the three-body force,
inversely proportional to the tenth power of 7/« in the
limit of a é-function force (r/a— ), and inversely
proportional roughly to the sixth power for the Yukawa
shape with r/a=2-3, which corresponds to the Gammel-
Thaler tensor force parameters. This is roughly twice
the power dependence on 7/a for the two-body vector
force, and is not unexpected in view of the form (3),
where f(r) occurs twice. The He® splitting is pro-
portional to [14(18/5)g(g—1)] in its dependence on
the exchange parameter g, reaching its minimal value
of one-tenth the nonexchange (or pure space-exchange)
value for g=1, the Serber mixture. For g<0 or >1, the
He® splitting increases indefinitely above the non-
exchange value, but this of course would imply a tensor
force stronger in odd states than in even states in the
nucleon-nucleon problem.

The reason for the small splitting for near Serber
mixtures can be made more explicit as follows. We can
rewrite X;50(1,23)X1;3 of Eq. (3) in the form

X12@(1,23)X13= (1—g)2’()(1,23)
+¢(1—g)[P1x0(1,23)+0(1,23) P15]
+g2P12D(1,23)P13. (9)

Let us call0(1,23) the nonexchange term, P150(1,23) P13
the pure-exchange term, and P150(1,23)+0(1,23)Py3

O-Q

i THREE-BODY  Li?/Hé®
o7

r Gaussian B
08

0.5
Fic. 5. Ratio of
the 2P3-2P; splitting
in Li7 to the 2P3-2Py
splitting in Heb as a
function of 7/« and 0.3
the exchange param- - o T/a E
eter g, for three- 1I||||I||||?1
body vector forces
of Gaussian and Yu-
kawa shape. The
curves are used with
Fig. 1 to fix the scale
of the Li” P-doublet
splitting.

04

o Yukawa -

THREE-BODY VECTOR FORCES IN LIGHT

NUCLEI 545
2
leh = a0 |
12 0.25,075 7]

Fic. 6. Ratio of sﬁ

THREE - ST T
the 2Py2Py splitting - EE-BODY NI ]
in N5 to the 2P3-2P; 4k . Gaussian 4
splitting in Li" as
a function of 7/a
and g, for three-
body vector forces - 4

of Gaussian and Yu- |efi9/
kawa shape. The =

. [ g=0,1
experimental value |, //
of the ratio is 13.3. o1, 09
.
B Yukawa 7
4 4
0.5
r | - T/a A
1 L | L 1 | 1 ] 1
° [ 2 3

the mixed-exchange term. For the states considered in
this paper, detailed calculations (see Appendix) show
that the pure-exchange term, when summed over all
triples of nucleons, is exactly equivalent to the non-
exchange term, so that (9) may be written

X150 (1,23)X13
=[g"+(1—¢)*J0(1,23)
+g(1—g)[P120(1,23)+0 (1,23) P15 ].

Since (10) is unchanged by the substitution (1—g) for g,
we see that the splittings are symmetric about the
Serber value, g=3%. For all the states we shall consider,
the mixed-exchange term produces doublet splittings
having the opposite sign to those produced by the non-
exchange term, so that for g values between 0 and 1
cancellation occurs. For He%, the mixed-exchange term,
again when summed over all triples of nucleons, can be
shown to be equal to —8/5 times the nonexchange term,
independent of 7/a. Thus the minimum splitting for He®
occurs at the Serber value, g=%. A similar situation
occurs with the two-body vector force (see Sec. II).
Figure S serves mainly, when used with Fig. 1, to fix
the scale of the Li” P-doublet splitting. Figure 6 gives
the ratio of the P-doublet splitting in N'® to that in Li’
for the three-body vector force of Eq. (3). It is seen that
the predicted ratio is relatively insensitive to both the
range and the shape of the force. It is also fairly
insensitive to the exchange parameter, g, provided one
stays away from the neighborhood of the Serber
mixture, g=3%. For g=0 or 1, for both Yukawa- and
Gaussian-shape potentials, the predicted ratio varies
from ~12 at r/a=0 to 17 at 7/a= «, compared to the
experimental value of 13.3. Correction for the smaller
value of o for Li” as compared to that for N5, would
reduce the predicted value of the doublet splitting ratio
by 159, for large 7/a values, and by a smaller amount
for small 7/a values. Somewhat larger values of the

(10)
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ratio can be obtained by going to negative or large
positive values of g.

