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The relationship between the excluded-volume problem for a discrete random walk on a lattice and the
corresponding Ising model of ferromagnetism is investigated. Systematic methods are presented for the
construction of rigorous lower bounds to the limit ts=lim„„(e„+~/c„), where c„ is the number of I-step
self-avoiding walks on a given lattice. In this way Temperley's conjecture that ts= coth(J/hTo), where To
is the Curie temperature of the corresponding Ising-model ferromagnet, is disproved. The series c„ for
various two- and three-dimensional lattices have been enumerated exactly for values of n from ten to
twenty. Extrapolation of these series, by procedures known to be valid from exact Ising-model results,
yields more accurate values of p than Wall's statistical calculations and also shows that c ~n p,

" where
o—1/3 for plane lattices and n—1/7 for three-dimensional lattices. This means that the entropy of the
rtth "link" of a polymer molecule in solution should vary as SS„=kin', +ha/e. The relevance of these
results to the interpretation of the boundary tension of the Ising model, to the critical behavior of gases,
and to the mean square size of a polymer molecule is discussed briefly.

1. INTRODUCTION AND SUMMARY

' 'N this paper we investigate the "excluded volume
~ ~ problem" for discrete random walks on two- and
three-dimensional lattices and discuss the relationship
of this problem to the configurational properties of the
corresponding Ising lattice models of a ferromagnet.
In the discrete "excluded volume problem" one studies
a random walk of e steps which proceeds from one
lattice point to the next via one of the g= o.+1 "bonds"
radiating from each point. (In the simplest cases the
bonds are supposed to exist only between lattice points
which are geometrical nearest neighbors. ) The walk is
subject to the restriction that it may pass only once
through any lattice point, i.e., it must be self avoids'rtg-
or nort self irttersectin-g. I-nterest centers on determining
c„, the total number of self-avoiding walks; I, the
number of closed, polygonal, self-avoiding walks; and
(R„'), the mean square "size" or "end-to-end length"
of all n-step walk. s with no self-intersections.

The excluded-volume problem is of intrinsic theoreti-
cal interest since it represents a stochastic process of a
non-Markovian character and relatively little is known
about the nature of such processes. Thus, while for
any Markovian random walk (R„')/rt tends to a finite
limit as n becomes infinite, '' the true asymptotic
behavior of (R„')for a self-avoiding walk is not known—
although the question has been studied by many
authors. ' " A non-self-intersecting random walk is a

' S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).
s E. W. Montroll, J. Chem. Phys. 18, 734 (1950).
3 Wall, Hiller, and Wheeler, J. Chem. Phys. 22, 1036 (1954);

Wall, Hiller, and Atchison, J. Chem. Phys. 23, 913 (1955); 23,
2314 (1955); 26, 1742 (1957); Wall, Rubin, and Isaacson, J.
Chem. Phys. 27, 186 (1957).

4E. Teramoto, Proceedings of the International Conference on
Theoretical Physics, Kyoto ortd Tokyo, September, 1953 (Science
Council of Japan, Tokyo, 1954); G. W. King, National Bureau of
Standards Applied Mathematics Series AMS 12, June, 1951
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reasonable model of a long-chain polymer molecule in
a dilute solution. Knowledge of c„, the total number of
walks, yields information about the configurational
entropy of such a molecule, " and the asymptotic form
of (R„) is of great interest in the interpretation of the
molecular weight dependence of the viscosity of dilute
polymer solutions. " The theory of self-avoiding walks
is also applicable to a class of Brownian motion and
diffusion problems in which the passage of the diffusing
particle alters the properties of the medium.

In a recent paper Temperley" has drawn attention
to the relation between the problem of enumerating
non-self-intersecting walks on lattices and the statistical
mechanics of lattices with nearest neighbor inter-
actions. "More particularly Temperley concluded that
there was a close connection between the excluded-
volume problem for walks on the plane square lattice
and the corresponding Ising model for ferromagnetism'
whose solution has been elucidated by Onsager. " If
some such relationship could be established rigorously,
there would be hope of a considerable advance in our
understanding of the excluded-volume problem since,
following Onsager's exact solution, a considerable body
of literature on the Ising model for various lattices has
grown up. '~22 Unfortunately, as has been shown in
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(1953).
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M. E. F I SHER AN 0 M. F. SYKES

the investigations described below, it turns out that
the two problems are not nearly as closely related as
might have been hoped. Nonetheless, it has proved
possible to draw certain further conclusions about the
excluded-volume problem, although much still remains
to be discovered.

Temperley's main conjecture concerned the value of
the "attrition coefficient" or "limiting entropy per
step" for a non-self-intersecting walk on the plane
square lattice. The "attrition coeKcient" was first
defined by Wall, Hiller, and co-workers, ' who have
undertaken extensive numerical studies of self-avoiding
walks by statistical methods. (Other numerical investi-
gations have been made by Teramoto, by King, and by
Rosenbluth and Rosenbluth. 4) Wall et al. observed
that the fraction of random walks which survived to
e steps without a self-intersection appeared to diminish

according to a simple exponential law. The rate constant
in this law depended on the lattice and was called the
"attrition coefficient. " The exponential survival law is

equivalent to the statement that the ratio v„=c„/c„ t
of successive total number of walks approaches a
finite limit as e tends to infinity. That this should
be so is by no means obvious mathematically but
Hammersley" has been able to justify the assumption
rigorously. The limiting ratio,

p=lim (c„/c„r), (1)

represents the average number of allowable next steps
for a long walk. Thus on the first step of a walk there
are q possibilities, on the second step o-=q —1 possibili-
ties, and it seems intuitively evident that the mean
number of possibilities decreases successively and
approaches the limit p, . (In fact, however, the decrease
in the ratios v„need not be strictly monotonic, and
on certain structures v„may be less than p for some e
even though v tends to p in the limit. ) By analogy
with a polymer molecule Temperley has called the
quantity bS„=k in@ the "limiting entropy per link, ""
(k here denotes Boltzmann's constant. ) On the basis
of the solution of certain combinational problems and
a comparison with similar problems arising in the
Ising problem, Temperley" concluded that the value
of p for a plane square lattice should be exactly
1+&2 2.4142. This corresponds to the critical value of
the Ising-model "high-temperature counting variable"

e= tanhK= tanh(J/kT)

(in the notation of Newell and Montrollrs). In general
Temperley's conjecture amounts to

p =co, where co = coth (J/k Tc), (2)
"A. J. Wake6eld, Proc. Cambridge Phil. Soc. 47, 799 (1951).
22 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240,

214 (1957).
23 More precisely Hammersley has shown that limn ' inc„=lnp

(I -+ ~) exists. J. M. Hammersley and K. W. Morton, J. Roy.
Statist. Soc. $16, 23 (1954);S. R. Broadbent and J. M. Hammers-
ley, Proc. Cambridge Phil. Soc. 53, 629 (1957);J.M. Hammersley,
Proc. Cambridge Phil. Soc. 53, 642 (1957).

and where Tg is the ferromagnetic critical point or
Curie temperature for the appropriate Ising lattice.

Now Npper boueds op, &
for the excluded volume limit

p, may be obtained by considering restricted random
walks which are only allowed to intersect themselves
after k steps (k= 2,3,4, .), i.e., walks with no reversals
(k=2), with no triangles and no reversals (k=3), with
no squares, triangles, or reversals (k=4), and so on.
These limited problems may be solved exactly by the
detailed matrix method' "or, more simply, if only the
upper bound u(&) is required, by direct construction
and solution of a recurrence relation for c(1,)„, the total
number of kth-order restricted walks (see Appendix A).
The limiting ratio,

P1Ig) =11m (C(kin/C(k) n—r) I (3)

is then obtained as the largest root of a characteristic
polynomial (of degree at least k —1). Evidently

since the number of walks with no self-intersections
cannot increase at a faster rate than the number of
walks in which intersections after k steps are allowed.
Each lattice and each value of k must be considered in
detail, and the calculations are impractical if k is
much greater than 5 although Wakefield'4 has actually
constructed the recurrence relations for the square net
up to k= 8, for which case he obtained an equation of
45th order. A modification of the method which avoids
the explicit construction of such high-order recurrence
relations is explained in Appendix A. It is based on
exact enumeration (see below) and has enabled us on
the square net to calculate v(») for which the recurrence
relations would be of order about 800.'5 The upper
bounds obtained in these various ways are quite
rigorous and for all lattices they are consistent with
the conjecture (2).

