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The energy transfer between adjacent resonances in nuclear and electron spin systems is analyzed in
terms of the overlap of line-shape functions. The procedure is an enlargement on the original proposal of
Kronig and Bouwkamp, and consists of taking partial account of off-diagonal elements in the spin-spin
interaction, which are omitted in Van Vleck’s truncated Hamiltonian. If the frequency of these off-diagonal
elements is sufficiently small, they give rise to an additional kind of spin-spin relaxation, observed by
Gorter and co-workers. They are also responsible for cross-saturation effects in paramagnetic salts of the
type observed by Townes and co-workers. A crucial experiment is described which can be explained by
spin-spin interactions, but not by the assumption of a hot-phonon region. Implications of the cross-relaxation
for the operation of solid state masers are discussed. Special consideration is given to magnetically dilute
substances and inhomogeneously broadened lines. Paradoxically, the latter will usually still undergo a

homogeneous steady-state saturation.

1. INTRODUCTION

INCE Waller’s fundamental paper! on spin relaxa-

tion and Gorter’s early experiments,? much
attention has been paid to the question of thermal
equilibrium in magnetic spin systems. Casimir and du
Pré® postulated the existence of such equilibrium within
the spin system to explain the spin-lattice relaxation
effects of Gorter and co-workers. Kronig! already
realized that thermal equilibrium in the whole spin
system would only be established if the dipolar inter-
actions between different spins was sufficient to
“bridge the gap” between the various spin levels of
an individual ion.

With the advent of magnetic resonance techniques,
the problem of magnetic relaxation gained new impetus.
It was generally recognized that the populations of
spin levels which are equally spaced readily attain
the Boltzmann ratio, but the establishment of a
Boltzmann distribution between spin levels with
unequal spacing takes a much longer time. An early
illustration®$ is the saturation in high magnetic field
of one nuclear spin resonance without affecting the
other species in the same crystal. The Li” and F'? spin
systems in LiF are better isolated from one another in
high fields than they are from the lattice. In magnetic
fields below a hundred oersteds, however, they come
more readily into equilibrium with one another. Use of
this physical phenomenon has been made to reduce the
relaxation time of a spin species by giving it the same
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energy splitting as another species and thus bringing
it into contact with another spin system with a shorter
spin-lattice relaxation time.58

It is the purpose of this paper to analyze in some
detail the transition region of nearly equally spaced
levels. For equal spacing a Boltzmann distribution over
the different spin levels is established in a time of the
order of T, For unequal spacing they come into
equilibrium with the lattice first with their respective
relaxation times 7';. The Casimir-du Pré hypothesis is
not valid in this case. In the intermediate region of
approximately equal spacing, different parts of the
spin system may come into internal equilibrium in an
intermediate time, which we shall call the cross-
relaxation time and designate by T';. It will be shown
that double flip-flops of neighboring spins in which
the Zeeman energy is “nearly’’ conserved are responsible
for this effect. The small balance of energy is taken up
by the dipolar or internal energy of the spin system.

This raises the important problem of the equilibrium
of the Zeeman (and quadrupolar or crystalline splitting)
energy on the one hand and the dipolar interaction on
the other, which is discussed in a very lucid manner by
Abragam and Proctor.® These authors assume the
existence of a mixing field H* larger than the local
dipolar field Hr. The energy splittings for H<H* are
sufficiently small to allow for a rapid exchange of
Zeeman and dipolar energy. Abragam and Proctor do
not discuss the dynamics of spin interactions which
would give a theoretical justification for the experi-
mental observation of such mixing. One purpose of
this paper is to provide a semiquantitative discussion
of those processes which transform Zeeman and dipolar
energy into each other.

Such processes can also give a quantitative explana-
tion for the cross-saturation effects of adjacent electron

7 G. Feher and H. E. D. Scovil, Phys. Rev. 105, 760 (1957).
EH. S. Gutowsky and D. E. Woessner, Phys. Rev. Letters 1,
6 (1958).
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446 BLOEMBERGEN,
spin resonances reported by Giordmaine and others.®
Their suggestion of phonon heating over a certain
frequency interval is ruled out by a cross-maser
experiment described in this paper. The importance of
cross-relaxation effects for band width characteristics
and low-frequency limits of solid state masers is discus-
sed. Preliminary discussions of these spin-spin interac-
tions have been given.!”