The 0'/N* doublet splitting ratio, given in Fig. 7, is
somewhat more sensitive to the choice of the parameters
7/a and g, but again agreement with the experimental
value of 0.8-1.0 can be obtained for both the Gaussian
and Yukawa shapes provided g does not lie in the region
0.1<g<0.9. Indeed for g near 0.5, the O D-doublet
splitting has the wrong sign. One sees from Figs. 6 and 7
that for both the Yukawa and Gaussian shapes, there
exist many g and 7 combinations that will simultane-
ously fit the N'5/Li7 and O'/N*' doublet splitting ratios.
Examples of three-body vector potentials that give good
fits for these ratios are, for g=0 or 1, Gaussian:
Vo=—21 Mev, r1=1.95 fermis; Yukawa: Vi=—163
Mev, 71=1.17 fermis. Here V, has been chosen to fit
the N P doublet splitting.

V. GAMMEL-THALER TENSOR POTENTIAL

We have seen in the preceding section that a phe-
nomenological three-body vector force can easily be
chosen to fit the Li’, N*, and O' doublet splittings
simultaneously. Since, as discussed in Sec. III and
reference 14, such a force can be expected to be a
reflection of certain higher order effects of the tensor
force, it is interesting to see whether the three-body
vector force predicted from the tensor force in this
manner is actually of the proper type to fit the N5/Li’
and O'7/N?' doublet splitting ratios.

It is clear that, if the theory of Sec. IIT and reference
14 is roughly correct, the tensor force of conventional
meson theory® would yield a three-body vector force of
incorrect exchange character. Meson theory yields a
tensor force with the asymptotic exchange character,
<1+ %2, which corresponds to g=%. From Figs. 6 and 7,
we see that such a choice of g gives results completely

35 L. Hulthén and M. Sugawara, in Handbuch der Physik
(Springer-Verlag, Berlin, 1957), Vol. 39.
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incompatible with experiment. It has the further dis-
advantage that the magnitude of the doublet splittings
is reduced to a very small value—the He® splitting, for
example, being reduced to i the value obtained for"
g=0or 1.

Similar results occur with the Gammel-Thaler® phe-
nomenological potential, which contains a tensor force
having an exchange character close to the Serber
mixture. The theory of Sec. III cannot be applied
directly to the Gammel-Thaler tensor potential since
the odd and even tensor forces have different ranges.
However a slight extension of the theory suffices. Let ¢,
be the even-state two-body tensor potential and £, the
odd-state tensor potential. Then the over-all tensor
potential may be written

= %[(te+50)+ (te_ to)Pjr

where P is the Majorana space-exchange operator. The
three-body vector force resulting from such a two-body
tensor force can then be written as

V=14[0.c(1,23) +1{ P150..(1,23) +V.c(1,23) P15} ]
+3[000(1,23) = 3{ P15000(1,23) +0,0(1,23) P13} ]
—I—%[Plz{’oeo—’an}— {roea—‘coae}Plia‘]y (11)

where V.. is the vector force formed from ¢, alone in
both even and odd states, ie., in Eq. (3), f(») is
replaced by f.(r) and V, by V. According to Eq. (4),
Vo (To®)?, where To° is the strength of #. Similarly,
Voo 1s the vector force formed in the same manner from
t, alone, with strength V¢°« (T¢°)?%, while U,, is the
vector force formed by taking f(ris)=f.(r12), f(r13)
= fo(r12) in Eq. (3), with strength o« T¢*T¢°. The first
line of Eq. (11) will be recognized as just the three-body
vector force resulting from placing £,=0, i.e., it is the
vector force arising from a Serber tensor force. The
second line of (11) is the vector force arising from the
“anti-Serber” force, placing #,=0, while the third line
of (11) represents an interference term. Due to the
special symmetry properties of the interference term, it
can be shown to vanish for all the states we are con-
cerned with. (See the Appendix for the matrix elements
of this term.)

