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TABLE I. Data of Brockhouse and Iyengar. '

a1
a2
a3
a4

1.957
Data set I

—1.091
+0.110
+1.691—1.283

1958
Data set II
—0.687—2.002
+4.594—2.489

a See reference 21.

(16)

The dispersion curve in any direction is assumed to be
of the same form, in reduced t't, as in the L111jdirection,
with the initial slope determined by the sound velocity. "
Thus

The a„,for the. two sets. .of -IIeutron. spectrometry
data, are given in Table I. Figures 3(a) and (b) show
the data and the fitting polynomial; .

.Fig. 3(c) shows the
measured data in the L100j direction with the assumed
dispersion curve. The a were fixed by least-squares
fitting of all the data.

The longitudinal modes are approximated by the
dispersion curve of the S.D.M. ; a comparison with the
neutron spectrometry data is shown in Figs. 3(a)
and (c).

The coefficient C, 6xing the limiting curvature of
the reduced 8D (T) curve )see Eq. (13)g is determined
for these models by the coe%cient a&. Values for this
curvature coefficient C are 98 for M.D.M. I, 62 for
M.D.M. II, and 38 for S.D.M.
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Deduction of the Volume Dependence of the Cohesive Energy
of Solids from Shock-Wave Compression Measurements*
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By applying the Mie-Gruneisen equation of state to measurements of the compression of solids by strong
shock waves, it is possible to determine the volume dependence of the cohesive energy. The method for
carrying out this deduction is presented along with a detailed exposition of the underlying assumptions.
The method is applied to six metals Be, Al, Co, Ni, Cu, and Ag for vrbich the experimental data are most
extensive. The volume dependence of the cohesive energy for these six metals is presented in both analytical
and graphical form.

I. INTRODUCTION

HK cohesive energy of a crystalline solid is the
energy release upon assembling the constituent

atoms from infinity to form the ordered array charac-
teristic of that crystal. This energy is of fundamental
significance in the theory of solids because it is a
measure of the detailed nature of the spatial distri-
bution of charge throughout the solid. The dependence
of the cohesive energy C on the size of the atomic
polyhedron is the most important factor which deter-
mines the lattice constant and the compressibility of the
solid. Because. of the crucial role of the cohesive energy
in determining the density of the solid it is possible to
deduce the volume dependence of C from measurements
of the volume compression under pressure. The timeli-

ness of such a deduction arises out of recent advances

*This research was supported by the Office of Naval Research,
The Signal Corps U. S. Army, U. S. Air Force, and the U. S.
Atomic Energy Commission.

t A large portion of this work was carried out while the author
was a Summer Staff Member of the Los Alamos Scienti6c Labora-
tory, Los Alamos, New. Mexico.

in the theory of cohesion, '' and in the experimental
methods for high-pressure compression of solids."

The new theoretical advances' consist in the appli-
cation of the "quantum defect" method' to the calcu-
lation of the volume dependence of the cohesive energy
for multivalent metals with nonoverlapping cores.

The new experiments make use of strong shock waves
to generate pressures which are typically in the 150 000-
to 500 000-atmos region, but can be as large as 1 300 000
atmos. Under such stresses the volume compression of
the solid is typically as large as 20%, but it can be as
large as 40/o.

The present paper applies the Mie-Griineisen
equation of state to the shock-wave data obtained by
the Los Alamo s group, ' to deduce the volume
dependence of C. A general procedure for this deduction

' H. Brooks and F. Ham, Phys. Rev. 112, 344 (1958).
~ H. Brooks, Suppl. Nuovo cimento 7, 165 (1958}.
'Walsh, Rice, McQueen, and Yarger, Phys. Rev. 108, 196

(1957).
Rice, McQueen, and Walsh in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1958),
Vol. 6.

e H. Brooks (private communication).



G. B. BEiXEDEK

is developed and applied to six metals: Be, Co, Ni, Cu,
and Ag, and 245T aluminum' for which the shock
compression measurements are most extensive.

II. THE MIE-GR1INEISEN EQUATION OF STATE'

where
8&v ( Q lnvp,

8 lnv

In the interest. of normalization the free energy F, the
cohesive energy C, the number of atoms Ã, and the
volume v are all taken to be per unit mass. In Eq. (1)
we note that C and v„are implicit functions of the
volume only. In the case of a metal it is possible to add
a term which represents the temperature dependence of
the free energy of the conduction electrons. ' This term
is much smaller than those already included and hence
will be neglected.

