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Evidence for Three-Body Vector Forces in Light Nuclei*
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The splittiilgs of the E-doublcf; states of Ll and N", and the
D-doublet states of 0", are calculated with phenomenological
two-body vector forces of both Gaussian and Yul awa shapes with
arbitrary ranges and exchange character. It is found to be irn-
possible to fit the experimental data with a two-body force of 6xed
strength, in agreement with Pearse's calculations based on a
relativistic two-body vector force. The splittings are then calcu-
lated with a phenomenological three-body vector force of the type
expected to arise from higher order eRects of the tensor force. The
predicted ratio of the P doublet splitting in X" to that in Li' is
found to be quite insensitive to the range or shape of the three-
body force, and in excellent agreement with experiment, provided
that the exchange character of the force is not chosen close to'the
Serber mixture. The 0"D-doublet splitting, while somewhat more
sensitive to the choice of range and exchange mixture, can also be

flttc(:1 simultaneously, with a wide variety of three-body vectol
potentials. An attempt is then made to derive the parameters of
i.he three-body vector force from the Gammel-Thaler tensor force
parameters, but the resultant force has the wrong exchange
character, and is also much too weak, to 6t the experimental data.
This is mainly due to the Serber-like exchange character of the
Gammel-Thaler tensor force. A moderate increase in the strength
or range of the odd-state tensor force would give a satisfactory
three-body vector force. The splitting of the 'D states of Li' is also
examined. Here one-, two-, and three-body vector forces all
predict too small a splitting, when the strength of the interaction
is normalized to the Li7 P-doublet splitting. For the three-body
vector force, however, there exists the possibility that the strength
parameter is greater for Li' than for Li', which vrould improve
the fitting.

I. INTRODUCTION AND SUMMARY

HE original nuclear shell model' used, mainly for
simplicity, a one-body spin-orbit force, analogous

to the atomic spin-orbit force. It was soon recognized
that to obtain agreement with the observed level
separations, particularly in the p-shell nuclei, -'one had
to assume that the strength of the one-body spin-orbit.
force increased steadily with A, the mass number. Two-
body vector forces, ' as has been emphasized by Elliott
and Lane, 4 do lead to an effective one-body force whose
strength does increase with 3, and for large A in the
manner required by the experimental data. ' A two-body
vector force is indeed necessary to explain the high-
energy nucleon-nucleon scattering and polarization
data. ' However, both the Gammel-Thaler and. Signell-
Marshak forces seem too weak to account for the shell
model. '

In a careful analysis of the nuclei Li~, N", and 0",
Pearse found that it was impossible to 6t the doublet
splittings of these three nuclei with a two-body vector
force of fixed strength. The experimental ratio of the
I-'-doublet splitting in N" to that in Li' is 13.3, and

* A preliminary report of this work was presented by the author
at the. 1957 Stanford meeting of the American Physical Society
LBull. Am. Phys. Soc. Ser. II, 2, 392 (1957)g.' M. G. Mayer, Phys. Rev. 75, 1969 (1949);Haxel, Jensen, and
Suess, Phys. Rev. 75, 1776 (1949).' D. R. Inglis, Revs. Modern Phys. 25, 390 (1953); D. Kurath,
Phys. Rev. 101, 216 (1956}.' C. H. Blanchard and R. Avery, Phys. Rev. Sl, 35 (1951};J.
Hughes and K. T. LeCouteur, Proc. Phys. Soc. (London) A63,
1219 (1950).' J. P. Elliott and A. M. Lane, Phys. Rev. 96, 1160 (1954).

"R. J. Blin-Stoyle, Phil. Mag. 46, 973 (1955); A. Schroder,
Nuovo cirnento 7, 461 (1958).' J. I. Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337
(1957); P. S. Signell and R. E. Marshak, Phys. Rev. 109, 2229
(1958).

7 M. Moshin. sky, Phys. Rev. 109, 933 (1958};B.P. Nigam and
M. K. Sundaresan, Phys. Rev. 111, 284 (1958).

"C. .-'Y. Pearse, Phys. Rev. 106, 545 (2957).

the ratio of the D-doublet splitting in 0" to I'-doublet.
splitting in N" is 0.80.' In Sec. II of this paper the
theoretical predictions for these ratios for two-body
vector forces of various shapes, ranges, and exchange
character is reviewed. The optimum values predicted
by a tvvo-body force for the N"/Li' and 0'r/N" doublet
splitting ratios are 4.5 and 1.4, respectively, in rough
agreement with Pearse's calculations. A one-body force
of fixed strength predicts the values 3 and 5/3, respec-
tively. While the two-body force predictions are an
improvement over the one-body predict. ions, they are
not significantly better.

It is well known that the tensor force will lead to
doublet splittings in second and higher order, ' i.e., to
an effective vector spin-orbit force that might be
responsible for the shell model. " "" Such an eGective
vector force contains both two-body and three-body
terms, as well as terms of higher order. Recent calcula-
tions" based on the Brueckner formulation of the many-
body problem, "indicate that the two-body vector force
obtained from the tensor force is much too small, or has
the wrong sign, to account for the shell model. A crude
perturbation-variational calculation by the author''-

indicated, however, that the effective three-body vector

'Experimental data are taken from the compilation of F.
Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77 (1955)."S.M. Dancoff, Phys. Rev. 58, 326 (1940)."J.Keilson, Phys. Rev. 82, 759 (1951}.