The Gammel-Thaler tensor potential is of Yukawa
shape, with parameters?®

Ty°=—159.40 Mev,
Tw=22.0 Mev,

7.=1.0494X10% cm™,

(12)
7,=0.80X 108 cm—.
The Gammel-Thaler potential also includes a repulsive
core of radius 7o=0.4X 1073 cm, but we shall omit this
cutoff since the vector splitting comes mainly from the
tail of the potential (see Fig. 1). Since V° is some 50X
greater than V¢°, we might expect the first line of (11)
to dominate completely over the second line of (11).
However, this is mitigated by two effects: Firstly, the
3 We use the parameters of the Gammel-Thaler potential given
by Brueckner, Gammel, and Weitzner (reference 16).
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larger range of ¢, has a large effect due to the strong
dependence of the vector splitting on 7/a (Fig. 1), and
secondly, the nonexchange and mixed-exchange terms
tend to cancel in the first line of (11), while they
reinforce in the second line, the “anti-Serber’” term, of
(11). These two effects, however, are not quite sufficient
to compensate for the large value of V¢ compared to
V°, and the results for the doublet splitting ratios due
to the Gammel-Thaler tensor parameters of (12) are
N'/Li’=4.8 and O'/N¥=—2.7, i.e., the O doublet
splitting has the wrong sign. These results are similar
to what one would get using a tensor force of the form
(2) with g=2, the same as the meson-theoretical tensor
potential, too close to the Serber mixture to give
acceptable results. For the same reason, the predicted
Li” P-doublet splitting is only about 1 the experimental
value.

Of course the derivation of the three-body vector
force from the nucleon-nucleon tensor force that we
have used is extremely crude, and a more accurate
theory might give an effective value of g further
removed from the Serber value, thus giving better
predicted values for the N'5/Li” and OY/N' doublet
splitting ratios, and larger doublet splittings. In this
connection it is interesting to note that doubling of the
strength of T'°, or a decrease in 7, from 0.80X10* cm™!
to 0.62X10% cm™! in the Gammel-Thaler tensor poten-
tial, would give results in approximate agreement with
experiment.

VI. CONCLUDING REMARKS

We have seen that while a one- or two-body vector
force cannot explain the N'5/Li” and O'/N'* doublet
splitting ratios, a phenomenological three-body vector
force does so in a manner remarkably independent of
the shape, range, or exchange character chosen for the
three-body vector force, provided one stays away from
the Serber exchange mixture. Our attempt, however, to
derive the three-body vector force so indicated from the
nucleon-nucleon tensor parameters, which was the
original motivation for introducing a three-body vector
force, was not successful.

In view of the success of a phenomenological three-
body vector force in fitting the N'*/Li7 and O'7/N'®
ratios, it would be desirable to extend the calculations to
other nuclei. This is particularly simple in the case of
Li®. Here we can compare the 2.33-Mev splitting of the
34, T=0 and 2+, T=0 states, which presumably are
members of the 3D multiplet, with, say, the P-doublet
splitting in Li’. For a one-body vector force of fixed
strength, the predicted ratio would be 3, in the limit
of LS coupling>3738% compared to the experimental
value of 4.9. A complication here is that the tensor force
would also split the members of the 3D multiplet.
However, according to the analysis of Pinkston and

87 G. E. Tauber and T. Y. Wu, Phys. Rev. 93, 295 (1954).

( 33 W. T. Pinkston and J. G. Brennan, Phys. Rev. 109, 499
1958).
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Brennan?® the effective tensor force in Li® must be
much weaker than the nucleon-nucleon tensor force, so
weak as not to affect the level structure of Li® appreci-
ably.® We shall therefore omit the tensor force com-
pletely. It is perhaps significant that the same theory
that predicts the three-body vector force, also predicts
a weakened tensor force. 131