Since the hydrostatic pressure (F) on the solid is
related to the volume dependence of the free energy by
the thermodynamic relation

F= —(BF/Bv) r, (2)

the desired implicit relation between P, v, and T is
obtained by differentiating (1). This yields the Mie-
Gruneisen equation of state:

BC (v) p(v, T) U;b(v, T)
P—— (3)

'245T aluminum is an alloy of aluminum consisting of 4.5~/&

Cu, 0.6% Mn, and 1.5% Mg.
K. Gruneisen, Ifaszdbzfch der I'hysik (Springer-Verlag, Serlin,

1926), Vol. 10, p. 1.
." S. VIsvaanathan, Phys. Rev. 81, 626 (1951).

The Mie-Griineisen equation of state relates im-

plicitly the strain of a solid to the applied stress and
the temperature, This equation of state owes its
simplicity to two assumptions. The first is that the
applied stress is limited to hydrostatic pressure. The
second is that under this stress the unit cell can always
be described by means of a single parameter which is
usually taken to be its volume. The latter assumption
is satisfied by those solids possessing cubic symmetry,
and is approximately true for solids with hexagonal
symmetry providing that the c/a ratio remains close to
the ideal value of 1.633.

If the solid is envisioned as a lattice whose periodicity
is disturbed only by the lattice vibrations, it is possible
to write its Helmholtz free energy as a sum of two .

terms. The first is the free energy C required to assemble
the atoms from inhnity to form the rigid lattice. This
term is the cohesive energy. To this must be added the
Helmholtz free energy of the lattice vibrations. Since
the Helmholtz free energy J „ofa normal mode of
lattice vibration, whose frequency is v„, is given by
F„=ATlnl 2 sinh(hv„/2kT)], it, follows that the total
Helmholtz free energy of the solid can be written as

(h „(v))
F=C(v)+kT P ln 2 sinh~

& 2&T)

U. b= Z U'

The quantity p is the average of the logarithmic
volume derivative of s„weighted over the energies U„
of each mode of lattice vibration. This quantity will
be referred to as Gruneisen's parameter. This parameter
should be distinguished from the y' in Gruneisen's
relation

1(8v ) C, —1(Bvi
vI aT)~ v v EaF)r

In this relation p' is given by

8 lnv„BU„)

8 lnv BT j

as may be seen' by differentiating Eq. (3) relative to
the temperature to give Eq. (7). In the high-tempera-
ture region, y'=y; but at low temperatures the weight-
ing factors in the two averages can lead to a difference
between y and y'.

U„is the energy of the pth mode of lattice vibration,
and U;b is the total vibrational energy of the solid.

III. THE SHOCK-WAVE HUGONIOTS

The shock-wave compression experiments subject
the back surface of a sample pellet to an explosively
established high pressure. As a result a shock wave
passes into the pellet. The shock wave is characterized
by a shock front which moves through the sample with
velocity U, (t). Behind the shock front the material in
the pellet moves with a velocity U„which is in general a
function of time and position behind the shock front.
Henceforth, we shall denote as U„(t) the particle
velocity of the material directly behind the shock front.

It can be shown with great generality" that if the
shock front is thin, that the density p', pressure P', and
internal energy/unit mass E' directly behind the shock
front can be related to the density po, the pressure Po,
and the internal energy per unit mass Eo before the
shock front by means of the velocities U, and U~. In
particular, the application of the conservation of mass,
Newton's second law, and the conservation of energy
across the shock front yieMs the following relations of

' T. H. K. Barron, Phil. Mag. 46, 720 ($955).
1o R.. Courant and K. Friedrichs, Supersonic Flow and 51~ocI, —

-'aves (Interscience Publishers, Inc. , New York, 1948),
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Rankine and Hugoniot:

(1) p'(U, —U~) =peU, ; conservation of mass

(2) U„poU,=P' Po,—Newton's second law

(3) P'U„=', U, poU—„'+U,po(E' Eo);-
conservation of energy.

The quantities U, and U„canbe accurately determined
experimentally. ' ' Thus p', P', and E' directly behind
the shock front can be determined immediately from
the three Rankine-Hugoniot relations above. If a
sequence of U„U„pairsis measured by generating
shocks of diferent strength, one can make plots of P'
and I," vs p'. Each such curve is called a Hugoniot.

Because of the novelty of these shock-wave com-
pression studies, it seems appropriate to dwell brieRy
on the assumptions underlying the determination of the
shock-front and shock-particle velocities and the
Rankine-Hugoniot relations.

1. The Condition of Constant Velocity

The shock-front velocity U, and shock-particle
velocity U„aredetermined by time-of-Right measure-
ments over measured distances. The measured veloci-
ties U, and U„are therefore averages over the length
of the traversal distances. The Rankine-Hugoniot
relations require that U, and U„correspond to the
same instant of time. If U, and U„areconstants, the
measured velocities would be identical with the required
instantaneous ones. In order that the shock velocities
be constant it wouM be necessary that the explosive
be a semi-infinite block. In practise of course this is not
the case and the velocities do change somewhat over
the traverse lengths. The I os Alamos group has made
measurements" of this eGect and estimate that U,
typically decreases by 0.75% and U„by 1.75% for a
—,'-in. traverse distance. Thus the departure of U, and
U„from constancy over the measured path is not large.
To improve the situation further, the measurements of
U, and U„~sdistance are used" to correct the time-of-
Right measurements so that the values of U, and U„
correspond to the same time. As a result of these
corrections, it is felt" that any systematic error pro-
duced by the nonsimultaneity of U, and U„is less than
the experimental accuracy with which V, and U„are
measured.