Systematic methods for obtaining lower bounds to p, ,
on the other hand, have not previously been developed.
In this paper we show how sequences of increasing
lower bounds can be obtained in a simple and systematic
manner. The method depends on the construction of a
subclass of self-avoiding walks whose asymptotic
behavior can be calculated exactly. The lower bounds
XI, and X(I,) are also then determined as the largest roots
of appropriate characteristic polynomials. In this way
it has been proved rigorously that the limit p for the
plane square net is greater than the value or=2.4142

24 We are indebted to Professor C. Domb for telling us about
Wake6eld's unpublished work and to Dr. A. J. Wake6eld for
allowing us to examine his D.Phil. thesis, Oxford, 1951
(unpublished). Wakefield also obtained the lower bound X=2.4142
and the improved lower bound X=2.47 for the square net.

~5 This upper bound is less than e=2.718 (see Table V) and so
disproves a conjecture of R. S. Lehman and G. H. Weiss
I University of Maryland Technical Note BN-115, November,
1957 (unpublished)] to the e6ect that p is equal to e on the
square net. These authors also discuss the probability of a walk
trapping itself.
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conjectured by Temperley. In fact we have obtained
the bound

the asymptotic form (6) means that C(s) has a singu-
larity at a= s,= 1/ic of the form

p, &~ X(ie) =2.5767, (square lattice) C(s) =A/(1 —ice)'+ (9)

C(s) =1++ c„s"
n-1

(8)

'~ M. F. Sykes and M. K. Fisher, Phys. Rev. Letters I, 321
(1958).

which is more than 6% greater than the Ising-model
critical value. The exact critical temperatures are also
known for the plane triangular- and hexagonal-lattice
Ising models"" and for the Kagome lattice" (in which
two triangles and two hexagons meet at each lattice
point). In aH these cases we have proved rigorously that

P)M. (5)

Statistical estimates of the exact limits p for various
lattices have been given by Wall and co-workers. '
These are somewhat uncertain due to the difficulties
of extrapolation and to the sampling errors necessarily
involved in the statistical estimation procedure. We
have found it possible to obtain considerably more
precise estimates for p, by counting exactly the total
number of walks c„ for the first ten to twenty values
of e. The values of c„and N„have been determined for
the plane square lattice (to e= 16), the plane triangular
(to n = 10), the plane hexagonal (to e= 22), the Kagome
lattice (to n,=13), and for the simple cubic (to san=9),
the body-centered cubic (to v=9) and the face-
centered cubic (to san=8). The counting is performed
indirectly with the aid of a special theorem, which
expresses the series c„(n=0,1,2, ) in terms of a
certain restricted class of lattice configurations. A
similar theorem holds for the series expansion of the
susceptibility of the Ising modeP' which is, in fact,
rather similar to the series c„. Reliable extrapolation
procedures have been developed for handling the
Ising-model series and these methods have been
verified by comparing the extrapolations with the
known exact solutions. "Application of these procedures
to the random walk problem not only yields accurate
values of the limiting ratio p but also enables the
asymptotic form of c„(and I„) to be determined to
the next order of approximation. Thus it transpires that

c =Am p" (6)
where A is a constant and the index n is about 1/3 for
all the plane lattices and 1/7 for all the three-dimen-
sional lattices. This result is equivalent to knowing
the "entropy per link" as a function of e, the number
of steps, the relation being

5S„=k 1nic+ kcr/e, (7)
which shows that the limiting entropy 5S„is approached
relatively slowly although for e&30 the actual magni-
tude of the correction is negligibly small. The total
entropy behaves as (rcinic+cr inset). In terms of the
generating function

Our extrapolated values of p, agree well with Wall's
results for three-dimensional lattices but are about 1%
lower than Wall's figures for the plane lattices. This is
to be expected since Wall's methods overestimate the
value of p to this extent when the index n is appreciable.

The value of the Ising critical parameter op is not
known exactly for three-dimensional lattices but good
estimates have been given by Wakefield" and by Bomb
and Sykes."Rigorous lower bounds for p may also be
obtained for three-dimensional lattices but (because of
the larger co-ordination number and the smaller value
of the index cr) they are not as strong as in the case of
the plane lattices and, so far, no bounds greater than
the corresponding estimated value of or have been
derived. The extrapolated values of p for these lattices
are, however, consistently greater than the values of u
(by 2% or more) and there seems no doubt that in two
and three dimensions the excluded-volume limit p is
always greater than the corresponding Ising critical
parameter co. Theoretical arguments in support of this
conclusion show rigorously that co cannot exceed p. The
actual difference between the two parameters is
essentially due to a negative contribution from the
overlapping of the "separated" lattice configurations
(i.e., two or more unconnected polygons or walks)
which must be included in the Ising problem.

This general result is also relevant to the inter-
pretation of Onsager's work on the "boundary tension"
of the square-net Ising model'7 and to the general
problem of the critical behavior of a liquid. Onsager
showed analytically that the total free energy associated
with a "mismatch seam" between two regions of anti-
ferromagnetic ordering on the square net vanished.
exactly at the "bulk critical temperature, " and so the
corresponding "boundary tension" also vanished at
this temperature. Now a non-self-intersecting walk on
the square net can apparently be regarded as a boundary
between two regions of different order. Temperley"
assumed that the free energy directly associated with
such a boundary should vanish at the same temperature
as the boundary tension of the corresponding Ising
model. This is equivalent to the conjecture p, =—mbozzdzpy

which seemed to be supported by the discovery of a
restricted class of nonintersecting walks ("Onsager
boundaries" or "zeroth order progressive walks"—
with no "overhangs") for which p, '—=ccb„il,. On the basis
of Temperley's argument, the fact that the true value
of p is greater than cv would be taken to imply that the
boundary tension vanishes at a temperature helot the
bulk critical temperature. This in turn would seem to
support the postulate of Mayer and Mayer" that there
may be two singularities in the partition function of a

~r J. E. Mayer and M. G. Mayer, Siaiisticai Mechanics (John
Wiley R Sons, Inc., New York, 1940).



M. E. FISHER AND M. F. SYKES

liquid, one corresponding to the vanishing of the
surface tension and the other to the vanishing of the
density gradient. In fact we feel that our result cannot
legitimately be interpreted in such a direct manner
since the argument neglects the "loss in bulk free
energy due to the presence of the boundary. "We hope
to consider this problem further in another paper.

The data obtained by enumerating the total number
of non-self-intersecting walks c„and the corresponding
number of walks N„which close on the last step, do
not have any direct bearing on the question of the
behavior of (R '), the mean square size of a self-
avoiding walk. Nonetheless, the ratio u„+q/c„represents
the probability of a random walk returning to its
starting point (without actually touching itself) and
so must contain some information about the distribution
of end points. Our data indicate that the asymptotic
behavior of this probability is given by

P„(0)=u„~g/c„n —e, (10)

where, for the three-dimensional lattices, P is about
1.81. For a Markovian walk in three dimensions the
appropriate value of this index is 3/2. An argument
given by Fisher" shows that on the assumption that
the distribution of end points of a self-avoiding walk
attains a limiting shape, a value of P=1.81 implies
that the mean square size of a self-avoiding walk
increases as n'+', where 5 is about 0.21. (For a
Markovian walk the limiting shape is Gaussian and 6

is zero. ) Wall's direct statistical calculations of (R„')for
various walks in three dimensions lead to 8=0.22
which agrees surprisingly well with the value obtained
by merely assuming the existence of a limiting shape
and using (8). The argument, however, does not
constitute a proof since, even if the assumption of a
limiting shape were justified rigorously, it would still
be necessary to establish the validity of the extra-
polations for p by obtaining strict mathematical bounds.