'- A. M. Feingold, Phys. Rev. 101, 258 (1956)."D. H. Lyons, Phys. Rev. 105, 936 (1957).
"A. M. Feingold, Phys. Rev. 105, 944 (1957)."L.S. Kisslinger, Phys. Rev. 104, 1077 (1956)."B. Jancovici, Phys. Rev. 107, 631 (1957); Nuovo cimento 7,

290 (1958);B.P. Nigam and M. K. Sundaresan, Can. J.Phys. 36,
571 (1958); Brueckner, Gammel, and Weitzner, Phys. Rev. 110,
431 (1958}."K.A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955); K. A. Brueckner, Phys. Rev. 100, 36 (1955); Brueckner,
Eden, and Francis, Phys. Rev. 99, 76 (1955); H. A. Bethe, Phys.
Rev. 103, 1353 (1956); K. Brueckner and J. I.. Gammel, Phys.
Rev. 109, 2023 (2958}.
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force derived from the tensor force may have the correct
strength, and sign, to give the observed shell-model
splittings.

It therefore seemed worthwhile to see what a three-
body vector force would predict for the N"/Li' and
0"/N" doublet splitting ratios. For this purpose
phenomenological three-body vector forces of the type
given by the theory of references 12 and 14 were used,
with Yukawa or Gaussian radial shapes, and arbitrary
ranges and exchange character. Harmonic oscillator
shell model wave functions are used. Section III
includes some general theory of the three-body vector
force, and the results of the calculations are given in
Sec. IV. Excellent agreement with the experimental
N"/Li' ratio is found, practically independent of the
shape or range of the vector force, provided the ex-
change character does not approach the Serber mixture.
The predicted 0"/N" ratio is somewhat more depend-
ent on the shape and range of the force, but for both
Gaussian and Yukawa shapes, a wide choice of ranges
and exchange character exists where agreement is found
with the experimental value.

An attempt to derive the characteristics of the three-
body vector force from the Gammel-Thaler' tensor
parameters, using the theory of references 12 and 14, is
given in Sec. V. The resultant three-body force has the
wrong exchange character, and is also much too weak,
to fit the data. This is mainly due to the Serber-like
exchange character of the Gammel-Thaler tensor force.
Increasing the strength or range of their odd-state
tensor force would lead to a satisfactory three-body
vector force. Section VI contains a general discussion of
the results and also a discussion of the 'D splittings
in Li'.

II. ONE- AND TWO-BODY VECTOR FORCES

A one-body vector force of the form &1,"s, , where t is
a constant, predicts that the E'-doublet splitting of N"
should be equal (but inverted) to that of He'. Experi-
mentally the N" splitting is about twice that of He'
(6.33 Mev compared to 3 Mev), and it was mainly
for this reason that Elliott and Lane4 preferred the two-
body vector force which, for a reasonable choice of
range and shape, and assuming the same single-particle
radius parameter for He' and N", does predict a ratio
of 2 for the splittings. However, the use of He' in
determining the nature of the vector force is undesirable
due to its heavy-particle instability and the consequent
uncertain "radius" to be used for it, the predicted level
splitting for a two- or three-body force being quite
sensitive to the choice of nuclear radius (see Fig. 1).

Due to this sensitivity of the splitting on the value of
the nuclear radius, it is important to have accurate
values (or rather accurate relative values) of the radii
of Liv, N'5, and O' . According to the Coulomb energy
analysis of the mirror nuclei by Carlson and Talmi, "the

"B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).

FIG. 1. The I' doublet
splitting in He', in units of
V0, as a function of r/rr
for two-body vector forces
(dashed lines) and three-
body vector forces (solid
lines). Curves labeled G and
Y are for Gaussian- and
Yukawa-shaped forces, re-
spectively. The curves are
shown for nonexchange
forces. For two-body vector
forces characterized by the
exchange parameter o

I Eq.
(1)g, the ordinate should be
multiplied by the factor
(1—a). For three-body vec-
tor forces characterized by
the exchange parameter g,
the ordinate should be
multiplied by the factor
I:1+(18/8lg(g —1)j
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"0. Kofoed-Hansen, Revs. Modern Phys. 30, 449 (1958)."E. Feenberg and E. P. Wigner, Phys. Rev. 51, 95 (1937).
"Due apparently to a numerical error, Pearse obtains a con-

siderably smaller value for o, '(N'5), and thus concludes that the
d particle in 0'7 has a much larger value of o. '. This error does not
affect any of his other conclusions."J.F. Streib, Phys. Rev. 100, 1797 (1955); R. Hofstadter,
Revs. Modern Phys. 28, 214 (1956).

2' A serious discrepancy is the fact that the Coulomb energies
indicate that n '(Li') is some 20% larger than n '(Li'), while the
electron scattering data implies only a 3% difference. See W. M.
Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957), for a
discussion of this point.