The three-body vector force matrix elements for the
3D states of Li® have been given by Lyons®® (see also
the Appendix). We find that, for g=0 or 1, the calcu-
lated value of the Li® splitting ratio is 2.9, not signifi-
cantly different from the value predicted by a one-body
force. A nonexchange two-body vector force gives the
value 2.7. That all three types of vector force make ap-
proximately the same prediction is not surprising, since
for such light nuclei as Li® and Li” most of the vector
interaction is between the p particles and the closed
s-shell, and this can be considered as due to an effective
one-body vector force that should have essentially equal
strengths in Li® and Li’. The calculated ratio for the
three-body vector force assumed that the single-
particle radius parameter, «, is the same for both Li¢
and Li”. Correction for the 3%, difference shown by the
electron-scattering data? would reduce the predicted
value to 2.4, while use of the Coulomb energy data®
would reduce the predicted value of the Li®/Li’ ratio
to ~1.5. The large experimental 3D splitting in Li® is
thus hard to understand on any theory of the vector
force. From the point of view of the three-body vector
force theory, it might be due to E [Eq. (4)] being
considerably smaller for Li® than for Li" (see Sec. III).
The only calculations of K are those reported in refer-
ence 12. These do indicate such an effect, but only
2-1 the size needed to explain the entire discrepancy.

An interesting result of the Li® calculations is that
the off-diagonal matrix element of the three-body vector
force between the 3S; and 'P; states is very much
fmaller when compared to the diagonal matrix elements
for the 3D states than is the case for a one-body vector
sorce. This would provide a natural explanation of the
small quadrupole moment of Li® without requiring
cancellation by a tensor force, as is needed for a one-
body vector force.®®

If the three-body vector force is the main vector force
in nuclei, the question of how much two-body vector
force is also present in the effective nuclear potential
cannot, unfortunately, be answered by the calculations
of the present paper. The N'/Li’ doublet splitting
ratio is sensitive to the possible dependence of Vo on 4
(see Sec. IIT), and the O'7/N' ratio is influenced by the
uncertainty in the magnitude of the Ehrmann-Thomas
shift. If the strength of the three-body vector force, Vo,
is the same for Li” and N, then the results of Sec. IV

% In any event, an “attractive’” effective tensor potential would
increase the discrepancy between theory and experiment since it
tends to depress the 3D, state below the 3D; state [T. Regge,
Nuovo cimento 11, 285 (1954); J. P. Elliott, Proc. Roy. Soc.

(London) A218, 345 (1953)7]. A “repulsive” effective tensor force
would, of course, reduce the discrepancy.
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would permit a two-body vector force strong enough to
cause, by itself, a splitting of the 2P states of Li” of
~200 kev, with, however, a normal ordering of the
levels, i.e., the & state delow the § state. If, however, Vo
increased, say, by 509, on going from Li” to N5, then
the results would imply a two-body vector force of
about the same strength as for the case of constant Vy,
but now of opposite sign. Evidence on the trend of ¥V
with 4 could be obtained by extending the calculations
to the f-shell (Ca*), though the labor would be
formidable.

The remarkable agreement with experiment obtained
by Talmi and others,® on the assumption that shell-
model nucleon-nucleon forces are solely two-body in
nature, is not necessarily in conflict with the possible
presence of three-body vector forces. As discussed in
reference 14, for the case of a few particles outside
closed shells, integration over the closed shells will
yield effective one- and two-body vector forces that will
dominate over the remaining three-body interactions
among the outer nucleons. Thus for three-body forces
one can expect a conspicuous breakdown of the Talmi
procedure only in the case of a large number of particles
outside a small closed core, such as occurs in the p shell.
Here indeed the Talmi analysis does lead to disagree-
ment with experiment, but what part of the disagree-
ment is due to three-body forces and what part is due to
a departure from j; coupling, another assumption of
the Talmi analysis, is an open question.