In the case of the plane lattices, the terms N„are
not very smooth and the extrapolations for p are more
dificult to perform. It also seems quite probable that,
at least in the case of the square lattice, the distribution
does not attain a limiting shape.

The detailed arguments leading to the various
conclusions summarized above are presented in the
remainder of the paper. The methods for obtaining
rigorous lower bounds to the value of p, on the square
net are explained in Sec. 2 and the generalizations of
the methods for other two- and three-dimensional
lattices is outlined in Sec. 3. The techniques used for
the exact enumeration of self-avoiding walks are
sketched in Sec. 4. The numerical values obtained are
presented in Tables I, II, III, and IV. In Sec. 5 the
procedure used for extrapolating the series is outlined
and its reliability is demonstrated by applying it to
similar Ising-model series whose behavior is known

P' M. E. Fisher, Discussions Faraday Soc. 25, 200 (1958).

exactly. The rigorous bounds and the numerical extra-
polations for the five lattices considered are collected
together in Table V. Finally, in Sec. 6 the detailed
relationship between the Ising model and the excluded
volume problem is considered theoretically. Methods
for obtaining rigorous upper bounds to p are explained
in Appendix A.

These recurrence relations may be solved in the
standard way, say by assuming a„=Ah." and b„=BR,".
The asymptotic behavior is determined by the largest
root of the characteristic equation

(12)

which reduces to the simple quadratic equation

X'—2X—1=0, (13)

with roots X=1&V2. This yields the first lower bound
for the plane square lattice, namely

p&~Xp ——1+v2=2.4142. (14)

By coincidence this happens to be identical with the
corresponding Ising-model limit co= 1+%2. Temperley
called this zeroth order progressive walk an "Onsager
boundary" and the coincidental equality of A. and co

seems, unfortunately, to have con6rmed his impression

2. LOWER BOUNDS FOR THE PLANE
SQUARE LATTICE

To find lower bounds for the limiting ratio p, we use
the following simple lemma:

Lemma. If the—number of n step w-alks in a subclass

of the total class of non self inte-rsecting walks is d &~c„,
and if the limiting ratio X=lim„„(d„+~/d ) exists, then
X is less than or equal to u= lim(c„~~/c„). (If u were less
than X, then eventually the subclass of walks would
become dominant so that c +~/c„would tend to X,
which would be a contradiction. )

An obvious subclass of self-avoiding walks are those
walks which always proceed in the same direction, but
this merely shows that p &~1.To improve on this we con-
sider a "progressive walk of zero order" which (on the
square net) consists only of steps in the +X direction
or in the &F directions, (the +7' and —F steps being
always separated by at least one +X step). Such a
walk can never "double back" so as to intersect itself
but merely progresses further and further along the
positive X axis. After e steps suppose that the total
number of walks of this type which end in a +X step
is a„, while the total number ending in a +I' or —I'
step is b . Now a +X step may be followed by another
X step or by a + I' or —F' step, but a 7' step must be
followed by a similar 7' step or by a +X step. Thus
we have

an+a= an+bny

b~i=2a.+b'
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that p, was also equal to m. To show that this is not so,
we must consider the next significant order of progres-
sive walk. This is the third-order walk which arises
when we allow a simple "kink" or "double-back"
consisting of the sequence of steps (+X), +I', —X,
+F, +X Lsee Fig. 1(a)$. Any zeroth order progressive
walk ending in a +X step can be continued in the
form of this kink in at least one way without making a
self-intersection Lsee Fig. 1(b)j, although if the
penultimate step is a —I' step the kink must be
inverted )Fig. 1(c)j. LIf the penultimate step also is
a +X step, the kink can be added in two ways, upright
or inverted, Fig. 1(d); by neglecting one of these, as
we shall do now for simplicity, we will merely obtain a
somewhat weaker lower bound. ) After completing the
kink in four steps, the walk may take either a +X step
or a suitable I' step and the argument then proceeds as
before just as though the kink had not occurred. The
recurrence relation (11) must thus be modified to

&m+1= rim+ bm,+re 4—
b +i= 2a„+b„+a„4 (15)

The corresponding characteristic equation may be
written

)t' —2X—1=1/)t',

and the largest root is

X3=2.43839.

(16)

This is greater than 1+&2, which proves directly that
the limit p for the plane square lattice is greater than
the Ising parameter co.

To obtain stronger lower bounds one must include
the possibility of successively more complicated "kinks"
which take five or more steps to be completed. The new
types which arise in the fourth order, 6fth order, and
sixth order progressive walks are shown in Fig. 2. The
details of the general argument are rather involved but
the basic principle is quite simple. The characteristic
equation derived from the recurrence relations for the
kth order progressive walk is

)ts-2) -1=S,(X), (18)

where S&P,) is a polynomial of kth degree in the inverse

PIG. 2. The se-
quence of higher or-
der "kinks" which
arise in the fourth-,
hfth- and sixth-order
progressive walks on
the plane square
lattice.

powers of X, namely

3 5 11
Ss()t)=Q s,) '= + + + +

j=& jP X4 X5 X6
(19)

The coeflicients s; are determined by the new types of
"kink" which arise at the jth' stage. The various types
of kink have to be subclassified according to the
number of ways they can be added to a walk and
according to how many I' steps they can be followed

by. The enumeration, however, is quite straightforward
and the 6rst half-dozen coeKcients s; are easily deter-
mined. All the coeKcients are positive and so the
greatest roots )t& of Eqs. (18) form a strictly increasing
sequence of lower bounds to p. The coeScients s; have
been evaluated up to s&~ and thus the bounds ) ~0

——2.533
and ) ~~

——2.539 have been obtained.
The decreasing sequence of upper bounds ~(A, ) obtained

by excluding reversals, reversals and triangles, etc.,
will certainly tend to a limit v„which will be the same
as the excluded volume limit p. (Hammersley" has
stated this theorem but does not offer a formal proof. )
On the other hand, it is not obvious that the limit of
the lower bounds )i„=lim)ts (k~ ~) should be the
same as p. This point has not yet been decided by
rigorous argument and we defer discussion of the
numerical evidence to Sec. 5 below.

An alternative method of discussing the higher order
progressive walks is in terms of generating functions.
For the same amount of labor this yields rather stronger
bounds. If the number of walks of a certain type, with /

X-steps (plus or minus) and se I"-steps, is pi, then the
generating function is defined by

FIG. 1. A simple
"kink" on the plane
square lattice (a),
and its addition to
a zeroth-order pro-
gressive walk (b),
(c), aird (d).

X

f ~ ~ 0

l ~

f 0 ~

e e ~ ~ ~

(20)~(x,y)= & pi-x'y .