24 L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
27, 281 (1941).

harmonic oscillator parameter is essentially identical for
all three nuclei. Using harmonic oscillator single-particle
wave functions with radial dependence r' exp( —n'r'),
and assuming that n is the same for the s, p, and d
particles in a given nucleus, the Carlson-Talmi analysis,
using the most recent Coulomb energies given by
Kofoed-Hansen" gives n '(Lir) =2.31 n '(N") =2.34,
and n '(0'r) =2.37 fermis. Use of the exact harmonic
oscillator Coulomb energy formulas for the p shell 2' and
the corresponding formula for 0" given by Pearse, '
yields identical results. "High-energy electron scattering
data, "when interpreted in terms of harmonic oscillator
wave functions, yields a somewhat larger value for
n '(Li')."We adopt the value n '=2.34 fermis for all
three nuclei, Li', N", and 0".

The most general two-body charge-independent vec-
tor force linear in the momentum of the particles is'4

L&(r12)+E"(r12)~12jL(rl Xp12) '(rr1+rr2) j/@

where V and V' are arbitrary scalar functions of the
nucleon separation, r», E'» is the Majorana space
exchange operator, and r» and p» are the relative
position and momentum vectors for the two nucleons.
We shall consider the more restricted form

&(r12) [E.+a&12][(r12Xy12) (nr+n2)]/&, (&)

a being an adjustable parameter, and V(r12) having a
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would be increased from 0.80 to 0.96. It is seen from an
examination of the computed N"/Li' and 0"/N"
ratios of Figs. 3 and 4 that for either Gaussian or
Yukawa shape two-body vector potentials, it is im-
possible, for any choice of r and u, to fit simultaneously
the experimental values of the ratios. This is in agree-
ment with Pearse's conclusion, based on a relativistic
two-body vector force, ' that a two-body vector force of
fixed strength cannot explain the Li~, N", and 0'
doublet splittings.

III. THREE-BODY VECTOR FORCE

Consider a tensor force of the form

~12 Tpf (2 12)+12x12) (2)

where Si2 is the tensor operator,

512 3 (r12.o 1) (r12
' 122)/2»' —(121.122),

Tp is the strength of the potential, f(r,2) is the shape,
which again we take to be either Gaussian, exp( —r'r12'),
or Yukawa, e "»/rr12, and X12 describes the exchange
character, X»= (1 g)+gI'1—., where 812 is the Majorana
space exchange operator and g is a mixing parameter.
The exchange character has been so written that the
eBect of the tensor force on the deuteron ground state
is independent of g. According to the theory of reference
14, such a tensor force will give rise to an effective
three-body vector force of the form

'U=Q X;,'U(i, jk)X;1„,
ijI

'U(1,23) = Vpf(r12) f(r12)L(r12'rip)(r12Xrip)/r12 rlp~j (3)

( (e2X ep)+ pzL4121(122 ' 122)

Q2 0'3 ' Ol P8 Pl 2 ~

The sum in (3) is to be extended over all triples of
nucleons i, j, k. For the nonexchange case (g=0),
X„=Xip= 1 and the spin terms in (3) that are multiplied
by the factor —,'i may be omitted. "

According to the theory of reference 14, the strength
parameter Vo is given by

Vp = —(9/2) Tp'/E, (4)

where E is the "average" excitation energy of high-lying
states connected to the low states via the tensor force."
From the work of references 12 and 13, .the calculated
value of Vo was too small to account completely for the
multiplet splittings in Li' and Li'. However, Tamura"
has shown that by slightly modifying the wave func-
tions, considerably larger eGects can occur." In the
present paper we are primarily concerned with the
ratios of the doublet splittings in different nuclei, and

E, as dedned here, is identical with the expression (E—go) of
reference 14.The right-hand side of Eq. (25) of reference 14 should
be divided by the factor (8o—E).

29 T. Tamura, Phys. Rev. 105, 1808 (1957).
~ Tamura's calculations specifically refer only to the singlet-

triplet separation in I.i' produced by the tensor force in second
order, i.e., the scalar part of the operator t' (see references 12—14),
and not to the effective vector operator. But it seems reasonable
to expect similar effects on the strength of the vector operator.

thus shall consider Vo as an adjustable parameter so
chosen as to fit, say, the N" P-doublet splitting.

A serious difhculty, however, is that in principle E,
and hence Vo, are functions of the mass number, A.
This dependence is di%cult to estimate, but from a
review of earlier calculations on the nuclei from He4

through Li'," it appears to be small. This possible
dependence will be unimportant for the 0'2/N" doublet
splitting ratio but might be considerable for the N"/Li2
ratio. E, and hence Vo, can also be expected to depend on
the type of nucleus, i.e., whether A=4m, 4e&1, or
422+2, since the supermultiplet structure" will almost
certainly affect E. Since He', Li, N", and 0'7 are all of
the same type, this effect will not occur here. Some
possible evidence for such a structure effect will be
discussed below in Sec. VI in connection with Li .E can
also be expected to depend on the parameters n and r.
Earlier calculations" indicate that this dependence is
much smaller than the n and r dependence of 'U itself
(with fixed Vp). We can therefore safely neglect this
source of variation in Vo. For most of what follows, we
shall use (3) as the form of the three-body vector force,
with U() constant.

