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9. The low-frequency limit of such masers is deter-
mined by the overlap of adjacent resonances.
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Formulas for the low-temperature lattice speci6c heat are developed on the basis of the general adiabatic
and harmonic assumptions, independently of special models or numerical procedures. Explicit simple
formulas are obtained for OD(0), the equivalent Debye characteristic temperature at O'K, and for the
curvature of OD(T) at O'K. Discussions are given of the resulting dependence of OD(0) on physical parameters
and the signidcance of the formula for HD(0) as a check on the basic assumptions, of the absence of a linear
term in 0D(T), and of the dependence of the curvature on the dispersion of elastic waves. 8D(0) is calculated
for Ge as 374.0'K; an error of ~2'K is estimated as due to errors in the elastic constants whereas the
computational error is negligible. HD(T) is calculated for Ge for [T/HD(0) j(0.11 using two models. The first
is a simple model of the frequency spectrum which gives results like typical force-constant models, and
disagrees with measurement. The second is a model of the frequency spectrum based on the direct measure-
ments by inelastic neutron scattering; this model shows much greater dispersion, and gives much better
agreement of Hn(T) with measurement.

I. INTRODUCTION AND SUMMARY

HE technique of low-temperature specific heat
measurements now provides sufficient accuracy

at temperatures low enough to permit reasonable
extrapolation to O'K in many cases. Accordingly,
attention may be focused on the limiting behavior at
O'K, which is a point of particular simplicity for
theoretical discussion, as will be shown below. The
observed specie. c heat curves show substantial devia-
tions from the Debye approximation rather close to
O'K, even for simple monatomic lattices. Considerable
work has been devoted to explaining these deviations
as properties of various microscopic models of the
dynamics of crystal lattices, and conversely, successful
explanations support the validity of these models and
the assumptions underlying them. ' Several workers
have paid particular attention to the limiting behavior
at O'K. Blackman' has emphasized the occurrence of
deviations from the limiting T' law at substantially
lower temperatures than the Debye approximation
would give, on the basis of calculations on various
force constant models. Bhatia and Horton' discuss the
limiting curvature of the equivalent Debye charac-

* Work supported by the Office of Naval Research.
'For recent reviews with many illustrations of specific heat

behavior see, for example, M. Blackman, in Handblch der Physik
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I, p. 325; D. H.
Parkinson, in Reports on Progress tn Physics (The Physical
Society, London, 1958), Vol. XXI, p. 226.' A. B.Bhatia and G. K. Horton, Phys. Rev. 98, 1'l15 (1955).

teristic temperature, 8ti(T), at O'K, and point out that
8&(T) could curve upward although it usually curves
downward,

Barron and Morrison' emphasize the importance of
fitting specific heat data near O'K, not only with terms
in T' but also T' and T'. Bhatia and Tauber, and
Betts, Bhatia, and Kyman have developed approxi-
mate methods for evaluating the limiting value of
8D(T) at O'K based on expansions in harmonic poly-
nomials. (Older methods may be found in Blackman. ')
Horton and Schi6' have applied similar approximate
methods (refined somewhat) to the evaluation of the
curvature of 8D(T) at O'K, and confirmed an upward
curvature for a particular model of Pb. De I.aunay' has
tabulated accurate values of 8ti(O) for cubic lattices
over a range of elastic parameters and has also tabu-
lated the curvature for a special force-constant model.

Most of the discussions of the low-temperature form
of C„or 8D(T) in the above references, are complicated

by the use of special force-constant models, or by special
computational approximations, such as Houston's
method. ' In this paper we develop general expressions

3 T. H. K. Barron and J. A. Morrison, Can. J. Phys. 35, 799
(1957).

4 A. B. Bhatia and G. E. Tauber, Phil. Mag. 45, 1211 (1954);
Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1956).

5 G. K. Horton and H. Schiff, Can. J. Phys. 36, 1127 (1958).
J. de Launay, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press, Inc. , New York, 1956), Vol. 2,
p. 219.
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for C„and 8ii(T), independent of special models or
methods of calculation. We emphasize that the formu-
lation starts from three basic assumptions, believed to
have wide validity: the adiabatic assumption, the
harmonic assumption, and (to a more limited extent)
the periodic assumption. The Debye approximation on
which the representation 8D(T) is based, is formulated
in generalized form, without the assumption of isotropy.
Thus it is exact in the limit T~O'K,. under the three
basic assumptions, and provides a very convenient
theoretical reference point for discussion of the lattice
heat capacity. Relations among measurable quantities
which make no further assumptions provide a test of
the basic assumptions. The relation for 8n(0) in terms
of elastic constants involves no microscopic information
and so provides such a test. To bring this out and to
simplify the computation of 8D(0), a discussion is given
of the form of that relation and of the nature and
number of physical variables which determine 8D(0).
On the other hand, the curvature of 8o(T) at O'K is
related to an average value of a microscopic quantity,
the ratio of the first dispersion coeS.cient of the com-
plete frequency spectrum (see Sec. II) to the fifth power
of the corresponding sound velocity. This ratio is then
averaged over direction and mode type. Measurement of
the curvature thus provides values of this averaged mi-
croscopic quantity and is therefore a test of a particular
microscopic model but not of the basic assumptions. We
note briefly that the fact that 8& (T) is parabolic at O'K,
with no linear term in T, is a general consequence of
time-reversal symmetry of the equations of motion of
the lattice.