APPENDIX

We wish to evaluate the sum (6) for He’® (m=4) and
0 (m=16), and the expression (8) for N'* (m=4,
n=12). We label the single-particle states in the follow-
ing order: first in increasing order of /, each set of given
1 in decreasing order of 7, each set of given / and #; in
decreasing order of m, (+3%, then —3), and finally each
set of given /, m;, and m, in decreasing order of m,
(4% for neutron, — 3 for proton). This follows Shortley’s
procedure.®? Each term [7j&] of (6) and (8) is a sum of
36 matrix elements but takes on a simple form after the
spin and isotopic spin integrations are performed. The
spin and isotopic spin integrations can be performed for
a general term of the form [@bmc.] where a, b, or ¢
stand for the /, m; values of the single-particle state, and
the subscripts give the m,, m, values of the state. For
the subscripts we use the numbers 1-4, in the order
given above, e.g., the subscript 2 means a proton with
spin up. Since the operators are independent of isotopic
spin, the matrix elements are invariant to the simultane-
ous subscript substitution, 1« 2, 3 <> 4. The results of
performing the spin and isotopic spin integrations for
the four types of three-body vector operators of the text

© S, Goldstein. and I. Talmi, Phys. Rev. 102, 589 (1956); 105,
995 (1957); S. P. Pandya, Phys. Rev. 103, 956 (1956) ; I. Talmi and
R. Thieberger, Phys. Rev. 103, 718 (1956); R. D. Lawson and
J. L. Uretsky, Phys. Rev. 106, 1369 (1957); I. Talmi, Phys. Rev.
107, 326, 1601 (1957).
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are given in Table I. The operators are U,, the non-
exchange operator, Uex, the pure-exchange operator,
U, the mixed-exchange operator, all defined in Eq. (9),
and U;, the interference operator defined in Eq. (11)
[the last line of Eq. (11), without the factor }]. In
Table I the notation abc|def represents the spatial
matrix element (aibscs| O]diesfs), where for the oper-
ators Uy, Vex, and Vi, O is the operator

43V of (r12) f(713) (T12- T13) (P12 X T13) o/ 71977147,

and the subscripts 1, 2, 3 on the state labels @, b, ¢ are
particle labels. For the operator Vs, f(r12) f(r1s) is to be
replaced by f.(712) fo(r15) (see discussion in Sec. V). The
labels a, b, etc. now refer to the spatial parts of the
single-particle wave functions, and are assumed nor-
malized to unity. The matrix elements abc|def have,
for the case of Vy, Vex, Um, the symmetry properties,

abc|def=—def| abc=dje| ach.

The sums in Egs. (6) and (8) can now be readily
performed. As mentioned in the text, for the states we
are concerned with, the operator Ue. gives results
identical with U,, and U; vanishes. We obtain

(0,)(He?)
= (21512/37912) Voaufff exp[—2a2(r2+r2+7) ]

X f(7’12)f(7’13)|:(1'12 . 1'13) (1’12>< l‘13)/7’1227’132:|
. [3 (1‘2 X 1‘3) +2 (l'lx 1‘2) ]dvldvzd'l)g,
which we abbreviate as

(Vn) (Hed) =3 (r:X13) 42 (11 X15).
Using the same abbreviated notation,

(V) (Hed) = — (8/5)[3 (12X 135) +2(1:X12) ],
(V) (N®) = —3(r2X15) — 2 (135X 1)
—8a?{ (12X 15)[ 272+ 2(xz15) — (r1°12) ]
+ (X 1) [ (11-12) + (r2-13) ]}
—1604{ (1 X13)[47.2(r2-15) — (t1-12) (£1-13) ]
+2 (1'3><l'1) (1’1 . rz) (1'2 : rs)} ,
(Vo) (N18) = (24/5) (15X 13) 4 (16/5) (13X 11)
1602{ (r2X13) 712+ (r2-15) — 2 (11 r3) ]
+2(esXry)[ (11 12)+ (r2-13) I}
—64014{ (r2>< l‘s)[(l‘l . 1'2) (1'1 . 1‘3) _1’12(1‘2 . 1'3)]
+2(r:X135) (11°12) (r2°15) },
<D n> (Ol7> = (8/5)a2[2 (rs><r1) (r1 . 1'3)+3(1'2X1'3) (1‘2‘ 1'3)]
4+ (64/5)a*{ (r2X135) (r2-¥3)
X[Z(I‘z'r3)+2rl2“ (1'1‘1'3)]
+ (l‘3><1'1) (I‘l‘l'3)[(1’2'1'3)+ (rl-m)]}
+ (128/5)a8{ (r2X r3) (¥2-13)
X [4r:2(rg-13)— (r1-12) (r1-135)]
+2(rsX1y) (11-15) (r2-13) (X1°12) },
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TasLE I. Matrix elements of the various three-body vector operators after spin and isotopic spin integration. See text for notation.