2. The Condition of Therm+1 Equilibrium

In its passage from the unshocked to the shocked
condition, each point in the solid is successively
subjected to a sudden change in temperature and
pressure. The question arises as to how far between the
leading edge of the shock front one must go in order to
find the lattice in a state of thermal equilibrium. If
d/ is the distance required to reach thermal equilibrium

u J, M. g elsh (privd, te communication).

and r ( 10 "—10 " sec) is the mean time between
phonon collisions, it is reasonable to expect Dl rU„
where U, is the shock-front velocity. On the other hand,
the width of the shock front (Dl') can be expected to be
of the order of the phonon mean free path, i.e., hl' 7-v

where v is the mean phonon velocity. Since U,~v~5
)&10~ cm/sec, it follows at once that one can expect
Dl Dl'. Thus under normal conditions it is reasonable
to assume that the material directly behind the shock
front is in a state of thermal equilibrium. However, in
the case of shocks which generate phase transitions""
such as melting or slow recrystallization, the time
required for the establishment of the new phase may be
many orders of magnitude larger than the .phonon
collision time. Under these conditions the material
directly behind the shock front may not have time to
make the transition, and as a result may not be in a
state of equilibrium.

3. The Condition of No Radiation
or Conduction Loss

The derivation of the third Rankine-Hugoniot
relation involves the assumption that the work put
into the solid by the explosion goes entirely into an
increase in kinetic energy and an increase in internal
energy. Since the shocked material heats up to
500'C for 500 000 atmos, energy can be lost due to
radiation or conduction. Owing to the high conductivity
of the metal pellets, there is no loss of energy due to
radiation from the internal volume of the pellet. In view
of the short times available for radiation and conduction
from the surface, the assumption of no radiation or
conduction loss is probably quite well satisfied.

4. The Assumption of Equivalence

The assumption of equivalence states that a solid
which is subject to an external hydrostatic pressure (P),
and which has an internal energy/unit mass (E), has
the same density (p) as does the shocked solid which
is characterized by the pressure P' and energy E',
provided that P= P' and E=E'. In other terms, it is
assumed that the material behind the shock front at.
pressure P' and temperature T has the same density
as that solid would have if subjected to a hydrostatic
pressure P' and temperature T. Kith this assumption,
the shock compression measurements of P', e', E'
points are equivalent to hydrostatic pressure measure™
ments. In view of the one-dimensional nature of the
shock wave, there is no clear a priori evidence to
support this assumption. However, it can, in principle,
be checked by direct experimental comparisons of the
volume compression under shock and hydrostatic
conditions at the same temperature. The difhculty in

"R.H. Christian and B. J. Alder, Bull, Am. Phys. Soc. Ser.
II, 3, 290 (1958)."R. E. Duff and F, S, Minshall, Bull. Am. Phys. Soc. Ser. II, 3,
29& (&958).
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carrying out this procedure in detail lies in the fact that
the shock-wave measurements begin at about 150000
atmos and Bridgman's measureinents. end at around
100000 atmos. Furthermore, the Hugoniots are not
isotherms. Extensive graphical comparisons' of the
hydrostatic pressure isotherms and shock-wave
Hugoniots indicate a fairly close joining of the two in
the region around 150000 atmos. A more sensitive
test is the extrapolation of the compressibility data into
the shock-wave region. Such a comparison has been
made by Borelius' for Cu and Al. A satisfactory junc-
tion of the two results is indicated. '4' Thus, a posteriori
experimental evidence, at least in the 150—200 thousand
atmos range, indicates the validity of the equivalence
assumption. As a result, the primes will be dropped
from p'=1/v', P', and P.' in the Rankine-Hugoniot
relation so as to make these symbols identical with those
appearing in the hydrostatic Mie-Griineisen equation
of state.

The Rankine-Hugoniot relations formally represent
a system of three equations in the five variable U„V„,
p, P, K The specification of any two of these variables
fixes the value of the remaining three. It has been
found' that within the limits of experimental error the
relation between U, and U„is linear. Thus, for each
metal there exists a relation

U, =c+sU„, (10)

P=c'x/(v p(1 sx)'], —

8—Ep ———,'c'x'/(1 —sx)'.