Our discussion emphasizes the relationship between
the specific heat and the complete frequency spectrum,
and expresses relations in terms of integration over the
Brillouin zone to sum over all vibration modes. No use
is made of the density of modes in frequency, or fre-
quency distribution function, as is usually done.

The general formulation is then applied to the
interesting case of Ge, where recent work has partially
determined the frequency spectrum, and standard
force constant models fail to explain the measured
behavior of the specific heat. The calculation of 8D(T),
its value and curvature at O'K, are made by highly
accurate numerical techniques, with no significant
error for these purposes. 8D(0) is found to be 374.0'K
on the basis of recent low-temperature elastic-constant
measurements, with a calculated error of &2'K due
only to errors in those measurements. This appears to
be significantly diferent from existing measurements
below O'K, possibly corresponding to failure of the
basic harmonic or adiabatic assumptions. However,

~ After completion of this paper, new precise measurements of
the specifIc heat of germanium (and silicon) by Flubacher,
Leadbetter, and Morrison were kindly communicated to the
authors in advance of publication through the courtesy of Dr.
Morrison. These give a value for 8D(0) of germanium of 374~2'K
LPhil. Mag. 4, (1959)j.

the measurements vary considerably from specimen to
specimen, so additional measurements would be quite
desirable.

8D(T) is then calculated for Ge on the basis of a
simple model of the frequency distribution itself, which
uses all the known structural and elastic-constant
information. This model, referred to as the simple
dispersion model (S.D.M.), introduces a typical or
normal amount of dispersion into the elastic spectrum
for waves in any direction, and has the correct 8D(0).
It gives a 8D(T) typical of force-constant models, and
disagrees significantly with the available measurements,
by showing too shallow a minimum. The complete
spectrum is then estimated by using the results of
inelastic neutron scattering for the spectrum in certain
directions. The approximation involved in this is
justified by the dominance of the transverse L111j
elastic modes whose spectrum has been measured, and
shows much greater dispersion than the S.D.M. assumes
or force-constant models would give. This model of the
spectrum leads to a much deeper minimum in the
8D(T) curve, in strikingly better agreement with the
existing measurements. Calculation of the initial curva-
ture is also made, and used to extrapolate the curve to
O'K, but no data exist to check it.

II. BASIC RELATIONS

Ee*'x V
C.= P ~ d'k.

'=»ii. s. (e*'-1)' (2m)'

The periodic boundary conditions are assumed for convenience
in obtaining a simple description of the vibration modes. If surface
effects are negligible, which is the case of interest here, this
boundary condition is equivalent to any other, and is not a special
restriction.

A derivation of (1), with a discussion of the complete classih-
cation of vibration modes may be found, for example, in M. Born
and K. Huang, Dynamical T/zeory of Crystal Lattices (Oxford
U'niversity Press, Oxford, 1954), Chap. II, Kqs. (4.22), (6.24),
and (6.25}.

Basic Assumptions and the General
Heat Capacity Formula

The general model of the elastic and vibrational
behavior of a solid used here, whose analysis leads to
a precise description of the heat capacity, rests on three
broad basic assumptions. These are: (1) the adiabatic
assumption, which states that the lattice motion may
be described entirely by the coordinates of the nuclei;
(2) the harmonic assumption, which assumes the forces
acting on nuclei displaced from equilibrium are pro-
portional to the displacement. ; and (3) the periodic
assumption, which assumes the lattice is periodic and
satisfies periodic boundary conditions. '

Under the above assumptions the heat capacity at
constant volume of the specimen may be written as a
sum of oscillator heat capacities of a complete set of
vibration modes in the form'
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In (1), x,—=Ace, (k)/ET, &u, (k) =the angular .frequency
of a normal vibration mode of wave number k (magni-
tude 2z./X, A=wavelength), i=mode type number
(i=1, 2, 3 for the acoustic modes; i=4 to r for the
optical modes), E=Boltzmann's constant, A=Planck's
constant over 2x, T=Kelvin temperature, V= volume
of the specimen, and the integration is over the first
Brillouin zone (B.Z. for short) or unit symmetrical cell
in k space in which the mode density is V/(24r)'. It is
convenient to refer to the function oi, (k), i=1 to r,
k in the B.Z. , as the conzplete frequency spectrum of the
solid —to be distinguished from the density of states or
frequency distribution function, which gives the number
of states per unit frequency range, but is sometimes
called the frequency spectrum.

In (2), e, (8,p) is the sound velocity in the direction 8, to,
the direction of k (i.e., o, is the velocity of long-wave-
length elastic waves), h is the magnitude of k, and
b, (8,p) is a measure of the first appearance of dispersion
in the frequency spectrum at small k and will be called
the erst dispersion coe~ient The fact .that (2) contains
only odd powers of k is readily verified for all the
lattice models referred to here, but is in fact a funda-
mental result, and follows from the time-reversal sym-
metry of the equations of motion. We assume (2) for
the later development but a brief discussion of its basis
is given in Appendix I.