For the calculations on He', Ni5, and 0"we shall use
the elm~ns, m, representation, as this makes the appli-
cation of hole theory particularly simple. Consider such
a state in a nucleus consisting of closed shells (total
number of particles 222) plus p particles in an incomplete
shell. A properly antisymmetrized wave function for
the state 3 is then

P (—1)&'Pu, (1). u +, (m+p),
(pl)k p

where the I's are single-particle wave functions, the
subscripts being particle labels, the numbers in paren-
theses the state labels, I' represents a permutation of
the particle labels, and p is the signature of the permu-
tation. The diagonal matrix element of a three-body
operator, 8=+,,& 8(i,jk), is then

o p~ ——(ui(1) u +, (222+2) I
e

I

Xg (—1)"j'ui(1) u,~,(2n+2))

=Q (ui(i)u2(j)up(k) I e(1,23)
I

Xg (—1)&Pui(i)u2( j)u, (k))
p

=-', p (u (i)u, (j)u (k) I

O'
I

ijlc

X2 (—1)"j'ui(i)u2(i)up(k))

= 2 (u (')u (j)u (k) I
&'I

XP (—1)&Pu, (i)u2(j)up(k))
P

—= 2 le kj=
p E I:ijkj,

"E. P. signer, Phys. Rev. 51, 106 (1937).
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m m+e m m+n m+e
'U~ ~ = —'U~~+{2

i=1 j7c=m+I i=1 j=m+I k=m+1
m+6 m m+» m m+e m+e m

Q [ijk]= Q+ P +3+ P +3
ij7c=l ijk=l ijk=m+I i=1 jk=m+I i=m+I jk=l m+n m+e m+n m+e

+ 2 2 — 2 2 } (7)
For 8='U, a three-body vector force, the sum over
closed shells vanishes, leaving

i=m+1 j&k=m+1 i)j=m+I k=m+1

For the case of a single hole in a closed shell, as in N",
(7) reduces to

5
m+c m m+~ m+e m

&~~=6{ 2 +3K 2 +3 2 2)
ijk=m+I i=l jk=m+1 i=m+1 jk=l [iii+1, jk]

For a single particle outside closed shells, such as He'
and 0", the first two sums in (5) vanish, leaving

k&j=m+2

[vi+1, jk]. (8)
k=1 j=m+2

[m+1, jk].
k&j=i

(6)
For a one-body force, the two sums in (8) are absent and
one has the well-known result that the one-body vector
splitting for a hole is the same in magnitude, but
opposite in sign to that for a particle. We shall use
formula (6) to calculate the P and D-doub-let splittings
in He' and 0", respectively, and formula (8) to obtain
the P-doublet splitting in N". The Li" P-doublet
splitting is most easily computed by using the method
of reference 12, where similar matrix elements (called
V, and V3 there) were computed.

Formulas for a two-body vector force, analogous to
(5) and (7), are"

Hole Theory

Consider now the "complementary" state in the
"complementary" nucleus, 2'= m+e e, wh—ere n is the
total number of possible states in the incomplete shell,
and where we have replaced the occupied states in the
incomplete shell by holes, and vice versa. The 'P; states
of N" and He' are such a pair of complementary states,
for example. The relationship between the diagonal
matrix element of a three-body force for the comple-

mentary state and the original state in the nucleus,
A =m+e, is readily found by an extension of the original
method used by Shortley for one- and two-body forces."
We have

m m+e m+6

[V]+ 2 [i2] (5')
i=1 j=m+I i)j=m+I

m+0 m+ n m+cm m+e
'U~~= —E 2+ 2 —2 2, (7')

i=1 j=m+I i&j=m+I i=m+1 j=m+Im+n

[ijk]1A'A' —6 whereij7c=1 ~ ~ m, m+a+1

[~j]= (»(~)~2(j) I'U (12) I ~i(~)~2(j)—»(i)»(j) ).m+n m m+n m+n m

=6{Z+ 2 +3K 2 +3
ijk=l ijk=m+e+I i=1 jk=m+e+I i=m+e+I jk=l

The second sum in (5') and (7') vanishes for the case
of a single particle (or hole) outside closed shells. The
addition term present in (7'), which represents the
interaction of the hole with the entire unfilled shell, is
the origin of the larger hole splittings compared to
single particle splittings for a two-body vector force, as
found by Elliott and Lane. 4 For the three-body vector
force, there are two additional sums, which have the
same origin, in formula (8) for a hole as compared to a
particle [formula (6)]. We can therefore expect that
the ratio of hole to particle splittings will be larger for
the three-body vector force than for a two-body vector
force. '4

=6{2+ 2 +3K 2+32
ijk=l ijk=m+I i=1 j7c=m+I ij=i k=m+1

m+e m m+e m m+e

+3K 2 —3Z
ijk=m+I i=l jk=m+I ij=l k=m+1

m+n m+e m+n m+e2+3 Z
i=m+1 jk=m+Iij=m+I k=m+1

m m+n m+a—6ZZ E), Formulas (5') and (7'), which follow directly from Shortley's
calculations (reference 32) on the electrostatic energy, have also
been given by D. M. Brink and G. R. Satchler, Nuovo cimento
4, 549 (1956) and by Visscher and Ferrell (reference 23) using the
second-quantization formalism.