(12)

(13)

Equations (12) and (13) show explicitly the form of the
Hugoniot in a form which is particularly useful for the
extrapolation of the shock-wave data beyond or below
the experimentally attainable region. This extrapolation
is valid insofar as the relation between V, and V„
remains linear. Data on 24ST aluminum up to pressures
as high as 1.3 million atmospheres indicates that over
this range the linear relation between V, and U„is
maintained.

14 G. Borelius, in Solid State Phys& s edited by F. Seitz and D.
Turnbull (Academic Pt.'ess, Inc. , New York, 1958), Vol. 6.

"'Recent measurements by Doran, Fowles, and Peterson
LPhys. Rev. Letters 1, 402 (1958)]are also in support of the as-
sumption of equivalence.

where s and c are determined experimentally. Equation
(10) added to (9) enables the specification of any four
of the variables in terms of the remaining one. It is
useful to choose as the independent variable the volume
v, or more conveniently the volume decrement x:

x= (vo —v)/vs= (1—pp/p)

By using Eqs. (10) and (11) in Eq. (9) we can eliminate

V, and U to obtain P and 8—Ep as functions of
X) SV~:

IV. DEDUCTION OF THE VOLUME DEPENDENCE
OF THE COHESIVE ENERGY FROM THE

SHOCK-WAVE HUGONIOTS

The equation of state [Eq. (3)]may be regarded as a
difFerential equation for C (v), which can be integrated
if P, p, and U;b are known as functions of the volume
for corresponding temperatures. We may write Eq. (3)
as

dC y U;b (vp, Tp)P+-
d'v 'D

7
+ fU;b(v, T) —U;b(vp, Tp)]. (14)

In this equation .the vibrational energy has been split
into two terms. The 6rst is the vibrational energy at
some initial volume and temperature ~p and Tp. The
second is the change in U;b as the state is changed
from the initial state ep, Tp to some Anal state v, T. ep and
Tp will be taken as the state at the foot of the Hugoniot,
i.e., at P= 1 atmos and T= 20'C. Along the Hugoniot P
is known as a function of volume as is shown by Eq.
(12). Also, E(v, T)—E(vp, Tp), the change in the total
internal energy/unit mass, is known as a function of
volume from Eq. (13), for each point on the Hugoniot.
In our simple mod. l of the solid, the total internal
energy is the sum of the cohesive energy C and the
vibrational energy U;b. Therefore, we have

E(v, T)—E(vp, Tp)
= LC (v) —4'(vp)]+ [U;b (v, T)—U„,b (vp, Tp) 7. (15)

The solid is presumed perfectly periodic except for the
lattice vibrations. In order to include lattice imperfec-
tions, it would be necessary to reformulate the equation
of state by including the free energy of the im-
perfections. It would also be necessary to modify (15)
to include the change in energy of the lattice im-
perfections. In writing Eq. (15) in the form given above,
we are explicitly assuming that a negligible amount of
the shock-wave energy goes into the production of
imperfections in the lattice. Substituting Eq. (15) into
Eq. (14), we find

This is a differential equation for [C(v) —C(vp)] in
which all the entering quantities except y are known as
functions of the volume along the Hugoniot.

There is now available no direct experimental
evidence which will determine 7 (v, T) along the
Hugoniot. It is, however, possible to make use of a
theory due to Slater" to estimate the volume

'5 J.C. Slater, Phys. Rev. 57, 744 (1940}.
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d.ependence of y. Slater has shown that y can be related
to the curvature of the P-e isotherms as follows:

sd'p/dP'
V(~) = —s+ p-

(dp/dP)'
„

(17)

'P J. J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).' J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832
(1953)."J.J. Gilvarry, Phys. Rev. 102, 331 (1956).

In spite of the crudeness of the assumptions on which
this relation is based, values of y obtained from it,
using Sridgman's P-e data, are in good agreement""
with y' as determined from the Gruneisen relation
[Eq. (7)].The volume range available using Bridgman's
data was so limited that (d'p/dP') could be evaluated
only very near eo. The availability of the shock-wave
data over a much wider volume range has enabled the
Los Alamos group to determine y as a function of
volume using isotherms deduced from the Hugoniots. '
To be sure, they used the Dugdale-MacDonald
relation, '~ However, the resulting volume dependence
of p is nearly the same as that given by the Slater
relation. We have presented Slater's equation because
the theoretical basis of the Dugdale-MacDonald
relation has been called into serious question. " The
I os Alamos results indicate that the percentage change
of y upon changing the volume is about the same as the
percentage volume change itself: i.e., (1/y) [By/(Bs/v p)j

