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upon the conductivity mechanism, they do suggest that
the number of electrons involved in the conductivity
of Fe304 is large. While the possibility that the observed
value of Eo is small because of partial compensation by
positive carriers is not to be ignored, nevertheless the
low conductivity of Fe304 with respect to metals is

probably due to a low mobility. The limited data
reported here and the low conductivity of NiOFe203
also suggest that the condition of equivalent ions with

different valence in identical sites is a necessary condi-
tion for conductivity in these materials.
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In pure dielectric crystals, the isotopic variations of atomic mass contribute a temperature-independent
thermal resistance at high temperatures. This resistance has been calculated using a Debye model of the
vibrational spectrum. Umklapp processes are treated as the dominant scattering mechanism. The distribu-
tion of the heat current over the vibrational modes is known for low frequencies. This distribution is con-
sidered to apply over the whole frequency spectrum. The calculated result is compared with the experiments
of Geballe and Hull on isotopically pure germanium, A satisfactory agreement with experiment is obtained.

many dielectric crystals heat is transported
principally by lattice vibrations. A thermal resist-

ance, or hnite thermal conductivity, results from inter-
actions between phonons and from the scattering of
phonons by crystal imperfections. In pure crystals of a
single chemical constituent, with which this paper is

concerned, the natural isotopic variations of atomic
mass will scatter phonons. In contrast to phonon-
phonon scattering which increases with temperature,
the scattering of phonons by mass variations is tempera-
ture independent. Thus, at high temperatures isotopic
scattering does not affect the steady-state distribution
of phonons in a temperature gradient and simply leads
to an additional resistance independent of the tempera-
ture. ' It is the aim of this paper to calculate that
resistance.

The scattering of phonons by mass irregularities is
calculable from first principles. Klemens' has shown
that it is described by a relaxation time, 7~, which in the
Debye approximation is given by

where

Here Q is the volume per atom of the crystal, f, is the
fraction of atoms with mass variation Dm;, m is the
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This point is discussed by R. E. Peierls, QNantum Theory of
Solids (Oxford University Press, Oxford, 1955), p. 52.

2 P. G, Klemens, Proc, Phys, Soc. (London) A68, 1113 (1955).

average mass of all atoms, c is the velocity of sound in
the Debye model, and ar is the phonon frequency. We
see that isotopes are most effective in scattering short-
wavelength phonons. Even in this region, though, the
temperature independence of isotope scattering will

result in its being a small effect at high enough
temperatures.

Umklapp processes are the dominant scattering
mechanism at high temperatures. Umklapp scattering
for low-frequency phonons has been treated by
Klemens, ' who has shown that at low temperatures it is

describable to first order by a relaxation time,
such that

r p ~ 1/co', ro&&(vD,

where cvD is the Debye limiting frequency. The ex-
pression (2) can be shown to be also valid at high
temperatures.

We shall consider that all long-wave phonons are
scattered in the same way. In general, special considera-
tion must be given to the long-wave longitudinal
phonons, for it is well known that such phonons cannot
take part in Umklapp processes. However, Herring'
has shown that in crystals of high enough symmetry
long-wave longitudinal phonons are converted into
transverse phonons, by ordinary momentum conserving
3-phonon processes, rapidly enough to avoid a low-

frequency catastrophe in the conductivity. Inparticular,
for cubic materials the relaxation time for this process

3 P. G. Klemens, Proc. Roy. Soc. (London) A308, 108 (1951).' C. Herring, Phys. Rev. 95, 954 (1954),
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is inversely proportional to the square of the phonon
frequency.

For phonons of higher frequency, it is not possible
to deduce the frequency dependence of Umklapp
scattering from simple arguments. However, we shall
make the assumption that the dominant scattering may
be described by the expression (2) over the entire
frequency range.

The expression for the heat conductivity, ~, when the
scattering is describable by a relaxation time is'

Q C(k)v'(k)~(k).
3t/' I

(3)

Here V is the volume of the crystal; k denotes the wave
vector and the polarization of a vibrational mode; C is
the specific heat due to the mode k, (at temperatures
greater than the Debye temperature, this specific heat
is equal to E, the Boltzmann constant); v is the phonon
group velocity; and v. is the relaxation time. At high
temperatures and in the Debye approximation, Eq. (3)
becomes
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The resistivity, lV, is the inverse of ~. It follows at once
from Eq. (6) that the resistance due to isotopes is
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Any temperature dependence of the dominant scatter-

where 0 is the Debye temperature and h is Planck's
constant. If we add the scattering rates due to isotopes
and Umklapp processes, the combined relaxation time,
v (~), is given by

1/r (&u) = (1/r p) +Acg4.

Since Aa&'~&&1 for all ~, to good approximation

ing cancels out of this expression. Substituting for A
and rp from (1) and (2), we get the simple and in-

teresting result
~ QF t'8p

6 c' Ek)
(8)

DISCUSSION

ACKNOWLEDGMENTS

In conclusion, it is a pleasure to thank Dr. E. N.
Adams and Dr. J. Callaway for many helpful discussions.

5 T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958).
6 G. A. Slack, Phys. Rev. 105, 829 (1957).' J. Callaway, Phys. Rev. 113, 1046 (1959).

The result (8) may be compared with a recent
experiment. Geballe and Hull' have measured the
thermal conductivity of an almost isotopically pure
crystal of germanium. They report that the difference
between the resistance of this crystal and that of
ordinary chemically pure germanium tends to the value
0.15 cm 'K/watt as the temperature increases. At
400'K this difference is already only 10%%uo of the total
resistance.

Slack' has calculated F for the natural isotopic mix-
ture of germanium; the value he gives is I'= 5.72' 10 4.

For germanium 0= 22.6)& 10—"cm', and 8=375'K.
The velocity of sound in the Debye approximation is

given by c= (EH/k) (0/6m') *. Calculation yields c=3.58
&(10'cm/sec. Substituting these values into (8), we

get a result of 0.19 cm 'K/watt. Considering the crude-
ness of the Debye model used, this is as good an agree-
rnent as one might reasonably expect. This agreement
indicates that the assumption for the distribution of
energy over the vibrational modes is essentially correct.
If rp were inversely proportional to the frequency, for
example, the numerical constant in (8) would be
changed to 2~/5 and the calculated resistance to 0.46 cm
'K/watt. Even for the crude model used, the disagree-
ment in that case would probably be significant.

The model used in this paper is similar to that used

by Callaway' in quantitatively explaining the difference
between the low-temperature conductivity of natural
and isotopically pure germanium. This model is thus
adequate for an understanding of the isotopic contribu-
tion to the resistance over the whole temperature range.