34 The different hole-particle relationship for a three-body
central (scalar) force as compared to that for a two-body force has
been used by S. P. Pandya and J. B. French, Ann. Phys. 2, 166
(1957},as evidence for the existence of three-body scalar forces in
the effective nuclear interaction.

i=1 j=m+I k=m+1

where ~ is the number of holes in the complementary
nucleus, A'. Again for 8='U, a three-body vector

32 G. H. Shortley, Phys. Rev. 40, 185 (1932);E. U. Condon and
G. H. Shortley, Theory of Atomic Spectra (Cambridge University
Press, Cambridge, 1935}.

where O'=Pi PO(1,23). Note that [ijk] is independ- operator, the sums over closed shells vanish, leaving
ent of the ordering of i, j, and k. Now
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FIG. 7. Ratio of
the 2Df ~2-2Dg split-
ting in 0" to the
'Pg-'Pg splitting in
N" as a function of
r/a and g for three-
body vector forces
of Gaussian and Yu-
kawa shape. The
experimental value
of the ratio is 0.80.

incompatible with experiment. It has the further dis-
advantage that the magnitude of the doublet splittings
is reduced to a very small value —the He' splitting, for
example, being reduced to -,'the value obtained for'
g=0 or 1.

Similar results occur with the Gammel-Thaler' phe-
nomenological potential, which contains a tensor force
having an exchange character close to the Serb er
mixture. The theory of Sec. III cannot be applied
directly to the Gammel-Thaler tensor potential since
the odd and even tensor forces have different ranges.
However a slight extension of the theory su%ces. I.et t,
be the even-state two-body tensor potential and t, the
odd-state tensor potential. Then the over-all tensor
potential may be written

«=-.E(«.+«)+ («.—«.)Pj,

ratio can be obtained by going to negative or large
positive values of g.

The 0"/N" doublet splitting ratio, given in Fig. 7, is
somewhat more sensitive to the choice of the parameters
r/n and g, but again agreement with the experimental
value of 0.8—1.0 can be obtained for both the Gaussian
and Yukawa shapes provided g does not lie in the region
0.1&g&0.9. Indeed for g near 0.5, the O' D-doublet
splitting has the wrong sign. One sees from Figs. 6 and 7
that for both the Yukawa and Gaussian shapes, there
exist many g and r combinations that will simultane-
ously fit the N"/Li' and 0"/N" doublet splitting ratios.
Examples of three-body vector potentials that give good
fits for these ratios are, for g=0 or 1, Gaussian:
Vo= —21 Mev, r =1.95 fermis; Yukawa: Vc= —163
Mev, ~ '=1.17 fermis. Here Vo has been chosen to fit
the N" I' doublet splitting.

V. GAMMEL-THALER TENSOR POTENTIAL

Ke have seen in the preceding section that a phe-
nomenological three-body vector force can easily be
chosen to fit the I.i, N", and 0' doublet splittings
simultaneously. Since, as discussed in Sec. III and
reference 14, such a force can be expected to be a
reRection of certain higher order effects of the tensor
force, it is interesting to see whether the three-body
vector force predicted from the tensor force in this
manner is actually of the proper type to fit the N"/Li'
and 0'r/N" doublet splitting ratios.

It is clear that, if the theory of Sec. III and reference
14 is roughly correct, the tensor force of conventional
meson theory" would yield a three-body vector force of
incorrect exchange character. Meson theory yields a
tensor force with the asymptotic exchange character,
~~ ~~, which corresponds to g= 3. From Figs. 6 and 7,
we see that such a choice of g gives results completely

'5 L. Hulthen and M. Sugawara, in HamdbNch der Physi h

(Springer-Verlag, Berlin, 1957), Vol. 39.

where I' is the Majorana space-exchange operator. The
three-body vector force resulting from such a two-body
tensor force can then be written as

'U= FLU-(1~23)+i2 fP»'U. .(1123)+'U«(1,23)P»}j
+—,'L'U. .(1,23) —-', (Pi2'U, .(1,23) +'U..(1,23)Pia}]

+-',P'„fZ„—'U..}—jZ..—'U..}P $, (11)

where 'U„ is the vector force formed from t, alone in
both even and odd states, i.e. , in Eq. (3), f(r) is
replaced by f, (r) and Ve by Ve'. According to Eq. (4),
Ve'~ (T&')', where T&' is the strength of «, Similarly,
'U„ is the vector force formed in the same manner from
«, alone, with strength Vo'er (Te')', while 'U„ is the
vector force formed by taking f(ri&)=f, (r»), f(r&&)
=f, (ri~) in Eq. (3), with strength ~ To'To'. The first
line of Eq. (11) will be recognized as just the three-body
vector force resulting from placing t.=0, i.e., it is the
vector force arising from a Serber tensor force. The
second line of (11) is the vector force arising from the
"anti-Serber" force, placing $,=0, while the third line
of (11) represents an interference term. Due to the
special symmetry properties of the interference term, it
can be shown to vanish for all the states we are con-
cerned with. (See the Appendix for the matrix elements
of this term. )

The Gammel-Thaler tensor potential is of Yukawa
shape, with parameters"

To'= —159.40 Mev, r.= 1.0494)&10" cm ',
(12)

To'=22.0 Mev, r, =0.80&(10"cm '

The Gammel-Thaler potential also includes a repulsive
core of radius ro=0.4)(10 "cm, but we shall omit this
cutoff since the vector splitting comes mainly from the
tail of the potential (see Fig. 1). Since Ve' is some 50&&

greater than Ve', we might expect the first line of (11)
to dominate completely over the second line of (11).
However, this is mitigated by two sects: Firstly, the