1-2. Since y is independent of the temperature at
constant volume for temperatures above the Debye
temperature, ' the percentage change in y along a
Hugoniot is of the same size as the percentage change
in volume. In view of the weakness of the volume
dependence of y in comparison with the volume
dependence of P, it is possible, in the erst approxi-
xnation, to regard y as a constant independent of the
volume along the Hugoniot insofar as the calculation
of C is concerned. This approximation can be justified
as follows. [C (s) —C (rp)$ is determined by the volume
dependence of the right-hand side of Eq. (14). The
first of these terms, P, starts from 1 atmos and rises

to 500 000 atmos for x= (pp —s)/sp 0.25. The second
term is the so-called internal pressure set up by the
lattice vibrations. Its magnitude is 2S 000 atmos.
Thus, in the low-pressure range below about 70000
atmos, this term is very important in determining C.
However, in this region the volume has not changed
much and y changes by less than 10%. In the high-
pressure region where y has changed the most, the
internal pressure is relatively small compared to the P
term, and the neglect of the volume dependence of y
is suppressed. The last term in Eq. (14), which repre-
sents the change in the vibrational energy along the
Hugoniot, can be estimated from calculations' of the
temperature along the Hugoniots. For pressures of
500 000 atmos, the change in temperature of the shocked
material is about 400'K4 for metals such as those

dealt with here. The order of magnitude of the last
termis . (y/s)(3/khT) 30000atmosfor AT=400'K.
Thus, at 500 000 atmos the last term is less than 10%
of the P term. For larger pressures this term is larger,
and at lower pressures it is relatively smaller. Thus again
we see that the eGect of any change in 7 along the
Hugoniot is suppressed insofar as the determination of
[C —C'(sp)j is concerned. We shall therefore neglect
the volume dependence of y in the integration of Eq.
(16). For those applications for which more accurate
results are required, the volume dependence of y as
determined by the Los Alamos group can be used. We
shall, a posteriori, roughly estimate the effect of y on
C —C(sp) by plotting C (s) —C (vp) as determined from
Eq. (16) for various values of y.

Under the assumption that y is a constant, Eq. (16)
for C can be written as

7 CX—[C (*)—C (O)j— [C (x) —C (O)j=+
dx (1—x) (1—sx)'

2(1—x) (1—sx)'

yU;b (sp, Tp)
(18)

(1—x)

.The integral in Eq. (19) cannot be evaluated in terms
of elementary functions because of the appearance of the
irrational function (1 f)& in t—he integrand. If an exact
solution of (18) is required, the solution (19) can be
computed numerically by machine. Instead of employ-
ing the machine calculation of (19), it is possible to
determine C(x) —C(0) approximately by solving Eq.
(16), using a method of successive approximation. This
approach is based on the smallness of the last term in
Eq. (16). In the zeroth approximation we may neglect
the changes in vibrational energy entirely and write
Eq. (16) as

(r)C'$ QU(vp, Tp)= —P+
&ar) v

(20)

In the first approximation we substitute C ") for C in the
last term of Eq. (16), giving

(r)C) &'& (BC ) ~'&

+-[%—Eo)—(C' —C'o) "'3 (21)
E as) ( av&

If this procedure is carried out successively, we find in

Since this is an ordinary first order differential equation,
the solution can be presented formally. This solution is

~'cl(1 f) (c (x)-c (O) = (1-x)-r
(1 sf)' E 2 (1 f))
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the &zth order approximation that.

+—L(I:—Eo) —(C —C o)
&" 'i]. (22)

Eav) & av& v

C"X

Bx (1—sx)'

V U,-;b (vo, To)

(1—x)
(23)

Integrating to find C in the zeroth order gives

c' sx ( 1

t C (x) —C (0)]~o& =— ——ln
i

s'i (1—s., ) &1—sx

It is consistent with the approximation of neglecting the
volume dependence of y to stop after the erst approxi-
mation. The range of x for which this first approxi-
mation is accurate will be shown later to be quite
wide. If Eqs. (12) and (13) are substituted into Eq.
(20), we find that in terms of the volume decrement
x= (vo —v)/vo the expression for (BC/Bv) &o' becomes

It is possible to interpret physically the meaning of the
zeroth and first approximations for C(v) LEqs. (24)
and (26)] within the framework of the assumption that:
y is independent of v. If P could be measured as a func-
tion of v along a curve for which the vibrational energy
is a constant, then dC/dx would be given exactly by
Eq. 23. Thus, the zeroth approximation for C regards
the Hugoniot as identical with the path of constant
vibrational energy. However, the Hugoniot rises more
rapidly than an isotherm. ' Thus the first order expres-
sion for C includes, as the last two terms, the reduction
which must be made to account for the fact that the
Hugoniot rises more steeply than the curve of constant
vibrational energy.