On setting x=y=s this becomes E(s), the generating
function for p„=pi+ „pi, the number of walks of I
steps of either kind. The asymptotic behavior of p„ is
then determined by the singularity of P(s) which is
nearest to the origin. If this singularity occurs at s=s„
then p„)i" (e —+ ~), where X=1/s, . For the zeroth
order progressive walk, the method has been illustrated

by Temperley. '4 The generating function for a walk
consisting of one +X step followed by any number of
F steps is

P= x+2xy+2xys+2xy'+ =x(1+y)/(1 —y) (21)
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which becomes singular when

0=*(1+x)/(1—X) =1 (23)

On setting x=y=1/X this reduces to (13), with the
root AD=1+42. To include the simple "kink" of Fig. 1,
we must modify (21) to

and so the generating function for a zeroth order
progressive walk or "Onsager boundary" is

1+y 1+y 1+y
1+* +* + =2 0"=1/(1 —4), (22)

1—y 1—y 1—y r p

py2= 2.712. (29)

This procedure has been extended to include all the
new types that occur up to k= 10. (If some possibilities
are omitted in such an enumeration, the only result is
to lower somewhat the resulting bound. ) Solution of
the characteristic equations then leads to

g(9) =2.5725 A, (yp) =2.5767. (28)

This latter bound is the strongest that has been
obtained so far although it could be improved further
if required. The best upper bound to p at present
available is

The derivation of this bound is discussed in the

(24) Appendix.

where the factor syzygy= x'y' in the second term
accounts for the steps +X, +F, —X, +I', +X,
forming the kink, and the factor 1+y+y'+
= (1—y) ' allows for any number of +I' steps follow-

ing the kink before the next +X step occurs. On
using (24) with x=y=1/X the characteristic equation
&= 1 reduces, as expected, to (16). However, it is very
easy to generalize (24) to allow for simple kinks in
which the "vertical arms" consist of any number of
I' steps, and also to allow for the fact (neglected before)
that after a +X step the kink may be added in two

ways. The result is simply

(1+&)
Q=x +s s x

1—
y 1—y 1

y y+x' x x, (25)
1—y 1—y 1—y 4 =»(1+3)/(1—3), (30)

3. LOWER BOUNDS FOR OTHER LATTICES

We now consider lower bounds for other two- and
three-dimensional lattices. The calculations have not
been pushed as far as for the square net since the main
objects were, in the case of the plane lattices, to
demonstrate that p, was greater than co, and in the case
of the three-dimensional lattices to illustrate how the
method could be adapted.

Consider firstly the plane triangular lattice and take
the Y axis along one of the lattice directions. The other
two lattice directions have components along the X axis
and the corresponding steps may, for the purpose of
obtaining bounds, be considered simply as "X steps. "
Thus in the zeroth order progressive walk on the
triangular lattice there are two possible "X steps" at
each stage and the corresponding "column" generating
function is

which leads to the characteristic equation

lI,
'—2X—1= (X+1)/X'(X —1)'

This has the solution

(26)

which leads to the characteristic equation

)'—3A —2=0.

This equation yields the bound

(31)

g(3) =2.4997~ (27) Triangular lattice: Xo= —,
' (3+17")=3.5616, (32)

which is a considerably better lower bound than the
original bound (17). The method may be extended
systematically by successively including the new shapes
of kink that arise with 4,5,6, . . . steps. Evidently the
next three new shapes are those illustrated in Fig. 2,
corresponding to k=6. The corresponding terms in p
may be written down immediately and are

y
g2 g2 g2

1—y 1—
y 1—y

X X X~y 1+x
+x x x (1+x)

y 1 yi y 1 y

+2K s s
1—y'1 —y 1—y 1—y

which is actually lower than the corresponding Ising
parameter" "

Triangular lattice: co =2+%3=3.7321. (33)

To obtain a stronger lower bound, it is only necessary
to include the various simple kinks which have one —X
step. The extra term in P is

*'(1+&)(1—y') (1+»)/(1 —X)',

and the bound obtained from the corresponding
characteristic equation is

Tri angular lattice: X &2)
=3.8404. (34)

This is well above the Ising value (33).
The plane hexagonal or honeycomb lattice is topo-

logically equivalent to the "brick" lattice which is
obtained by deleting every other X bond of the plane
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square lattice. Using this form of the lattice and
considering only walks with an even number of steps,
the generating function for the zeroth order progressive
walks is easily seen to be

for the simple cubic lattice is thus

1+y & 1+» -'
y =a 1+4*+12~2 (43)

@=2y*/(1 —y')

which leads to the simple characteristic equation

(35) The corresponding characteristic equation, g = 1, re-
duces to

)'—3=0. (36)
Z4 —3&3—3&2—3X—8=0. (44)

The corresponding lower bound happens, as for the
square net, to coincide with the Ising parameter" ";i.e.,

Honeycomb: a&= Xo
——%3= 1.7321. (3/)

Inclusion of the simplest kinks with one —X step,
however, yields the stronger bound

Honeycomb: 'A(4) ——1.7872,

which is again greater than the Ising value.
The Kagome lattice" may be treated in the same

way as the triangular lattice but successive columns of
I' steps are now separated by two X steps so that the
"column" generating function is

4 = »'(1+y)/(1 —y) (39)

This leads to a cubic equation whose greatest root,

Eagome: Xo——2.2695,

is lower than the appropriate Ising parameter"

Eagome: co =2.2966.

(40)

As in the previous cases, inclusion of the simplest kinks
leads to a stronger bound,

Eagome: ) (~)
——2.4453, (42)

which is greater than the Ising value.
The lower bounds for all these plane lattices can

easily be improved by including further shapes of kink
as was done for the square net. The procedure for
three-dimensional lattice is, however, rather more
complicated. Firstly the lattice is divided into parallel
layers and the progressive walk moves on from one
layer to the next. Before progressing to the next layer,
however, the walk may follow any non-self-intersecting
path on the plane lattice forming the layer. These paths
are treated as progressive walks on the corresponding
plane lattice. Consider, for example, the simple cubic
lattice. On entering a layer for the first time there are
four possible first steps in the layer and altogether
twelve distinct second steps. Each of these second steps
may be regarded as the initial X step of a zeroth order
progressive walk on the plane square lattice for which
the total generating function is

Solution of this quartic equation gives the lower bound

Simple cubic: Re=4.0456. (45)

The Ising parameter for the simple cubic lattice is not
known exactly but extrapolation of the series for the
susceptibility, etc. (see references 21 and 22 and Sec. 3
below) shows that co is about 4.58, which is well above Xo.

To improve the bound (45), the effects of simple
kinks must be included. The kinks may lie within a
layer, in which case the argument used for the plane
square net applies, or the kinks may lie perpendicular
to the layer, thereby carrying the walk back to the
previous layer. This leads to considerable complication
although no essential difhculty arises. Solution of the
corresponding characteristic equation yields the im-

proved bound

Simple cubic: X ~q&
=4;225. (46)

Te/rahedral: Xo——(3+2%3) l =2.5325,

and the best available upper bound

(47)

This result is appreciably stronger than (45) but still
quite a long way below the extrapolated value of ~.
Although, as shown by the numerical evidence of Sec. 5,
the limit p is certainly greater than the Ising value co,

the labor which would be required to obtain a rigorous
lower bound exceeding 4.58 is quite prohibitive with
the present methods.