Putting (2) into (1) now gives a general low-tem-

perature expansion of the heat capacity, of which the
first two terms are

C. V(ETys ~ t s 1
dQQ

3XE .7 4 PZ ~ 90 "4. 4=it|,s(8, y)

V (KT) ' 10m' t. s b;(8, (p)
+—

(
—

~
dn, P . (3)

1V ( h ) 63 &4 4=i e,s(8, 4p)

In (3), the upper limit of integration for h has been
made infinite, thus neglecting terms exponentially small

compared to powers of 7, and use has been made of
the integral

poo g2'N+2gx

dx= (2rz+2) I( (2n+2
~ s (e*—1)'

(4)

Lozo Temperat-ure Expanszons

At low temperatures, only small values of cv, are
important; otherwise x, is large and the Einstein specific
heat function, Ee"x,'/(e" 1)', is e—xponentially small.
Hence only the acoustical modes, for which co~0 as
k~0, contribute to C, and we get an appropriate
limiting form for C, by assuming a series representation
for re, (k), of which the first two terms are

re, (k) =e, (8,y)k[1—
b( ,8)lob], i= 1, 2, 3. (2)

where f is the Riemann zeta function:
00

f.(2n+2) = P
@=1pen+2

f(2)=z'/6, f'(4)=z-'/90, f(6)=sr'/945, etc.

Also E, the number of nuclei in the specimen, has been
introduced in each term, so that (3) gives the reduced
(i.e. , dimensionless) heat capacity per degree of freedom,
a reduced specific heat.

Equation (3) as derived above is a precise formula as
I'—+O'K, provided the three basic assumptions are
satisfied. It is worth noting, however, that the periodic
assumption is not really needed to establish (3), which
holds in the limit in which only long waves are excited;
hence the details of the lattice structure do not aGect
their behavior. "

Debye A pproximati on and the Equi valent
Debye Theta Representation

A convenient representation of the specific heat uses
the characteristic parameter of the Debye approxi-
mation. This approximation makes, in addition to the
three basic assumptions above, the additional gross
assumptions that the elastic waves show no dispersion,
and that a single maximum frequency or frequency
cutoff, co, exists for modes of all types, in all directions,
(However, elastic isotropy is not required. ") Only
acoustical modes are considered, but the cutoff is
chosen to provide the correct total number of degrees
of freedom. Then using only the first term of (2) in (1),
the angular and radial integrations separate, and
putting the latter in terms of a reduced frequency
variable x gives the approximate formula:

V (ETqs( t-

c.=
(27r)s( h I &~4 '=is,'(8, y)

r '" Ee'x'dx
X ~ ; (5)

(e~-1)'
x =hei„/ET= 8D/T,

—
"Equation (3) would be expected to hold for liquids or frozen

disordered structures (e.g. glasses, alloys) at su%ciently low T.
However, homogeneity on some scale smaller than the important
wavelengths would be needed for the sound velocities to have
meaning in (3) [strictly, this requires an infinite specimen in the
limit 0 K, but for ordinary-sized homogeneous specimens there is
a range of temperature which is close enough to O'K for (3) to
hold accurately but for which the inhomogeneity that is a con-
sequence of 6nite size is still negligible]. The periodic assumption
used above is convenient for classification of the modes, since it
gives precise meaning to the quantum number k for all modes,
but that the assumption is not needed is indicated by the fact
that k has disappeared from (3). A justification of (3) for a non-
periodic material would introduce modes of definite k only for
suKciently long wavelengths, but we shall not need any extensions
of this kind, and shall not pursue them here.

"The Debye approximation as defined above does not assume
isotropy, as is usual but not necessary. Therefore it represents
accurately the low-temperature behavior when only long waves
are excited, and the solid behaves like an anisotropic continuum.
This is the immediate answer to disprove Eucken's speculation
that anisotropy causes deviations from the Debye approximation
(see Blackman, reference 2, p. 363) which is answered rather
indirectly by Blackman.
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where 8& is the characteristic parameter of the Debye
theory, the Debye theta. If there are S nuclei par-
ticipating, x or equivalently 8D is fixed by putting the
total number of modes equal to 3S; hence

moduli, and p is the density, 8D(0) may be written

egg

8o(0) —(6v'o)& !VA & Io
E M~p~/6

(12)

3 p™e x4dxC,

3!VE g o &o (e' 1)— E8D)

~8g)/ T eX~4dg

x ~

(e2: 1)2

—=D(T/8 ) (7)

Ke note the low-temperature form

C„/3NE=D (T/8D) = ,7r'(T/8D)-'+0 (e 'o!v) (8)

In (8), the only power appearing is T', and an approxi-
mation to D(T/8D) by this term alone holds within
0.7% for T/8o ~& 0.09, which includes most of the region
of interest in the discussion here.