36 We use the parameters of the Gammel-Thaler potential given
by 3rueckner, Gammel, and Weitzner (reference 16).
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larger range of 5, has a large effect due to the strong
dependence of the vector splitting on r/n (Fig. 1), and
secondly, the nonexchange and mixed-exchange terms
tend to cancel in the first line of (11), while they
reinforce in the second line, the "anti-Serber" term, of
(11).These two effects, however, are not quite suflicient
to compensate for the large value of Vo' compared to
Vo', and the results for the doublet splitting ratios due
to the Gammel-Thaler tensor parameters of (12) are
N"/Li'=4. 8 and 0"/N"= —2.7, i.e. , the 0" doublet
splitting has the wrong sign. These results are similar
to what one would get using a tensor force of the form
(2) with g= s, the same as the meson-theoretical tensor
potential, too close to the Serber mixture to give
acceptable results. For the same reason, the predicted
Li' P-doublet splitting is only about yo the experimental
value.

Of course the derivation of the three-body vector
force from the nucleon-nucleon tensor force that we
have used is extremely crude, and a more accurate
theory might give an effective value of g further
removed from the Serber value, thus giving better
predicted values for the N"/Li' and 0"/N" doublet.
splitting ratios, and larger doublet splittings. In this
connection it is interesting to note that doubling of the
strength of To', or a decrease in w, from 0.80)&10"cm '
to 0.62)&10"cm ' in the Gammel-Thaler tensor poten-
tial, would give results in approximate agreement with
experiment.

VI. CONCLUDING REMARKS

We have seen that while a one- or two-body vector
force cannot explain the N"/Lit and 0"/N" doublet
splitting ratios, a phenomenological three-body vector
force does so in a manner remarkably independent of
the shape, range, or exchange character chosen for the
three-body vector force, provided one stays away from
the Serber exchange mixture. Our attempt, however, to
derive the three-body vector force so indicated from the
nucleon-nucleon tensor parameters, which was the
original motivation for introducing a three-body vector
force, was not successful.

In view of the success of a phenomenological three-
body vector force in fitting the N"/Li' and 0"/N"
ratios, it would be desirable to extend the calculations to
other nuclei. This is particularly simple in the case of
Li'. Here we can compare the 2.33-Mev splitting of the
3+, T=O and 2+, T=O states, which presumably are
members of the 'D multiplet, with, say, the P-doublet
splitting in Li . For a one-body vector force of fixed
strength, the predicted ratio would be 3, in the limit
of JS coupling, "7' compared to the experimental
value of 4.9. A complication here is that the tensor force
would also split the members of the 'D multiplet.
However, according to the analysis of Pinkston and

"G. E. Tauber and T. V. Wu, Phys. Rev. 93, 295 (1954).
"W. T. Pinkston and J. G. Brennan, Phys. Rev. 109, 499

(1958).

Brennan, ' the effective tensor force in Li' must be
much weaker than the nucleon-nucleon tensor force, so
weak as not to affect the level structure of Li' appreci-
ably. "We shall therefore omit the tensor force com-
pletely. It is perhaps significant that the same theory
that predicts the three-body vector force, also predicts
a weakened tensor force.""

The three-body vector force matrix elements for the
'D states of Li' have been given by Lyons" (see also
the Appendix). We find that, for g=O or 1, the calcu-
lated value of the Li splitting ratio is 2.9, not signifi-
cantly diGerent from the value predicted by a one-body
force. A nonexchange two-body vector force gives the
value 2.7. That all three types of vector force make ap-
proximately the same prediction is not surprising, since
for such light nuclei as Li' and Li' most of the vector
interaction is between the p particles and the closed
s-shell, and this can be considered as due to an effective
one-body vector force that should have essentially equal
strengths in Li' and Li . The calculated ratio for the
three-body vector force assumed that the single-
particle radius parameter, n, is the same for both Li'
and Li'. Correction for the 3%%u~ difference shown by the
electron-scattering data" would reduce the predicted
value to 2.4, while use of the Coulomb energy data"
would reduce the predicted value of the Li'/Li' ratio
to 1.5. The large experimental 'D splitting in Li' is
thus hard to understand on any theory of the vector
force. From the point of view of the three-body vector
force theory, it might be due to E LEq. (4)j being
considerably smaller for Li' than for Li' (see Sec. III).
The only calculations of E are those reported in refer-
ence 12. These do indicate such an effect, but only

~
—', the size needed to explain the entire discrepancy.