Similar procedures may be applied to the body-
centered and face-centered cubic lattices. Due mainly to
the higher coordination number, the bounds so obtained
are relatively weaker than those for the simple cubic
lattice. The upper bounds derived by eliminating only
squares and reversals and triangles and reversals,
respectively, are correspondingly stronger. The best
available lower and upper bounds for these two lattices
and for the others discussed above, are tabulated in
Table V, together with the corresponding exact or
extrapolated values of the Ising parameter or. Except
for the square lattice, all the upper bounds quoted in
this table have been calculated by solving the explicit
recurrence relations. By using the alternative method
described in Appendix A, appreciably stronger bounds
could be obtained for these lattices. To Table V might
be added the first lower bound for the tetrahedral or
diamond lattice which is

The complete zeroth-order "layer" generating function

Tetrahedral: v(~0) ——2.923,

which was obtained by %ake6eld. "
(48)
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4. EXACT ENUMERATION OF SELF-
AVOIDING WALKS

More precise numerical estimates of the limiting
ratio p and further information about the asymptotic
behavior of c, the total number of self-avoiding walks,
and of I„, the number of closed self-avoiding walks,
can be obtained by actual enumeration of c„and N.„
for as many values of e as feasible. There are two
approaches: on the one hand, there is the s/atistical or
Moete Carlo method employed by Hammersley and
Morton" with hand calculations, and, very extensively,
by Wall and others' 4 with high-speed electronic digital
computers. On the other hand, there is the method of
exact eelmeraHoe which, for this problem, has not
previously received much attention. With the Monte
Carlo method, quite long walks (50 to 100 steps or
more) can be sampled but the data are necessarily
subject to statistical uncertainty, and this increases
with the number of steps. Exact enumeration becomes
dilicult for walks much longer than 10 to 20 steps but,
since they are not subject to error, the data may be
extrapolated by more refined and precise methods. In
fact, as we show below, the method of exact enumeration
leads to estimates of p which are considerably more
accurate than the statistical estimates (about 0.1%% as
against 1%%) and, more importantly, the method also
yields the second approximation to the asymptotic
behavior of c„and I„. (Parenthetically, it might be
remarked that exact enumeration is more economical
than the Monte Carlo method although, of course, the
direct statistical procedures used by Wall and others
also yield data about the mean square size and other
details of the complete distribution. ) In this section we
discuss brieQy the techniques used for the exact
enumeration of non-self-intersecting walks and in the
following section we consider the extrapolation of the
resulting series and discuss the figures obtained.

Evaluation of the series c„and u„(n=1,2,3, ) is
a special case of the general problem of determining
the number of ways in which a given "configuration"
of I bonds can be placed on a specified lattice (without
using any lattice point more than once). By a
"configuration" we here mean a set of "points" and
"bonds" joining them together (i.e., an abstract linear
graph). If all the points of a configuration can be
reached via the bonds from any starting point, we say
the configuration is "connected"; otherwise we refer
to a "separated" configuration. If all the points of a
configuration are joined to other points by at least
two bonds, we say the configuration is "closed." A
polygon of e bonds is the simplest type of closed
configuration; some more complicated types are shown
in Fig. 3. An "open" configuration has "loose ends, "
the simplest example being the chain of ++1 points
(and I bonds). For a given number of bonds, the
number of ways an open configuration can be placed
on a lattice is usually considerably greater than the
number of ways available for a closed configuration.

In particular the total number of self-avoiding walks
(chains) of e steps is much greater than the correspond-
ing number of closed self-avoiding walks (polygons).
From the computational viewpoint this is important
since, at least for the plane lattices, it is not too difIicult
to determine the number of e-bond polygons up to,
say m=8 or 9, by actually drawing the diBerent
possibilities and taking advantage of the symmetry of
the lattice. As regards enumerating the chains c„,
however, this direct method is quite impractical since,
for example, on the triangular lattice cs——964134. (The
use of symmetry effectively reduces this figure but only
by a factor of about 12.) To overcome this difficulty a
theorem has been devised which expresses the number
of chains on a lattice in terms of the number of certain
closed configurations or, more specifically, in terms of
the number of polygons and the number of "figure
eights" of the general type shown in Fig. 3. The proof
of this theorem and the discussion of the detailed
enumeration of the necessary restricted configurations
are being published elsewhere. The proof proceeds
essentially by analyzing the configurations produced
when further links are added to the two ends of a non-

FIG. 3. Some closed connected lattice configurations. Two types
of "6gure eight"; in the sense of R. J.Riddell and G. E.Uhlenbeck
[J.Chem. Phys. 21, 2056 (1953)), those of type (a) are "generalized
trees" and those of type (b) are "stars."

self-intersecting chain. The result is most conveniently
stated in terms of the generating function C(s) for the
series c„Ldefined in (8)], the generating function U(s)
for the series I„, and the corresponding generating
function G(z) for the figure-eights. If o+1 is the
coordination number of the lattice, we have

C(s) = (1—oz) 'L1—(o —1)s
—os' —(1—s) U(s)+G(s)], (49)

which means that the c„can be calculated recursively
in terms of the N„and the g„. A very similar, but more
complicated theorem holds for the susceptibility of an
Ising lattice when this is expressed in terms of the
variable s=tanh(j/AT). 's In that case the generating
function U(s) corresponds to the configurational energy
of the lattice, and the function G(s) enumerates closed
configurations similar to those of Fig. 3 except that
they are not necessarily connected (see also Sec. 6
below).

Techniques for the evaluation of g„and the numbers
of other closed connected configurations which occur
on various lattices have been described by Bomb and
Sykes."By symbolic analysis many of these "lattice

"C.Domb and M. F. Sykes, Phil. Mag. 2, 733 (1957).
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constants" can be "reduced" and expressed in terms of
a relatively few "irreducible lattice constants" corre-
sponding, generally, to more closely packed configura-
tions. The number of polygons (closed walks I„)can be
determined in terms of these constants, together with g„,
the number of closed random walks with no immediate
reversals (but with higher order self-intersections being
allowed). Closed expressions for the distributions of
random walks with restricted reversals have been
derived by Domb and Fisher" and, consequently,
even for a lattice as complex as the face-centered cubic,
it has proved possible to calculate N„up to m=9. For
other lattices the enumeration can be carried further.
Present results are tabulated in Tables I to IV. They
do not represent the limit of what could be achieved
(indeed sufhcient lattice constants are available to
add two terms to the series for the plane lattices but

TABLE I. The values of c, the total number of nonintersecting
walks of e steps, for various two-dimensional lattices.

lLattice
n

3
4
5
6
7
8
9

10
11
12
13
14

16

18

20

Square

0
8
0

24
0

112
0

560
0

2976
0

16464

94 016

549 648

Triangular

12
24
60

180
588

1968
6840

24 240

Honeycomb

0
0
0
6
0
0
0

30
0

24
0

168

288

1170

Kagomh

0
0

28
80

120
120
264

1080
3120

TABLE II.The values of I„,the number of closed nonintersecting
walks of I steps, for various two-dimensional lattices. (The values
No, u&, and N2 must be determined by a convention and it is
convenient to put No=I'=N2 0——).

+Lattice
mg

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Square

12
36

100
284
780

2172
5916

16 268
44 100

120 292
324 932
881 500

2 374 444
416 596

17 245 332

Triangular

6
30

138
618

2730
11 946
51 882

224 130
964 134

4 133 166

Honeycomb

3
6

12
24
48
90

174
336
648

1218
2328
4416
8388

15 780
29 892
56 268

106 200
199 350
375 504
704 304

Kagomb

4
12
32
88

240
652

1744
4616

12 208
32 328
85 408

224 608
588 832

the calculations have not yet been finally checked).
Nonetheless, with present methods it would not be
possible to extend the series by a factor as great as 2

or 3, the main limitation being the difficulty of deter-
mining some of the higher order irreducible lattice
constants.

S. EXTRAPOLATION OF THE SERIES

application of the binomial theorem and Stirling's
asymptotic formula shows that

c„=Bus II,", (e —& ~) (51)

where A and 8 are constants. The case o.= —1 cor-
responds to a logarithmic singularity in C(s). If C(s)
has the form (50), then (by the binomial theorem) the
ratios v„=c„/c„ i are given by

v„=p, (1+n/I), (52)

+Lattice
ng Simple cubic

6
30

150
726

3534
16 926
81 390

387 966
1 853 886

Body-centered
cubic

8
56

392
2648

17 960
120 056
804 824

5 351 720
35 652 680

Face-centered
cubic

12
132

1404
14 700

152 532
1 573 716

16 172 148
165 697 044

TABLE IV. The values of I„for various three-dimensional lattices. '

so that a plot of v against 1/I is a straight line of
slope n which intercepts the v axis at v„=p. If C(s) is

TABLE III. The values of c for various three-dimensional lattices.