Using Eq. (26), we may examine how closely the
first order approximation approaches the exact value
for C (v) —C'(vo) represented in Eq. (19). The first order
corrections are most important at large x. In this region,
the dominant zeroth order and first order correction
terms are

(c'/s')(t sx/(1 —sx) j+ln(1 —sx) }
—yf~';b(vo, To) ]n~ (. (24)

&1-x)
and

(yc'/s') (sx)4G (s,x),

(d@ )
('-) (d@) (o)

(dx& &dxj 1 —x

1. C'-'.1'
Xi-

i 2 (1—sx)'

sx
—————1n

s t 1 —sx 1—sx

1
+vU„;„tnt

- )
E& —x

(2-')

The result of integrating (25) is

LC'(x) —C'(0)j'"

The differential equation for 4 in the first order there-
fore becomes

respectively. The ratio of the latter to the former term
is x', as may be seen from a power series expansion
of each term. Thus for the maximum comparison
attained in 245T aluminum for a pressure of 1 megabar,
namely x=0.40, the dominant first order correction
term is about 16% of the dominant zeroth order term.
It is to be expected that the second order corrections
will in their turn be x' as big as the first order correc-
tions. Hence again, for the largest available compression,
x= 0.40, the second order correction can be expected to
contribute only about 2.5% of the zeroth order terms
even in the most unfavorable case. Therefore, the error
produced by stopping after the first approximation is

small, certainly much smaller than the errors introduced

by neglecting the volume dependence of p.
C"' SX

s' &1—sx)

( 1 i ( 1

5 1—sx) ~ (1—x~
TABLE I. Values of parameters required for the

determination of C (v) —4 (vo).

where

pc"
(sx)'G(s, x) ——U 'bDn(1 —x)]',

s'

(a) G(s,x) = Q b„(s)(sx)",

8.15+0.i
5.35
4.73&0.03
4.77%0.03
3.9 &O.i
3.25+0.02

Metal c (km /sec)

Be
Al
Co
Ni
Cu
Ag

1.01+0.05
1.34
1.39&0.05
1.27a0.02
1.60&0.1
1.58~0.03

1.17~
2.37b
1 87'
1.88o
1 96c
2.43b

Oo ('K)

1160d
419'
443'
413g
345'
225"

0 ('K)

1000d
394h
375'
390'
315o
215o

(b) &.(s) =~-(s)/(»+4),

a~ 1 ('IZ

(c) ~-(s) =——+ I" —+
s

I
(«) ~o= o, ~i=—+(o+4)

3s

(27) a Rice, Mcgueen, and Walsh, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press, Inc. , New York, 1958), Vol. 6, p. 61.

b C. S. Smith (private communication).
e J. C. Slater, Phys. Rev. 57, 744 1940.
d M. Blackman, Iiandbuch der Physik (Springer-Verlag, Berlin, 1955),

Vol. 7, Part I (see p. 368 for o~o for Ag).' J, A. Kok and W. H. Keesom, Physica 3, 1035 (1936).
f G. Duykaerts, Physica 6, 817 (1939).
& W. H. Keesom and C. W. Clark, Physica 2, 513 (1935).
h J. de Launay, in Soli'd State Physics, edited by F. Seitz and D. Turnbull

(A.cademic Press, Inc. , 5'ew York, 1958), Vol. 2.
' K. Clusius and L. Schachinger, Z. Naturforsch. 'IA, 1-85 (1952).
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- V. NUMERICAL RESULTS I I I I

4(x)-C(p) VFR&US x FOR BERYLLIUM

e(x)-C(p)
e v/ATOM

In order to establish 4 as a function of x, using Eq.
(26), c, s, y and U;b(np, Tp) must be determined, for
each metal. In columns 1 and 2 of Table I are listed
the values of c and s determined directly from the
intercept and slope of a line drawn through the experi-
mental values' of U, ns U„.The metals chosen, Be,
24ST Al, Co. Ni, Cu, and Ag, are those for which the
experimental measurements are most extensive. The
values of c and s listed here are slightly diGerent from
those listed in Table X, reference 4. In column 3,
Table I are listed values of p determined by using
Griineisen's relation LEq. (7)], along with literature
references.

The vibrational energy at 20'C and 1 atmosphere,
U;b(np, Tp), consists of the zero-point, vibrational
energy of the normal modes at T=O'K plus the energy
required to heat the lattice at the constant volume
~o from O'K to 293'K. Thus we can write

p~0

U„;b(np,Tp) = U;b(ep, 0)+ C, ,dT.

—45

—.35

—.50

—.25

—.20

—.15

—.10

—.05

I I I I

.52 .28 .24 .12 .08 .0~.20 .1 6
Vp- V

x -"

0

Pro. 1. The change in the cohesive energy [4 (x) —4 (0)g of
beryllium as a function of the volume decrement x= (vo —p)/po.
np is the volume/unit mass at 20'C and P= 1 atmos. 4 (0) is the
cohesive energy at U= p0.