An interesting result of the Li' calculations is that
the oG-diagonal matrix element of the three-body vector
force between the 'S& and 'I'& states is very much
fmaller when compared to the diagonal matrix elements
for the 'D states than is the case for a one-body vector
sorce. This would provide a natural explanation of the
small quadrupole moment of Li' without requiring
cancellation by a tensor force, as is needed for a one-
body vector force. '

If the three-body vector force is the main vector force
in nuclei, the question of how much two-body vector
force is also present in the effective nuclear potential
cannot, unfortunately, be answered by the calculations
of the present paper. The N"/Li' doublet splitting
ratio is sensitive to the possible dependence of Vo on 3
(see Sec. III), and the 0"/N" ratio is influenced by the
uncertainty in the magnitude of the Ehrmann-Thomas
shift. If the strength of the three-body vector force, Vo,
is the same for Li' and N", then the results of Sec. IV
"In any event, an "attractive" effective tensor potential would

increase the discrepancy between theory and experiment since it
tends to depress the 'Ds state below the 'Da state [T. Regge,
Nuovo cimento 11, 285 (1954); J. P. Elliott, Proc. Roy. Soc.
(London) A218, 345 (1953)].A "repulsive" eRective tensor force
would, of course, reduce the discrepancy.
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would permit a two-body vector force strong enough to
cause, by itself, a splitting of the 'I' states of Li' of

200 kev, with, however, a normal ordering of the
levels, i.e., the ~ state helot the —,

' state. If, however, Vp

increased, say, by 50% on going from I,i' to N", then
the results would imply a two-body vector force of
about the same strength as for the case of constant Vp,

but now of opposite sign. Evidence on the trend of Vp

with 2 could be obtained by extending the calculations
to the f-shell (Ca4'), though the labor would be
formidable.

The remarkable agreement with experiment obtained

by Talmi and others, " on the assumption that shell-

model nucleon-nucleon forces are solely two-body in

nature, is not necessarily in convict with the possible
presence of three-body vector forces. As discussed in

reference 14, for the case of a few particles outside
closed shells, integration over the closed shells will

yield effective one- and two-body vector forces that will

dominate over the remaining three-body interactions
among the outer nucleons. Thus for three-body forces
one can expect a conspicuous breakdown of the Talmi
procedure only in the case of a large number of particles
outside a small closed core, such as occurs in the P shell.

Here indeed the Talmi analysis does lead to disagree-
ment with experiment, but what part of the disagree-
ment is due to three-body forces and what part is due to
a departure from jj coupling, another assumption of
the Talmi analysis, is an open question.

APPENDIX

We wish to evaluate the sum (6) for He' (m=4) and
0" (m=16), and the expression (8) for N" (nz=4,
m= 12). We label the single-particle states in the follow-

ing order: first in increasing order of /, each set of given

/ in decreasing order of m~, each set of given / and m~ in

decreasing order of nz, (+~~, then —2), and finally each

set of given /, m~, and m, in decreasing order of m,

(+—,
' for neutron, —

2 for proton). This follows Shortley's

procedure. "Each term [ijk] of (6) and (8) is a sum of

36 matrix elements but takes on a simple form after the

spin and isotopic spin integrations are performed. The
spin and isotopic spin integrations can be performed for
a general term of the form [aib c„] where a, b, or c

stand for the /, m~ values of the single-particle state, and

the subscripts give the m„m, values of the state. For
the subscripts we use the numbers 1—4, in the order

given above, e.g. , the subscript 2 means a proton with

spin up. Since the operators are independent of isotopic

spin, the matrix elements are invariant to the simultane-

ous subscript substitution, 1+-+ 2, 3 &-+ 4. The results of

performing the spin and isotopic spin integrations for
the four types of three-body vector operators of the text

~ S. Goldstein. and I. Talmi, Phys. Rev. 102, 589 (1956); 105,
995 (1957);S.P. Pandya, Phys. Rev. 103, 956 (1956);I.Talmi and
R. Thieberger, Phys. Rev. 103, 718 (1956); R. D. Lawson and

J.L. Uretsky, Phys. Rev. 106, 1369 (1957); I. Talmi, Phys. Rev.
107, 326, 1601 l1957l.

are given in Table I. The operators are 'U„, the non-
exchange operator, 'U. -, the pure-exchange operator,
'U, the mixed-exchange operator, all defined in Eq. (9),
and 'U, , the interference operator defined in Eq. (11)
[the last line of Eq. (11), without the factor ii]. In
Table I the notation abc~def represents the spatial
matrix element (aib~c~~8~die2fa), where for the oper-
ators 'U„, 'U,„,and 'U, 6 is the operator

4i&of(r») f(ri~) (ri2 r») (r»Xria)*/ri2'ria',

and the subscripts 1, 2, 3 on the state labels a, b, c are
particle labels. For the operator "U,, f(ri2) f(ri~) is to be
replaced by f, (r») f.(r») (see discussion in Sec. U). The
labels g, b, etc. now refer to the spatial parts of the
single-particle wave functions, and are assumed nor-
malized to unity. The matrix elements abc~def have,
for the case of 'U„, 'U, , 'U, the symmetry properties,

abc~ def= def ~
—abc= dfejacb.

The sums in Eqs. (6) and (8) can now be readily
performed. As mentioned in the text, for the states we

are concerned with, the operator 'U, gives results
identical with 'U„, and 'U; vanishes. We obtain

('U „)(He')
l= (2'"'/3x"') Von" exp[ —2n'(ri'+rP+r~')]

Xf(r») f(r») [(r» ris) (ri~Xri8)/ri2'ria']

[3(r2Xrg)+2(riXr9)]dvidv dvi2,

which we abbreviate as

('U„)(He') =3(r~Xr,)+2(riXr~).