The numbers c„and N„are conveniently regarded
as the coeKcients of the power series expansions of the
generating functions C(s) and U(s). The limit
lim(c ~i/c„)=p determines the position, s=s„of the
singularity of C(s) nearest to the origin, by s,=1/p.
Furthermore, it is easily seen that the nature of this
singularity is related to the asymptotic behavior of the
coeKcients c„.Thus if

3

5
6
7
8
9

10

Simple cubic

0
24
0

264
0

3312
0

48 240

Body-centered
cubic

0
96
0

1776

43 776
0

1 237 920

Face-centered
cubic

48
264

1680
11 640
86 352

673 104
5 424 768

C(s) =A/(1 —ps)'+, (s 1/p) (50) 12 762 096

'0 C. Domb and M. E. Fisher, Proc. Cambridge Phil. Soc. 54,
48 (1958).

& We are indebted to Professor G. S. Rushbrooke for pointing out a small
error in our original calculation of ei2.
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TABLE V. Comparison of bounds, extrapolations, etc, , for various two- and three-dimensional lattices. '

Lattice Square Triangular Honeycomb Kagomh
Simple
cubic

Face-centered
cubic

Body-centered
cubic

Coordination number, q=o.+1
Ising singularity, co

Upper bound, vp, )
Lower bound, X(I,&

Extrapolated walk singularity, p
Excess p/cu —1, %
Index for c„,a
Index for tt„+t/c„, P

2.41421
2.712
2.5767
2.639~3
9.3
0.33&2
1.75&10

6
3.73205
4.508
3.8404
4.152m 6

11.3
0.33+2
1.45~10

3
1.73205
1.9276
1.7872
1.845~15
6.5
0.33&6

4
2.29663
2.6968
2.4453
2.555~15

11.2
0.33&3

6
4.58+1
4.8646
4.225
4.69'2
2.4
0.145%10
1.810&7

12
9.816+5

10.6569
7.644

10.05+2
2.4
0.140%5
1.810&5

8
6.41~3
6.7829
5.187
6.54~1
2.0
0.142~6
1.810m 7

a The uncertainties quoted are in the last decimal place in each case.

not merely a simple binomial expression, then (52) will

contain higher powers of 1/n so that the v„nersls 1/n
plot will be somewhat curved. Also the points may
oscillate slightly about the straight line. In practice it
is found that the series c„and most Ising-model high-
temperature expansions give very good straight lines
after the fourth or fifth terms, and consequently
consistent extrapolations for p and o, can be obtained
from the formulas

and
p,.t ——(nv„—nt v„)/(n, —nt),

rrext= n(vtt pext)/pext.

(53)

(54)

tt C. Domb, Proc. Roy. Soc. (London) A199, 199 (1949).
&2 D. Park, Physica 22, 932 (1956).

The ratios for the series u„(closed walks) and for low-

temperature Ising expansions tend to be rather more
irregular but with care these can also be extrapolated
reliably.

The extrapolation procedure outlined above was
introduced (in a slightly different form) for the Ising
problem by Bomb." It has been used by Bomb and
Sykes" to obtain, from the high-temperature series, the
critical parameters for three-dimensional Ising lattices
which are quoted in Table V. A related extrapolation
method has been discussed by Park."It leads to very
similar results but is not so well suited to the series c„
and the high-temperature susceptibility series.

The reliability of the extrapolation formula, s (53)
and (54) may be gauged by applying them to series for
various plane Ising lattices for which exact solutions
are available. As an example, consider the high-
temperature series for the susceptibility of the plane
triangular lattice. From the first ten terms of this
series we may calculate the first ten ratios, v&

——6.000 000
to s&0

——4.006286. Sequences of estimates for the limit
&o may then be obtained from (53) by evaluating the
intercept defined by the first and third ratios, by the
second and fourth ratios and so on. The last few
extrapolants obtained in this way are 3.7683, 3.7673,
3.7529' 3 7414' 3 7401, and 3.7401. The exact value" "
of ot is 2+V3=3.7321 and the last two estimates differ
from this only by about 0.2%. If the exact value had
not been known, the extrapolation would probably have
been quoted as ot=3.737&6 (since the successive

estimates are diminishing). The uncertainty quoted
here (and in the similar extrapolations in Table V) is
not, of course, a rigorous bound; rather it indicates the
degree of consistency of the extrapolations and re-
presents a reasonable confrdence range. (It is evident
that the extrapolated value of co is slightly too high
and this is probably so for other plane lattices as well. )

The ratios obtained from the self-avoiding walk
series c„behave in a manner very similar to that
illustrated above, and consequently we may infer that
the extrapolated values of the limit p are accurate to a
similar degree. It is found that for lattices with a high
coordination number the ratios are very smooth,
whereas for a lattice like the plane hexagonal (honey-
comb) lattice the extrapolations are more dificult to
perform. To a large extent, however, this difficulty is
compensated by the fact that many more terms of the
series c„can be obtained for a lattice of low coordination
number. The values of p obtained by extrapolating the
series given in Tables I and III are tabulated in Table V.
In all cases the estimates are consistent with the rigorous
upper and lower bounds. It has been noticed, further-
rnore, that the upper bounds v(A, ~, corresponding to
walks with no kth order or lower self-intersections, are
very close to the corresponding ratios vz ——c&/cz & (see
Appendix A). Consequently the upper bounds ca,n be
extrapolated in the same manner as the ratios. On the
plane square net, for example, the second and third
bounds, v(4~ and v(6), yield the extrapolant 2.664 which
is only 1% greater than the preferred value, 2.639.
In the same way it can be seen that to obtain a rigorous
upper bound for the triangular lattice equal to 4.30, it
is necessary to calculate the asymptotic behavior of a
walk in which self-intersections are only allowed after
nine steps. The sequences of lower bounds XI, and P (A, ~

(described in Sec. 2) may be extrapolated in a similar
way to yield estimates for X„.The data for the square
net suggest that X„ is about 2.615, which seems to be
significantly lower than the estimate of p. We conclude
tentatively that P„will generally be smaller than p.

The index tr in the expression (51) for the asymptotic
behavior of c„may be estimated from the slope of the
v„verses 1/n plot by (54). Because the numerator of
(54) is the difference between two roughly equal ratios,
the estimates of n are subject to greater uncertainty
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85„=k 1nti, +krx/rt (55)

The estimates of the limit p obtained by Wall and
his co-workers' for the plane lattices are about 1%
higher than our figures. Wall's values were obtained
from the gradient of the plot of inc„versus n, for values
of e up to about 50. According to our analysis the
gradient of this plot should be

(56)

On substituting the values n=1/3 and n 40, this
shows that Wall's values of p should, indeed, be expected
to be about 1% greater than the true limit. [Compare
also with (52)].For the three-dimensional lattices, (56)
indicates that Wall's estimates should be about 0.3%
too high and comparison with our extrapolations again
seems to bear this out.

As noted above, the direct extrapolations of the
polygon series u„are not as reliable as those for the
total walks series c„.It seems fairly certain on physical

"C.N. Yang, Phys. Rev. 85, 808 (1952).

than are those for p. Fortunately it is again possible to
verify the method by applying it to a similar series for
which o. is known exactly. Such a series is the low-
temperature expansion for the magnetization of the
plane square Ising lattice. This is a series of even
terms only, somewhat analogous to the series I„
(polygons). The appropriate coefficients b„h ave been
given by Domb" up to the term in s', and from the
exact solution obtained by Yang" it is known that
n=9/8= 1.125. Since only even terms are available the
ratios are taken as p„= (b„+i/b„ i)'*, (rt odd). Extra-
polation using (53) suggests oi= 2.415+2 (actually
&u = 1+&2=2.4142), and using this value in (54) gives for
o, the successive estimates 1.120, 1.1281, 1.1296, 1.1282,
1.1276. These values are falling, so the estimate for n
would probably have been quoted as o.= 1.126&8 where
the uncertainty takes account of possible error in co.