Hey specific heat curve may now be represented as
a function of T by specifying an equivalent Debye
theta as a function of T, 8D(T), defined by

C„/3+K= D(T/81) (T)),— (9)

where the function D(x) is defined by (7). Compa»ng
the representation (9), in the low-temperature form (8),
with the general expansion (3), leads to an expansion
of 8ii(T) in the form

T
8z(T) =8D(0) 1—Ci i +

E8o (0))
(10)

The parabolic form of (10), or absence of a term linear
in T, is a consequence of the special form of (2) dis-
cussed above (i.e., odd powers of k only) leading to
the special form of (3) (odd powers of T only). Thus the
no-dispersion assumption for the elastic waves, &u, (k)
=v;(8,p)k, holds especially well at small k, hence the
Debye approximation holds especially well at low T,
as shown by (10).

In (10)

8o(0) = (6v') "(5/E) (!V/V) lvoI;—l;

1
I,= dnP

12or ~4 '=i v„,o(8, oo)

(11b)

where the relative velocities v„,(8,p) are defined b

v„.(8,~) =v'(8, v)/vo (11c)

and so=an arbitrary reference velocity. Making the
special choice vo= (cubi/p)l, where c~ i is one of the elastic

V KT)'( t
o 1 t"™

dn
~

~ .d.—=3.V. (6)
(2v)'( 5 ) 4~4 '=iv;o(8, p)

Dividing (5) by (6) gives

where !VA,=Avogadro's number and M=(pU/E)!VA„
= the average "molecular weight" of the atoms in the
crystal. Similarly

~E~& I,
(6 '):I —

I —,;
21 &V) I,i

100 2

1 ~ o b;(8, (p)
Io= dQ Q

12v' "4 i=i v„,o(8, y)
(13)

Note that 8D(0) is identical with the Debye parameter,
when the latter is defined as above, since only the T' or
continuum term remains in C. as T—&O'K, i.e., the
Debye approximation as T—+O'K is accurate. "

|'4or4 3.VET'
~

**-

8D(0) =
(

E 5 C„(T) )

A quantity for which there are two directly and inde-
pendently measurable expressions is 8D(0)1V l, or,
equivalently, the intensive quantity 8D(0)(V/1V)'; the
inverse cube of the latter, times T', is the heat capacity
per unit volume (within a numerical factor). Actually!V
is a somewhat arbitrary quantity, since a consistent
discussion of a material could be given in which two

Disclssiol of Iimitirtg Form of 8D(T)

The formula for 8o(0), (11) or (12), is important in
providing a precise relationship between two separately
measured quantities. These are (1) the heat capacity
(in the limit T +O'K) and (2)—the elastic wave velocities
v;(8, p), i= 1, 2, 3, which in turn depend on the elastic
moduli and the density in a precisely known way. In
addition the volume per atom, V/ItI, enters, or, equiva-
lently, the mass per atom, M/EA, (on int'roducing the
density) as in the form (12). Equation (12) shows a
simple dependence on c~~, 3f, and p, while the dimen-
sionless integral I3 is a function just of the ratios of
elastic moduli; /3 is a difIicult function to calculate,
but is well defined by (11b). An experimental test of
(11) or (12) is then a test of the three basic assumptions
mentioned above, since within these assumptions, the
relation is exact.

Note that (11) seems to contain some microscopic
description or model of the material, in that J'lt, the
number of atoms, enters, hence apparently (11) does
not relate two purely macroscopic measurements. In
fact this dependence on E, although convenient, is
unnecessary, and of no significance, since E enters also
in the formula for the specific heat per degree of
freedom, which provides the other experimental way of
determining 8D(0); i.e., from (8)
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nuclei are counted as one unit, without altering (11).
This would have physical justification if these nuclei
were known to be much more tightly bound to each
other than to the rest of the crystal. "

The coeKcient C in (10) which mea, sures the curva-
ture of the reduced equivalent Debye theta curve
[8D(T)/8D(0) vs T/8D(0)j, in contrast to 8D(0) does
depend in an intrinsic way on microscopic information
or models. Thus (13) shows that C involves a particular,
weighted average of the first dispersion coefficients
b;(8, +) (i= 1, 2, 3) over direction in the crystal. Micro-
scopic information or models, such as force-constant
models, are required to fix b, (8,p). Conversely, measure-
ment of the low-temperature specific heat provides a
knowledge of that averaged microscopic information,
and a test of given microscopic models. Although clearly
8D(0))0 always, C may have either sign, depending on
an average of b, (8,p) over direction. In general, we
expect that b;(8, 1p))0, hence C as well, since the elastic
wave velocities, d&u/dk, must eventually decrease as k

increases, and become zero near the Brillouin zone
boundary Lsince cg(k) is a periodic function of kj.
However, the first deviations of the spectrum from the
no-dispersion approximation could occur with the
opposite sign and the elastic wave velocities could
Ascrease over a limited range of k. Then, particularly
if such deviations occur in heavily weighted mode types
and directions, 8D(T)/8 (101) might have an initial
curvature upward. Such behavior has been suggested
by Bhatia and Horton' for Pb on the basis of a par-
ticular force-constant model, and also by Horton and
Schi6' for the three-constant, nearest-neighbor model,
and we have verified the sign for the latter model,
using (13) and evaluating the integral by highly accu-
rate numerical methods (see Appendix II).