The zero-point energy is given by

U~;b(wp)0) = skvg(v)dv,
~0

where g(v) is the density of normal modes at frequency
v, and v is the maximum vibration frequency. Since
there are 3' modes of vibration of a lattice with ~Y

atoms, there is a normalization condition on g(v), vis. :

g(v)dv=3iV. (30)

From Eqs. (29) and (30) it follows that the vibrational
energy at O'K is 31Vk(v)/2, where (v) is the average
vibration frequency weighted over the density of
modes. In order to determine (v) accurately, the
detailed form of the density of modes is needed. Since
there is no direct experimental information on the
detailed form on the density of modes, we shall use the

3 0
U a (&p, Tp)=3»'kT — +&(y )

8 T
(33)

I
Tqs pe;r ssds

f3(y )=3( —
I

I 8) ~„ (a)
(e'—1)

ebye approximation, i.e., that.

g(v) =3K(3v'/v '). (31)

The average frequency for this distribution is
Thus the zero point energy can be written as

ib (&p,0)= (9/8)1Vkv = (9/8)iVk Op, (32)

where Op is defined by kop ——kv„,. The value of Op used
in calculating U;b(e, 0) from Eq. (32) will be obtained
from measurements of the specific heat at low tempera-
ture. With this choice of Op the density of modes g(v)
will have the same curvature in the low-frequency
region as the actual density of modes in the solid. If
the Debye model is also used to estimate the integral
of the specific heat from O'K to 293'K, then Eq. (28)
can be written as

TABLE II. Values of C', U;b(pp, Tp) and 4(pp) used in
the determination of 4 (v).

y„=0/T. (b)

Metal

Be
A1
Co
Ni
Cu
Ag

42

(ev/atom)

6 20~2 4~jo
8.00'

13.& ~1.2
13.8 ~12%
10.0 ~5%

Uvlb(eo, To)
(ev/atom)

0.1303
0.0849
0.0883
0.0846
0.0829
0.0787

e (V0)
(ev/atom)

3.33
3.23
4.56
4.40
3.52
3.00

a No error is listed for the 245T Al data because the published results
represent smoothed vahles of V& and V& obtained from a very large number
of measurements.

The function B(y ) has been calculated by Beattie. ts

The value of 0~ used in calculating U;b from Fq. (33)
is the value appropriate to the high-temperature region
T 0. In this way we get the best fit of the Debye
function to the specific heat data in the region of
temperature which makes the largest contribution to
U;b. The values of O~p and 0~ required for the determi-
nation of U b(ep, Tp) are listed in columns 5 and 6
of Table I, along with literature references. It shoUld be

"J.A. Beattie, J. Math and Phys. 6, 1 (1926).
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y INCREAS

BY 20%
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0 ) INCREASED BY 20%
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C(x)-C(o) VERSUS x FOR ALUMINUM

C'(O) s 3.23 e v/ATOM

c(x)-c (o)
e v/ATOM

—l. 2

—I.O

—0.9

—0.8

—0.7

—0.6

—0.5

—04

—0.3

noted that these values of 0 are appropriate if the
density of the solid is the same as at absolute zero.
Actually we should use the values of 0 which correspond
to the density at 293'K. Since c) InO/8 1nv —y, the
change in 0 due to the volume expansion from O'K to
293'K is a few percent. In view of the approximate
nature of the method for estimating U;b, and the
uncertainty in the experimental values of 0, due to the
temperature dependence of 0, no correction was made
to account for this small volume dependence.

It is difficult to estimate the error introduced by
using the Debye approximation in place of the actual
distribution of modes in the evaluation of the two
contributions to I/;b(np, Tp). It is expected though that

c(x)-c(o)
e v/ATOM

—I.2

—0.2

I

40 .36
I ~ I I I I

.32 .28 .24 .20 .I 6 .I2
Yp"- V

Xx
Vo

—O. I

0I

.08 .04 0

I.O

—0.9

Fro. 2. The change in the cohesive energy [C (x) —C (0)g oi 245T
aluminum as a function of the volume decrement x= (vp —v)/vp.
The normal curve uses the parameters listed in Tables I and II.
The comparison curves show the effect of increasing the vibra-
tional energy U;b(vp, Tp) or Gruneisen parameter p by 20,'&.

—0.7

—0.6

—0.5

C&(x)-4(o)
cp(X)-4(0) VERSUS X FOR COBALT e v/ATOM

C {P).4 56 e v /ATOM

—0.4

—0.3

—0.2

—I.O

—0.9

0.8

—07

0,6

—0.5

—0.4

-0.3

—0.2

—O. I

I I I I I I 0
.32 .28 .24 .20 .16 .I2 .08 .04 0

Vp -V
X yo

FIG. 3. The change in the cohesive energy [C (x) —C (0)] of
cobalt as a function of the volume decrement x= (vp —v) jvp. vp is
the volume/unit mass at 20'C and P=1 atmos. 4(0) is the
cohesive energy at v=vp.