If the coefficients had been available only up to the
term in s", the result would have been rather more
uncertain, say +=1.13&2. In either case the estimates
are very reasonable approximations to the exact value
1.125. Corresponding extrapolations for the walk series
c„are presented in Table V. For all plane lattices the
index o. is close to 0.33 while for all the three-dimensional
lattices e is near 0.142. We conjecture that for plane
lattices u is exactly 1/3 and for three-dimensional
lattices exactly 1/7= 0.14286. (Similarly for the
susceptibility of all plane Ising lattices, o. seems to be
exactly 3/4, while for all three-dimensional Ising lattices
it seems to be exactly 1/4."")As pointed out in Sec. 1,
the asymptotic form (51) implies that the additional
configurational entropy contributed by the eth link of
a polymer molecule may be written

grounds, however, that the limit'4

ti„=lllll (Zr„+i/tt„) (57)

P„(0)= I„+i/c„, (59)

represents the probability that a self-avoiding walk of
e steps returns to the origin, or more precisely, returns
as closely as possible without actually touching itself.
If p„—=p, the limit as n —i co of the ratio P„+i(0)/P„(0)
is exactly unity. With the aid of this assumption, fairly
accurate estimates of the asymptotic behavior of the
probability P„(0) can be obtained. The data indicate
that

P„(0)=2/rte,

where A is a constant and where the extrapolations for
P are given in Table V. For the three-dimensional
lattices, the estimates of P are all near to 1.810 which
is significantly greater than the value 1.500 appropriate
to a Markovian walk in three dimensions. The initial
sequence of ratios for the plane lattices are somewhat
erratic, but it is clear that the value of p is again
greater than the Markovian value P=1.000. As men-
tioned in Sec. 1, an argument given by Fisher" suggests
that the figures for p might throw some light on the
asymptotic behavior of the mean square size of a self-
avoiding walk, but this point will not be pursued
further in this paper.

34 In the case of loose-packed lattices, such as the square net,
on which N2 +1—=0 (m=1,2, . . .) this limit must be suitably
redefined, for example as lim (N. +~/u~ )& (I —& ~). In the
arguments following, the modifications necessary to cover loose-
packed lattices will not be mentioned explicitly since they are
essentially trivial.

is identical with the limit ti=lim(c„+i/c„). Although
this conclusion is well borne out by extrapolations of
the u„series, it should be stated that neither the
existence of the limit (57) nor its identity with ti has,
so far, been established rigorously. If p exists, it
follows immediately that it cannot exceed ti )since the
class of closed (rt+1)-step walks is essentially a subclass
of all non-self-intersecting walks of rt steps]. Con-
sequently upper bounds for p, are also upper bounds
for p . Lower bounds for p, can be obtained by con-
structing "snake-like" polygons similar to the progres-
sive walks but these bounds are rather poor. The best
direct result available derives from Temperley's exact
solution of the problem of enumerating those polygons
(or domains) on the square lattice which can be
formed by placing single columns of arbitrary length
side by side."This yields the lower bound

Sqstare lattice: ti„)~ 1+%2, (58)

which again happens to coincide with the appropriate
Ising value, and was interpreted by Temperley as
meaning that ti =—ai. Equation (66) of the next section,
however, shows quite generally that the Ising parameter
co is always a lower bound to p„and hence, also, to p.

The ratio,
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1/s, =lim (p„+i/p„) =p„. (64)

Now it follows from the multinomial theorem that
the coeKcient m.„(N) in the expansion

(1++p„s")~=1++s-„(N)s" (65)

counts the number of con6gurations, on a lattice of E
"The precise manner of taking the second (double) limit is, in

general, a delicate manner. However, if as is usually supposed,
the lattice is wrapped on a torus and if "edge effects" are con-
sistently neglected, then A(N, v) is the exact Nth power of h. (v).
It then follows from Abel's theorem on the product of two
series and from the positiveness of the coeKcients a„, that
hmLa„+&(X)/a (N) j=lim(u„+~/a„) (e ~ ~) for ail X so that it
is actually unnecessary to make N ~ oo.

6. RELATION TO THE ISING PROBLEM

In this section we discuss the relationship between
the configurational problems of the Ising model and
the excluded-volume problem in greater detail, and try
to understand the reason why p is greater than co.

In terms of the variable e= tanhK, the relevant part
of the total partition function for an Ising model with
S spins can be written'

A(N, e) =. 1++a (N)n", (60)

where a„(N) is the number of distinct closed graphs of
n bonds which can occur on the lattice, each graph
having an even number of bonds meeting at each lattice
point. The partition function per spin,

A(e) =1++a„s",

is given by the Nth root of (60) (strictly, in the limit
N —& oo). The coefFicients a„ in (61) correspond to the
same configurations as in (60) but are counted per spin
The critical point of the lattice is fixed by the limits"

1/e, = lim (a„+i/a„) = lim fa„+i(N)/a„(N)7=oi. (62)
g—+ oo

Now each allowed configuration of bonds on an Ising
lattice can be decomposed into a superposition of
simple polygons. DiGerent polygons may overlap but
they must have no bonds in common. Thus a8, for
example, enumerates the number of octagons on the
lattice, plus the number of pentagons with a triangle,
separated or touching at a vertex, plus the number of
pairs of squares separated or overlapping without
common bonds. This decomposition into simple
polygons naturally suggests that the series for A(s)
should be compared with the "polygon series"

1++p„s", p =I„/2ts. (63)

p„ is the "number of polygons per site"; the factor
1/2N arises because on any polygon a starting point
for a non-self-intersecting random walk may be chosen
in e ways, while the sense of the walk can be chosen in
two ways. The singularity of the polygon series (63)
corresponds to the excluded-volume limit or, more
precisely, to the limit p„, i.e.,

points, which can be formed from all possible super-
positions of polygons with a total of e bonds. Thus x„
will count all the configurations in which the polygons
have common bonds and it will count all other over-
lapping configurations more than once (since the
decomposition of such configurations into a super-
position of polygons is never unique). Consequently,
for e&~2k, where h is the number of bonds in the
smallest polygon on the lattice, we see that

n. (N))a (N), (66)

and so as n~ ~, a (N) cannot increase at a faster
rate than s „(N). It follows immediately that

8 ~~ pg~~p) (67)

which means that the Ising parameter co can never
exceed the excluded-volume limit p.

The diGerence coefficient,

d„(N) =s-„(N)-a (N), (68)

enumerates all overlapping configurations with common
bonds and all the allowed overlapping configurations
which are overcounted in (65). Now d„cannot in-
crease faster than x„, i.e., not faster than the number
of polygons, but d„ includes, for example, the number
of (n —3)-bond polygons which have a common
bond with a triangle. The number of such configurations
must increase asymptotically at least at the same rate
as the polygons themselves, and so

lim (d„~i/d„) =ii„. (69)

Consequently the Ising coefficient a„(N) is the differ-
ence between two quantities, m and d„, both of which
increase at a similar rate and this is why it is possible
for the Ising limit co to be smaller than the polygon
limit p„. To prove that or is actually smaller than p
obviously requires a more subtle analysis. The result
seems to depend to quite an important extent on the
dimensionality of the lattice. From Table V it can be
seen that p is of the order of 10% greater than oi for all
the plane lattices but only about 2-,'% greater for the
three-dimensional lattices. This indicates that in two
and three dimensions the overlapping configurations
in (65) become overwhelmingly important for large e
although the effect is smaller the higher the number of
dimensions. This is reminiscent of other random walk
theorems which show that in three dimensions an
indefinitely long walk is relatively unlikely to intersect
itself whereas in two dimensions self-intersection is
"almost certain. " On these grounds one might con-
jecture that in four or some higher number of dimensions
the two limits p„and ~ would in fact become identical.