IIL EQUIVALENT DEBYE THETA AT O'K FOR
CUBIC CRYSTALS

For cubic symmetry, the formula (12) for 8D(0)

simplifies to
( )811(0)=8p'f(ri, rs),

where

8s ——2.515&(10 'C11~M &p '~ (CgS unitS),

f(ri, rs) =
1 p & 1

dn
-~2~ "4 '=~ &ri

rl (Cll C12)/2C11

rs =C44/C11,

ir1 ~1/1 0& 1 0 —Pell/P j'.
Applying (14) to Ge, and using the computation pro-

"It is noteworthy, that if the assumptions which 1ead to (11)
are known to hold accurately for some specimen, then (11) offers,
in principle, a way of measuring the ratio of the two characteristic
quantum constants, h and X, by macroscopic measurements. This
is an aspect of the fact that at temperatures approaching O'K,
quantum eBects are manifested on a macroscopic scale.

cedures described briefly in Appendix II, and the
elastic constants of McSkirnin" gives 8o(0) =374.0'K.
The explicit values of the five quantities whose numeri-
cal values determine 811(0) are"

c»= 1.3156&(10"dynes/cm' (at —200'C),

c»=0.4945X10"dynes/cm' (at —200'C),

c44= 0.6840&(10"dynes/cm' (at —200'C) .

p=5.338 g/cm' (at O'K), M=72.60.

The calculation is accurate to better than four figures. "
The error in 811(0) is therefore due to errors in the five
numerical constants and arises mainly from errors in
the velocity measurements, which determine c», c»,
and c44. Using the error of &-,'/c in measured sound
velocities quoted by McSkimin" leads to a possible
error of Asm in 811(0), or about &2'K." (The error
due to using elastic constants at —200'C instead of at
O'K is about —0.1jc.)

This value of 8D(0) may be compared with a, value
obtained from the specific heat measurements below
5'K of Keesom and Pearlman, "who estimate 8D(0)
=362'K&6'K. This seems to be significantly lower
than the value calculated above, and indicates either a
systematic error, or a breakdown in the basic assump-
tions, such as the harmonic assumption or possibly the
adiabatic assumption. The value of 362'K is based on
an average of all specimens and data, and also on a fit
involving a term linear in T, C„=aT+bT'. Without
the linear term, the value of 811(0) would be even lower.
Examination of the data for individual specimens shows
considerable variation. Thus specimen SXII has 8D(0)
=368'K and a downward curvature (C&0), as ex-
pected, whereas specimen PXI has 811(0)=350'K and
an upward curvature (C(0). These variations, the
substantial discrepancy in 8D(0) from the elastic and
thermal measurements and the significance of this
discrepancy, make it desirable to have more measure-
ments on Ge in the helium-temperature region. '

IV. THE 8D(T) CURVE FOR GE

Calculation of the specific heat at a finite temperature
requires a knowledge of the complete frequency spec-
trum a&(k). Such knowledge could become available in

"H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).
'4 J. de Launay with accurate integration procedures and the

same constants also obtains 374.0'K (p. 300). We have developed
a simple highly accurate procedure for evaluation of f(r1,r2), and
also prepared a chart of contour lines of constant f(r1,r2). These
.procedures and results will be published separately; see P. Marcus
and A. Kennedy, Bull. Am. Phys. Soc. Ser. II, 3, 226 (1958).

'5 The error in 8~(0) can be expressed in terms of errors in the
elastic constants (ignoring errors in M and p) by

60D (0) ACI1 Zkc12 EC44—=0.36 —0.12 — +0.26
~a(0) c11 c12 c44

which holds at the values for Ge. The errors in c», c», and c44 may
then be easily expressed in terms of errors in the three particular
measured velocities."P. H. Keesom and N. Pearlman, Phys. Rev. 91, 1347 (1953).
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a number of ways, illustrated by the following four
possibilities:

(1) ur(k) could be measured directly by techniques
like inelastic neutron scattering or disuse x-ray scat-
tering. As yet, however, only partial frequency spectra
in a few special directions are available.

(2) The frequency spectrum could be calculated for '
a force-constant model, such as those used in Born's
theory of lattice dynamics. ' Such a model could, in
principle, describe the dynamics of any lattice which
satisfies the basic assumptions, provided enough force
constants are used. In practice, however, only a limited
number of force constants can be determined from
known crystal properties, and force constants between
high-order neighbors must therefore be assumed neg-
ligible. The resulting limited force-constant model
serves as a parametric representation of the crystal
properties, with the force constants as parameters or
fitting constants. This representation thus has an
arbitrary character, although it may rest on plausible
physical arguments in particular cases, but does give
rise to a definite specific heat curve which can be com-
pared with measured curves. Good agreement between
these curves is an indication of a possible reasonable
model for the crystal, although such agreement does not
establish the model.

A calculation of this kind has been made for Ge by
Hsieh" using the Smith model for diamond-type lattices
(2 nearest neighbor force constants and 1 next-nearest
neighbor central force constant). The reduced 8~(T)
curve in Fig. 1 shows a considerable discrepancy from
the available specific heat data of Hill and Parkinson,
and Estermann and Weertman. " The deviations of
this calculated 8D(T) curve from the Debye approxi-
mation, for which 8z&(T) is a constant equal to 8g)(0),
are much less than observed.