I I I

.32,28 .24 .20 .I 6 .12 .08 .04 0
Yo-V

X=
VO

Fro. 4. The change in the cohesive energy [4'(x) —4 (0)j of
nickel as a function of the volume decrement x= (sp —v)/sp. sp is
the volume/unit mass at 20'C and 8=1 atmos. C (0) is the co-
hesive energy at v=vp.

the estimated values of U;b are probably correct to
within 25%%uo. The Uv;b term is important in deter-
mining C (u) —C (ns) only in the region of small x where

C(tt) —C(np) is small anyhow. Thus errors in the esti-
mation of U;b are suppressed in the calculation of
4 (tt) as may be seen in Fig. 2.

In Table II we list the values of f/ 'b(np Tp) which are
calculated from Eq. (33) using the values of O~p and 0'

listed in Table I. U;b(ep, Tp) is given in units of ev/atom,
as is c' which is also included in Table II. In column 4
are given values of the cohesive energy C (np) obtained
from sublimation measurements. "

'pI'". D. Rossini et al. , Selected Valles of Chemica/ Thermody-
rtumic Properties (U. S. Government Printing 0%ce, Washington,
D. C., 1952).



SHOCK —%AVE COMPRESSION MEASUREMENTS

The results of calculating C (x)—C (0).from Eq. (26)
using the values of c, s, y, and U;b listed in Tables I
and II are shown in Figs. 1—6. In the case of Be, Co,
Ni, Cu, and Ag the experiments achieved a volume
decrement between 20% and 25%. Figures 1, 3, 4, 5,
and 6 present C(x) as large as 32%. The values of C

beyond the experimental range represent extrapolation
of the linear U„U~relation into the region 0.20 &x
&0.32. In the case of 245T aluminum the shock com-
pression measurements extend to x=0.40 and U, is
observed to be a linear function of U„throughout
this range.

Because of the smallness of the scale, it is dificult
to see graphically that the minimum of C (x) is some-
what to the left of x=0. At x=0 the volume of the

.I, 'I I l I l

C(x)-C(0) VERSUS x FOR S1LVER

4(0)* 3.00 e v /ATOM

4(x)-c'(o}
e v/ATOM

—l.2

I.O

—0.9

—0.8

—0.7

—0.6

—0.5

I I .1 1

4(x)-4(0) FOR COPPER

+(0)= 3.52e v/ATOM

4(x)-4(p)
e v/ATOM- I.I

-0.4

—0.3

—1.0 —0.2

—09

—0.8

—07
.36 .32 28 .24 .20 .I 6

Va-V
X "-

Vp

-01

0.I 2 .08 .04 0

—0.6

—0.4

—0.3

-'0.2

—01

.36 .32 .28 .24 .20 .1 6 .12 .08 .04
Vp- V

x= v0,

FIG. 5. The change in the cohesive energy [4 (x) —4 (0)] of
copper as a function of the volume decrement x= (eo—v)/vo. vo is
the volume/unit mass at 20'C and P=1 atmos. 4'(0) is the co-
hesive energy at v=e0.

solid is that corresponding to I'= 1 atmos and T= 20'C.
For I' 0 the equation of state requires that BC/Bv
=+pUv;b(vp, Tp)/ep i.e., BC/Be is positive at e=ep.

In Fig. 2, which gives C (x) for aluminum, the curve
marked "normal" uses the data in Tables I and II.
The two comparison curves show the eGect of increasing
the vibrational energy U;b(ep, Tp) or the Gruneisen
parameter p by 20%. It is clear that a 20% change in
f/;b does not affect C (x) much. The effect of changing
y is somewhat greater and becomes more important
as x is increased.

VL CONCLUSIONS

It has been shown that within the framework of
certain assumptions, the most important of which is

FIG. 6. The change in the cohesive energy LC (x) —C (0)g of
silver as a function of the volume decrement x= (vo —v)/vo. eo is
the volume/unit mass at 20'C and P=1 atmos. C (0) is the
cohesive energy at v= vo.

the assumption of the equivalence of the shock and
hydrostatic compression, it is possible to deduce the
volume dependence of the cohesive energy C directly
from measurements of the relation between the shock-
front and shock-particle velocities. Although the shock
compressions are limited generally to Ae/e 25%, the
present method is well suited for extrapolation beyond
the experimental region.

The accuracy of the deduction of C(e) is limited by
the simplifying assumption that 7 is independent of
volume. Because of the weakness of the volume depend-
ence of y this assumption introduces little error in the
deduction of C(v) except in the case of very large
compressions, d,e/e&40%. In this volume range, or if
a more accurate calculation of C (e) is required in the
region Ae/e&30%, the volume dependence of y can be
taken into account by making use of Slater's" relation
for y in conjunction with the isotherms deduced from
the Hugoniots. 4
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