Many properties of two-dimensional Ising models
have been obtained in closed form" ' and this raises
the hope that similar solutions for the excluded-volume
problem might be found in the case of plane lattices.
This hope is supported by the exact expressions which
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have been found for the square-net generating functions

R(s) =Q r„s" and Q(s) =Q (7„s", (70)

where r„ is the number of e-step unrestricted closed
random walks and q„ is the corresponding number of
closed walks with no immediate reversals. "In fact,

R(s) = (2/n-)Z(4s), (71)

1—3s' 2 ( 4s ) 1—3s'
Q()=

1+3s~ s ( 1+3ssl
(72)
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APPENDIX A

In this appendix we outline the way in which recur-
rence relations may be constructed for c(&,~„, the total
number of e-step walks in which kth order and lower
order self-intersections are forbidden. These relations
determine the limiting ratios

ln
& (k) =hm & (k) n & (k) n = ('(k) n/('(k) n—)) (A.1)

which are upper bounds to p. Ke go on to indicate
how the limits v(A, ) can be calculated in a way which
avoids explicitly determining and solving the recurrence
relations.

Consider the simple cubic lattice and its d-dimensional
generalization. To And a recurrence relation for c(4~„,
the number of walks with no reversals and no squares,
we write

c(i)„=a„(1)+a„(2)+a„(3), (A.2)

where a„(n) is the number of n-step walks of this type
which require at least o, extra steps in order to close a
square. Thus a„(1) enumerates those walks which end
end in three steps forming a "hook" of the type
. . . X,V,—X; a„(2) enumerates those walks ending
in a bend which does not form a hook, e.g, X,F,X;
and a„(3) enumerates those walks in which the last

where E(k) is the complete elliptic integral of modulus
k. These expressions are remarkably similar to Onsager's
expression for the con6gurational energy of the square
net" which also involves the complete elliptic integral.
Furthermore the energy is essentially the derivative of
A(()) with respect to () so that its expansion is closely
related to the series N„ for the closed self-avoiding
walks. So far, however, we have not made any progress
towards an exact solution. Investigation shows that
the limits p, are probably sot the roots of relatively
simple algebraic equations as are the Ising parameters
co, and this suggests that the excluded-volume problem
is essentially less tractable than the Ising model.

two steps are in the same direction, e.g, X,F,F.
Now the addition of a further step to a walk of type
{a„(1)}in 2d possible ways leads either to a forbidden
reversal or closure of a square, or to a new walk of
type {a„+((2)}or type {a~((3)}.Thus each {a (1)}
gives rise to 2d —3 walks of type {a„+&(2)}and to one
of type {a„+&(3)}.Considering in a similar way the
addition of a step to the types {a„(2)}and {a„(3)}
leads to the recurrence relations

a„(n) =Q A, (n)8;",
i=1

where the 0; are the roots of the determinantal equation

—0 1 0
2d—3 2d —3—8 2d —2 =0,

1 1—8
(A.5)

which reduces to the cubic characteristic equation

8'—2(d—1)8'—2(d —1)8—1=0. (A.6)

The A;(n) are constants determined by the initial
conditions of the walk. Equations (A.4) imply that the
total number of walks is

3

( (4) n 2 Ci 8i y (A.7)

where the C; are constants. If 0~ is the root of largest
modulus, we have

(4)„——8(L1+0{(8g/8g) "}]) (n ~ ~), (A.8)
so that

P(4) =el. (A.9)

In the case of the plane square lattice, solution of (A.6)
yields v(4) =2.8312.

To eliminate hexagons as well as squares and rever-
sals, the walks must be sub classified into classes
{a„(n,P) },where P is the least number of further steps
required to close a hexagon. The maximum value of p
(after the initial steps) is (6/2)+1=4 so thatapparently
there are 3)&4=12 classes. On the plane square net,
however, the combination (n= 1, p=4) cannot occur so
that the recurrence relations are only of eleventh order:
they yield the root v(6)

——2.7756. In three and more
dimensions, on the other hand, further subclassification
is necessary because the hexagon need not lie in a
plane and on the addition of a further step, different
configurations then yield different types of walk.

The appropriate general procedure is now evident.
For loose packed lattices like the square net the
number of different classes, and hence the order of the

a.+~(1)= a„(2),
a„+&(2)= (2(E—3)a„(1)+(2(E—3)a„(2)+(2d —2)a„(3),
-+.(3)= .(1)+ .(2)+ ..(3).

(A.3)
These have the solutions
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recurrence relations, will be roughly of magndeitu

(k y fk —2
&-I -+1 II +11 "5x4x3

E2 )&2 )
(k+2 )

=sl I, (A»)

while for a close-packed lattice the rough magnitude is

f k+1'
&-s

I. & 2 )
(A.11)

k+2 p kg
I

—I!, k even.
4

The rapid increase of E with k shows that the task of
obtaining the recurrence relations for higher values of
k soon becomes hopeless. An alternative procedure for
calculating the largest roots 0» is based on the following
considerations. The required root is in fact the largest
eigenvalue of the matrix of the recurrence relation
coeKcients. Accordingly instead of multiplying out the
characteristic determinant, 8» may be calculated by
the standard matrix iterative method, " in which an
arbitrary initial vector is repeatedly premultiplied by
the matrix. The ratio of corresponding components of
the successive iterated vectors then tends to the
required largest eigenvalue. With the appropriate
choice of initial vector this method is quite equivalent
to the direct use of the recurrence relations to calculate
a„(rr) and cp, &„, the eigenvalue Ht then being determined
from the successive ratios ct&,&„/c&s&„ t. Thus the bound

"D.R. Hartree, NNmerr'cal Ar&alysfs (Oxford University Press,
Oxford, 1952), Sec. 8.6.

vp, ) =8» is calculated directly from the values of c~I,)„so
that, if the c(A,)„can be determined in some other way,
there is no need to make explicit use of the recurrence
relations.

Now as a by-product of the enumeration of chains
with no self-intersections it is not dificult to evaluate
the c(1,)„directly for the same values of m. In fact for
e&~k, c(I,)„=—c„while the values of c(A,)~», c(J,)~+~, . can
be derived from cI,+», c~2 by adding to these the
relatively few configurations which have self-inter-
sections of order k+1, k+2, . . . . On using this procedure
and evauating the successive ratios v(A, )„ it is found
that for e&~k the ratios very rapidly approach their
limit, Thus on the square net the fifth and following
ratios for k =4 are 2.8400, 2.8310, 2.8308, 2.8313, 2.8312,
2.8312, The last two ratios agree exactly with the root
calculated from the characteristic equation (A.6). For
k= 6 the seventh and following ratios are 2,7846, 2.7753,
2.'7757, 2.7753, 2.7757 while the corresponding exact
root is vts& = 2.7756. In this way the following improved
upper bounds for the square net have been obtained:
v(8) ——2.7443, v(»0)

——2.7250, v(»~) ——2.712. The character-
istic equation determining this last bound is of degree
about 800 and consequently this bound would be quite
beyond the reach of the normal recurrence relation
method. *

*Pote added ie proof. —In a recent paper Wall and Erpenbeck
LJ. Chem. Phys. 30, 634 (1959lg have described a method of
sampling much longer walks than previously, in fact up to +=800.
On this basis they re-estimate the attrition coefFicient for the
square net. In our notation their new estimate is p=2.6395~15
whereas previously Wall's estimate was 2.66. This new estimate
falls in the center of the range of our estimate as would be pre-
dicted from Eq. (56) above. (We have since improved our estimate
to @=2.6395~10.) The agreement is gratifying confirmation of
the validity of our extrapolation technique and shows that the
correct asymptotic behavior is clearly indicated by the first ten
to twenty exact terms.