(3) A useful model may also be constructed by
working directly with the frequency spectrum, hence
avoiding the tedious step of calculating this from a
force-constant model. A model of this kind, which
uses all the elastic constants and the lattice structure in
a plausible way to 6x the frequency spectrum, is
arrived at as follows. The initial downward curvature
in 8D(T) at T=O arises from the dispersion of elastic
waves, which lowers a& at given lt (compared to the
absence of dispersion), hence raises C„at given T be-
cause the waves are more easily excited, and hence
lowers 8D(T). Now the dispersion in a one-dimensional
lattice due to nearest-neighbor interaction is enough to
produce changes in 8D(T) of the same magnitude as in
three dimensions. "Hence we can make a definite model
with about the right amount of dispersion by assuming
the simple dispersion formula of the one-d. imensional

' Y. Hsieh, J. Chem. Phys. 22, 306 (1954).
' R. W. Hill and D. H. Parkinson, Phil. Mag. 43, 309 (1952);

I. Estermann and J.R. Weertman, J. Chem. Phys. 20, 972 (1952).
P. Marcus and A. Kennedy, Bull. Am. Phys. Soc. Ser. II, 1,

142 (1956).

chain holds in each direction, for each of the three
acoustic mode types, namely

( 7rk q ~k
cu, (k) =v;(8, p)k( sin-

2k (8,p)J 2k, (8,q)

i=1, 2, 3. (15)

The two parameters in (15), v, (8,q) and k,„(8,y), are
fixed by the acoustic wave velocity and the value of k at.
the Brillouin zone boundary in the direction 8, p, respec-
tively, thus using all the elastic and structural knowl-
edge of the crystal. In addition (15) yields the correct.
value of 8o(0), contains the correct total number of
acoustical modes, and introduces a plausible amount of
dispersion into the spectrum, so that it should be useful
as a standard model whose specific heat may be com-
pared with measurement. The nature of the deviations
will then suggest the way in which the actual frequency
spectrum deviates from the standard behavior (15), and
modifications may be introduced.

Calculations of 8D(T) based on this model, which
will be called the simple dispersion model (S.D.M.),
have been made for Ge and are also shown in Fig. 1.
The curve is similar to Hsieh's curve, and is shallower
than the experimental curve. Such a difference could
arise from a greater dispersion in the actual spectrum
than is assumed in the S.D.M. (or occurs generally in
near-neighbor force-constant models) as will be shown
later. '-'

(4) It is of considerable interest to make use of the
recent data on the actual spectrum of Ge in certain
directions, obtained with inelastic scattering of neutrons

I,OO
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FIG. 1. The reduced equivalent Debye theta curve of Ge,
0D(T)/0D(0) vs T/0~(0) for the simple dispersion model, Hsieh's
model, and the experimental data of Hill and Parkinson, Ester-
mann and Weertman, and Keesom and Pearlman.

~ It is of interest that the simple dispersion model applied to
diamond (carbon) gives rather good agreement with recent
measurements of D. L. Burk and S. Friedberg, Phys. Rev. 111,
1275 (1958); these calculaiions will be published separately.
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where cr is independent of direction and t, (g, fc), tt (g, y)
are the same as in (15). Equation (16) refers to the two
transverse modes, and the longitudinal modes are
assumed given by (15) for simplicity. (We refer to this
model as the modified dispersion model, M.D.&1.)
Since the transverse modes dominate, contributing 90~~&

of the specific heat (see Appendix II), this assumption
is not critical. The a are determined by fitting the
observed [111]dispersion curves. (The [100]dispersion
curve is similar, so for simplicity the [111]form is
used throughout, see Fig. 3.) The nature of the fit, is
shown in Fig. 3 and discussed, with numerical values,
in Appendix III.

The results of a specific heat calculation with this
model are shown in Fig. 2; slightly different curves are
given for the two sets of neutron data, which give an
idea of the accuracy of determination of 8'(T). There
is a marked improvement in the agreement with the
measurements. Particularly striking is the appearance
now of about the right depth and position of the deep

I.OO-
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MODEL
N MODEL 2

N MODEL I

.85

.80

.75

by Brockhouse and Iyengar, '-' since this shows that
the transverse modes in the [111]and [100]directions
have considerably more dispersion than the simple
dispersion model assumes. The limited amount of direct
information has been utilized in a calcula, tion of 8D(T)
by assuming the co(k) curve in any other direction is
similar to that in the [111]or [100] direction, when
expressed in reduced form. Namely, we assume

~(k) /c c t /c q
'"+'—+ cz,„i

p;(8, p)lc (g, p) /s„(g, p) =~ Ek„,(8, p) )
c=2, 3 (16)

minimum; the calculated curves may, however, be
slightly too low. "

For each 8D(T) curve in Fig. 2 the initial parabola
was determined by a separate calculation using (13).
This served to extrapolate the calculated curves accu-
rately to O'K. The measurements give no information
on the curvature of this initial parabola, which is a
good approximation at least to T/8D(0)=0. 01. The
measurements below 5'K, as noted above, give no
useful values, and additional measurements would be
desirable. Numerical estimates of C are given in
Appendix III, but the scatter of the neutron data
leaves a considerable uncertainty in this quantity.
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APPENDIX I. EXPANSION OF THE FREQUENCY
SPECTRUM IN POWERS OF 0