Using the same abbreviated notation,

(3 )(He ) ( /5)[3(r2Xr&)+2(rlXr2)]

(U )(N")= —3(r,Xr~) —2(rsXr, )
—8n'{ (r2Xr&) [2ri'+2(r2 r,)

—(r, r,)]
+(raXri) [(ri r2)+ (r2 r~)]}
—16n'{(r2Xr3)[4rP(r, r,) —(ri r~)(ri r~)]

+2(r, Xr,) (r, .r.) (r, r&)},

('U )(N")= (24/5) (r2Xri)+ (16/5) (r,Xri)
16n'{(r2 Xri) [rP+ (r, r~) —2 (ri r,)]
+2(r&Xr,)[(r, r2)+(r2 r&)]}

+2(riXr, )(ri r2) (r2 r&) },
(&.)(0")= (8/5)n'[2(r~Xr, ) (ri r~)+3(ruXr~) (r2 r~)]

+ (64/5)n'{ (r,Xr,) (r, ra)

X[2(r2 r,)+2ri' —(r, r,)]
+(rsXri)(r, r8)[(r, r,)+(r, r&)]}

+ (128/5) n'{ (r2 X r~) (r2 r&)

X[4ri'(r2 ra) —(ri rg)(r, r,)]
+2(r&Xr&)(r&.r&)(r2 r,)(r, r,)},
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TAsr.z I. Matrix elements of the various three-body vector operators after spin and isotopic spin integration. See text for notation.

Terma

palblc4]

Lalblc3 j
Lalb2c, ]

(2abc)bca abc—~acb
bac

i

—bca)
bac t, b—ca

UBX

(1/10) (2bac
~
cba 2ba—c

~

cab+ 2abc
~
cab—2abc

~

cba+2bca t abc bc—a
~

bac acb—
~

abc)
2bac~acb b—ac[bca abc—[acb

—[alclb2] —abc
~

acb

( 4ba—c(acb+2bac(bca
+2abc~acb)

2ubc—
~

bca 2ab—c
~
bca+ 2bac

~
acb

a patbtctj =0; 1 atbtc41 = —Laqbtcsj; Latb2csj = Lbtctasj; paibsc41 = tbtascs1; I atbscsj = —pbqctaqj; Latbsc4j = —Lbtc2aq j; fatb4c4 j = fbtcta2j.

('U )(0")= (64/5)n'(r, Xr3) (r1 r3) —(128/5)n'

X{(r, Xr,) (r2 r,)[r1'+ (r2 r8) —2 (r1 r2)]
+2(r8Xr1)(r1 r8)[(r, r8)+(r1 r2)]j
—(512/5)n'{ (r2Xr, ) (r2 r3)

X[rl (r2'r3) (rl'r2) (rl'r8)]
+2(r3Xr1)(r1 r3)(r2 r3)(r1 r..)).

The above matrix elements refer, by our method of state
ordering, to the 'I', and 'D; states of He' and N", and
0", respectively. For the 'P; state of Li' we can use the
method of reference 12, and obtain

('U„)(Li') = (r2X r3)+ (2/3) (r3X r1)

+ (8/45)n'[(r2X r 8)r1'+2 (r1Xr3) (r1 '12)],

('U )(Li') = —(8/15)[3(r2Xr8)+2(r3Xrl)]
+ (16/45)n'[(r2Xr3)r1'+2(r1Xr3) (r1 r2)].

The matrix element ('U„) for the 'D3 state of Li' has
been given essentially by Lyons. "The result is

('U„) (Li') = (8/15) [11(r2Xr3)+7(r8Xr,)
+6n'(r2Xr3). ,'].

The integration over the coordinates of particle 1 can
now be performed by changing to r&, r», r» as the
independent variables. We obtain

f
('U„)(He') = (5 X3'Vo/42r3) exp[ —s2+ (s t) —t']

Xf(r12)f(r13) (s t) [(sX t)'/s't']dv, dv&,

where s=3&r,2/n, t=3&r13/n. The other matrix elements
dier from the above by the presence of an additional

factor in the integrand. We list below this additional
factor:

('U „)(He'):
('U )(N") .

«-)(N"):

(U )(o")

«„)(o"):

«-)(L1'):
(U-) (L1'):
('U )(Li'):

—8/5,

(1/45) [—118+22s2 —131(s t)
+Ss4+17s2t2 —4s2(s t) —29(s t)'],

(4/45) [76—34s2+65 (s t)
+4s' —5s't' —2s'(s t) —(s t)']

(2/625) [1098—846s2+621(s t)+432s4
—189s't' —252s'(s t)+234(s t)'
+202s' —78s t'+204s'(s t)

—399s2t2(s t) —114s2(s t)'+205(s t)3],

(8/625) [—612+414s2—459 (s t) —486s4

+135s't'+90s'(s t)+198(s t)'
—178s3+150s4t2—276s4(s t)

+327s2t2(s t)+24s2(s t)' —55(s t)'],
(1/625) [203+Ss2+8(s t)],
(4/625) [—101+4s2+4(s t)]
(4/75) [35+2s2+2(s t)].

The 6-dimensional integrals above are readily re-
duced by going to polar coordinates and integrating
over the angles. The resultant 2-dimensional integrals
are then most conveniently evaluated in terms of
power series. See reference 12 and Lyons" for the
details.

By the Lande interval rule, the I'- and D-doublet
splittings are 3 times and (2) times the matrix elements
for the 'I'; and 'D; states, respectively, and the 'D3-'D2
separation in Li' is (7/6) times the matrix element for
the 'D3 state.