Termsa On Vex

Om Vs
[aibic2] 0 (1/10) (2bac| cha— 2bac | cab+2abc| cab 0 0
—2abc| cba+2bca| abc—bea|bac— ach | abe)
[aibics] (2abc| bca— abe| ach 2bac|ach—bac|bca— abc | ach (—4bac| acb+2bac|bca 0
—bac| bea) ~+2abc| ach)
[aibacs] —bac|bca —[Laic1ba]—abe| ach —2abc|bea —2abc | bca+2bac| ach

2 [abic1] =0; [a1bics] = —[awbic2]; [@bece] =[bic1a2]; [aibeca] = [biazcs]; [aibscs] = —[bicias]; [a1bscs] = —[biczas]; [a1bsca] =[biciaz].

(Om) (O1) = (64/5)a? (11X 13) (r1-15) — (128/5)a*

XA{ (12X 135) (r2-13) [71+ (13- 15) — 2 (11 15) ]

+2(rsX1) (r1-13) [ (r2-15) 4 (11-12) ]}

— (512/5)a8{ (rsX13) (r2-13)

X[ (r2-15)— (11°13) (11°15) ]

+2(r3Xry) (r1-13) (r2-13) (r1°12) }.

The above matrix elements refer, by our method of state
ordering, to the 2Py and 2D states of He® and N5, and

OY, respectively. For the 2Pj state of Li” we can use the
method of reference 12, and obtain

(V) (L") = (r2X15) 4 (2/3) (r3X11)
+ (8/45)012[ (12X 13)7 242 (r1><r3) (1‘1 : 1'2)],

(V) (Li") = — (8/15)[3 (r2X15) +2 (rsX11) ]
+ (16/45)a?[ (r2X r5)72+2(r1X13) (11-12) .

The matrix element (U,) for the Dj state of Li® has
been given essentially by Lyons.® The result is

(V) (Li%) = (8/15)[11 (r2X15)+7 (15X 11)
+ (%% (r2>< r3)7’12].

The integration over the coordinates of particle 1 can
now be performed by changing to ri, 11, 113 as the
independent variables. We obtain

(0, )(He?) = (5X3HV o/ dr) f f exp[— s+ (s-6) — ]

X f(r12) f(r13) (s- OL(sX1)*/ s Jdvsdu,,

where s=3%rys/a, t=3%3/a. The other matrix elements
differ from the above by the presence of an additional

factor in the integrand. We list below this additional
factor:

(U,)(Hed): —8/5,
(V) (N): (1/45)[ —118+2252—131(s-t)
+ 85417522 —4s%(s- t) — 29(s - t)%],
(Umy(NB):  (4/45)[76— 34524 65(st)
+4s54— 5522 — 252(s - t) — (s- t)%],
(007 (2/625)[1098— 846524621 (s- t) 4325
— 189522 — 2525%(s - t) 4234 (s - t)?
+20255— 7852420454 (s t)
— 399522 (s - t) — 114s%(s - t)2+205 (s - t)*],
(0)(O):  (8/625)[ —612+441452—459(s - t) — 486s*
+135522+90s2(s - t) 198 (s - t)?
—1785%+150s5%2—276s*(s - t)
+3275%2(s-t) 42452 (s - )2— 55 (s - t)%],
(V) (Li"):  (1/625)[203485248(s-t)],
(UNLIT):  (4/625) [ —101+4s2+4(s-t)],
(V) (Li®):  (4/75)[35+2s242(s-t)].

The 6-dimensional integrals above are readily re-
duced by going to polar coordinates and integrating
over the angles. The resultant 2-dimensional integrals
are then most conveniently evaluated in terms of
power series. See reference 12 and Lyons® for the
details.

By the Landé interval rule, the P- and D-doublet
splittings are 3 times and (§) times the matrix elements
for the 2P and 2Dj states, respectively, and the 2D3-3D,
separation in Li® is (7/6) times the matrix element for
the 3Dj; state.