The equations of motion of the lattice, under the
assumptions of Sec. II, are satisfied by plane waves
u,e'("' "",provided co and k satisfy a secular equation.
This equation is a polynomial in co' (since only a second
time derivative occurs in the equations of motion) with
real coefficients which are analytic functions of k, and
the force constants. Now the wave with —k in place of k
but the same co is also a solution of the equations of
motion (and the periodic boundary conditions), since
complex conjugation and time reversal leave the equa-
tions of motion unchanged but change the sign of k in
the plane wave solution. Thus the equation for co' is
the same for —k as for +k and the coefficients, 2 „, of
the various powers, co'", of co' must satisfy A„(k)

(—k). This requires that in an expansion of 2 „in
powers of k„k„,k„ in any term the sum of the powers
of k

p ky, k, must be even. Hence in a fixed direction 2 „
is a function of k', the square of the magnitude of k, or
A „(k',g, q). For the acoustic modes, co' approaches ks as
A~O, and since the coefficients of the polynomial
equation for co' depend only on k', any additional
terms in the expansion of co' in powers of k obtained
from this equation can only bring in additional even
powers.

,70 Ac HILL 3 PARKINSON
, ESTERMANM IAtEERTMAN

APPENDIX II. CALCULATION PROCEDURES

We write Eq. (1) in the reduced form in terms of
reduced variables as

e,co~

.80 I I I I I I I I

0 .02 .04 .06 AR .IO .12 .I 4 .15,1 S

FIG. 2. The reduced equivalent Debye theta curve of Ge,
HD(T)/tto(0) rs T/sn(0) for the simple dispersion model, rnodihed
dispersion model I (based on data set I of Brockhouse and Iyengar,
1957), and modified dispersion model II (based on their data
-set II, 1958), and the experimental data of Fig. 1.

"B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 108, 894
(1957) (data set I), and a more complete discussion in Phys. Rev.
111, 747 (1958) (data set II). We are indebted to the authors for
information in advance of.publication.

C„
dQIc(t, p), (17)3'

"A test of this assumption is provided by measurements21 of
the frequency of one of the transverse modes at the Brillouin
zone boundary. On the hexagonal face (for directions other than
L111]),the values of ~ given by (16) are lower than the measured
values. This suggests that this model overestimates the dispersion
of the transverse modes, hence overestimates the speci6c heat,
and underestimates the values of 8D(T), as is indicated in the

. comparison saith the experimental data in Fig. 2.
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where

3 ~1 3 gXsyt'

h(t, v) = ~l P X'sy'sz'dz,
kes "s '=-r (P"&'—1)'

Transverse modes,
(18)

Longitudinal modes,

hexagonal face
square face

hexagonal face
square face

O'K

7%

T/en(0)
=0.06

80%

y;(z)=(2/x. ) sin(~z/2); i=1, 2, 3

and for the modi ied dispersion model

(19)

5

y(z)=Q az'"+' s=2 3
n=l

but yr(z) = (2/m. ) sin(7rz/2) as in (19) (values of a„ for
Ge are given in Appendix III). The limiting form of

h(t, p), as T~O'K, is

pET~'V2~ s 1
h(t, q) =

i( h 2 1V15'=tv's

The angular integration is based on the geometry of
the Brillouin zone for the face-centered cubic lattice
(the well-known 14-sided figure with 6 square faces and
8 hexagonal faces shown, for example, by Mott and
Jones" ) which provides a convenient means of in-

corporating the cubic symmetry. The minimum integra-
tion region consists of three triangular areas, 8 of a
square face and two regions each ~, of a hexagonal face.
In the coordinates t(=cos8), p (where 8 and p are
polar coordinates with respect to the axis through the
face center), the integral is a simple double integral
over a nearly rectangular area. The integral is done
using high-eKciency Gaussian integration formulas

(6 points in both I and p coordinates) and gives an
accuracy. of more than six significant figures.

The calculation is greatly simpli ied by the fact that
in each of these models the radia, l integrals (18) are
functions of one parameter only, X;. Thus, the process
of evaluating them by numerical integration at the 108
points in the angular integration mesh, for various
values of temperature, is avoided. This dependence on
the parameter X has been approximated by suitable
polynomials in 1/X or X for the diferent ranges of
interest of 1/X (1/X is near 0 for the low-temperature

region). These approximations are accurate to better
than four significant figures.

It is interesting to note the relative sizes of the
various contributions to the heat capacity:

F. Mott and H. Jones, Propert es of Me~As 'and Alloys
(Oxford University Press, Oxford, 1936), p. 70.

and

X;= (A/ET)n, k (a dimensionless function of t, p),

y, (z) =co, (k)/n, k (the reduced dispersion curve),

z=k/k,
ke'=2"E/V $= (2~/g) s for the face-centered cubic

lattice, cubic cell side aj.
For the simple dispersion model

~2
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DISPERSION OF OOO] MODES
IN GERMANIUM
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(c) p
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FIG. 3. The measured reduced dispersion curves ~,/v„k.„,vs k/k„,
for Ge with approximating polynomials: (a) [111) direction,
based on data set II of Brockhonse and Iyengar, 1958; (b) (111$
direction, their data set I, 1957;and (c) L100j direction, their data
set II, 1958.

The major contribution is from the transverse modes,
which have lower sound velocities, i.e., are more easily
excited, than the longitudinal modes. The hexagonal-
face contribution dominates that of the square face
since, in addition to the fact that the hexagonal faces
subtend a solid angle more than three times as great. ,
they contain those directions near the (111jdirection
which have the lowest sound velocities.

A correction has been made to the calculated curves
for the contribution to the specific heat due to the
optical-mode vibration. This is assumed to be given by
a single Einstein specific heat formula using the Raman
frequency co/2~=300 cm '." The plotted curves in-
clude this correction, which a8ects the value of 8D(T)
less than 0.005/o for T/8D~&0. 07, and is 0.14'Po at
T/8g& 0.10. ——

APPENDIX III. FITTING FORMULAS FOR
MEASURED DISPERSION CURVES

The dispersion curves for the transverse modes are
based on the measured curve in the (111jdirection.

DISPERSION OF[III] MODES ~

IN GERMANIUM
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TABLE I. Data of Brockhouse and Iyengar. '

a1
a2
a3
a4

1.957
Data set I

—1.091
+0.110
+1.691—1.283

1958
Data set II
—0.687—2.002
+4.594—2.489

a See reference 21.

(16)

The dispersion curve in any direction is assumed to be
of the same form, in reduced t't, as in the L111jdirection,
with the initial slope determined by the sound velocity. "
Thus

The a„, for the. two sets. .of -IIeutron. spectrometry
data, are given in Table I. Figures 3(a) and (b) show
the data and the fitting polynomial; .

.Fig. 3(c) shows the
measured data in the L100j direction with the assumed
dispersion curve. The a were fixed by least-squares
fitting of all the data.

The longitudinal modes are approximated by the
dispersion curve of the S.D.M. ; a comparison with the
neutron spectrometry data is shown in Figs. 3(a)
and (c).

The coefficient C, 6xing the limiting curvature of
the reduced 8D (T) curve )see Eq. (13)g is determined
for these models by the coe%cient a&. Values for this
curvature coefficient C are 98 for M.D.M. I, 62 for
M.D.M. II, and 38 for S.D.M.
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Deduction of the Volume Dependence of the Cohesive Energy
of Solids from Shock-Wave Compression Measurements*

G. B. BENEDEK$
Division of Lngineering and Apptied Physics, Harvard University, Campers'dge, jdassachlsetts

(Received November. 19, 1958)

By applying the Mie-Gruneisen equation of state to measurements of the compression of solids by strong
shock waves, it is possible to determine the volume dependence of the cohesive energy. The method for
carrying out this deduction is presented along with a detailed exposition of the underlying assumptions.
The method is applied to six metals Be, Al, Co, Ni, Cu, and Ag for vrbich the experimental data are most
extensive. The volume dependence of the cohesive energy for these six metals is presented in both analytical
and graphical form.

I. INTRODUCTION

HK cohesive energy of a crystalline solid is the
energy release upon assembling the constituent

atoms from infinity to form the ordered array charac-
teristic of that crystal. This energy is of fundamental
significance in the theory of solids because it is a
measure of the detailed nature of the spatial distri-
bution of charge throughout the solid. The dependence
of the cohesive energy C on the size of the atomic
polyhedron is the most important factor which deter-
mines the lattice constant and the compressibility of the
solid. Because. of the crucial role of the cohesive energy
in determining the density of the solid it is possible to
deduce the volume dependence of C from measurements
of the volume compression under pressure. The timeli-

ness of such a deduction arises out of recent advances

*This research was supported by the Office of Naval Research,
The Signal Corps U. S. Army, U. S. Air Force, and the U. S.
Atomic Energy Commission.

t A large portion of this work was carried out while the author
was a Summer Staff Member of the Los Alamos Scienti6c Labora-
tory, Los Alamos, New. Mexico.

in the theory of cohesion, '' and in the experimental
methods for high-pressure compression of solids."

The new theoretical advances' consist in the appli-
cation of the "quantum defect" method' to the calcu-
lation of the volume dependence of the cohesive energy
for multivalent metals with nonoverlapping cores.

The new experiments make use of strong shock waves
to generate pressures which are typically in the 150 000-
to 500 000-atmos region, but can be as large as 1 300 000
atmos. Under such stresses the volume compression of
the solid is typically as large as 20%, but it can be as
large as 40/o.

The present paper applies the Mie-Griineisen
equation of state to the shock-wave data obtained by
the Los Alamo s group, ' to deduce the volume
dependence of C. A general procedure for this deduction

' H. Brooks and F. Ham, Phys. Rev. 112, 344 (1958).
~ H. Brooks, Suppl. Nuovo cimento 7, 165 (1958}.
'Walsh, Rice, McQueen, and Yarger, Phys. Rev. 108, 196

(1957).
Rice, McQueen, and Walsh in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1958),
Vol. 6.

e H. Brooks (private communication).