Finally, these processes are also responsible for the
temperature-independent relaxation at intermediate
frequencies discovered by de Vryer, Gorter, and
others.!'2 In a recent paper by Verstelle, Drewes, and
Gorter® an interpretation of those results in terms of
the same processes discussed here has been announced.

2. CROSS-RELAXATION TIME
Consider the spin Hamiltonian
3C=5€m+ﬂccr+5cint, (1)

3Cer is the sum of the crystalline field couplings of the
individual ions or the quadrupole couplings of the nuclei.
The Zeeman energy in the applied field is given by

SCm: .—Z:’L BH'g,“S,‘.

The interaction between the spins consists of dipolar,
pseudodipolar, and exchange terms:

5Cin= A+ B+C+D+ELF, @)
A=25>i [Aij+ (gig8%7:7°+ Bij)
X (1—'3 COS%{j)]S,ﬁS;;, (23,)
B=3% ;i [34ij+ (—1) (g8 7+ Bij)
X (1—3 c05%:5) 1 (S4aS_i+S-aS44), (2b)
C=2i>i (—3%)(ggB:i+ Bi;) sinbs;
Xcos@ije—i¢‘i (S+iSzj+SziS+j), (2C)
D=3 ;5: (—3%)(g:gib%:;+ Bij) sinb;
X cosijet i (S_iS.i4+S2:5-7), (2d)
E=3 ;> $(g:igifr:i+ Bij) sin;e481:Sy 5, (2e)
F=3%;>:1(g:giB:i+B:j) sins;et*#4S_,S_;.  (2f)

6;; and ¢;; are the polar angles of the radius vector
connecting ions ¢ and j with respect to the z-axis.

Consider the simple case of a Kramers doublet with
identical spins. Take the z-direction along H. The
Zeeman splitting of each individual ion is

hvie=+gBH.

(1; sCgi)ordmaine, Alsop, Nash, and Townes, Phys. Rev. 109, 302
10 Shapiro, Bloembergen, and Artman, Bull. Am. Phys. Soc.
Ser. II, 3, 317 (1958). Proceedings of the Symposium on Solid-
State Masers, U. S. Army Signal Research and Development
Laboratories, Fort Monmouth, New Jersey, June, 1958 (un-
published).
U F, W. de Vryer and C. J. Gorter, Physica 18, 549 (1952).
12 Smits, Derksen, Verstelle, and Gorter, Physica 22, 773 (1956).
13 Verstelle, Drewes, and Gorter, Physica 24, 632 (1958).
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It is assumed to be larger than the interaction with
other ions. JCiny will be treated as a perturbation. The
problem, which was already considered by Kronig and
Bouwkamp,* is to determine the rate at which Zeeman
energy and dipolar energy come into mutual equilibrium.
Since total energy of the spin Hamiltonian remains
conserved, the formulation can also be put in the form:
What is the probability that a quantum /Avis gets
absorbed by a rearrangement in the dipolar lattice?

Consider repeated operation of the interaction
Hamiltonian. Take products of the type-: - (S.xSz)
X (SimS—n) -+ (S4i827)* = - (S2pS2q) (S+nS—s). They turn
the spin 7 in the external field and rearrange the dipolar
lattice. It would be difficult to carry through such a
high-order perturbation calculation.

A hybrid method between the perturbation calcula-
tion and the method of moments! is therefore used.
Simple first order time-dependent perturbation theory
is applied to the terms C and D (and possibly E and F).
The repeated effect of the diagonal and semidiagonal
terms 4 and B is absorbed in a line-shape function g(»).
The transition probability for the Zeeman energy Avie
of a spin to be converted into dipolar energy is

w= (2Ty)'=F?|C|>N-'g(»=0). 3)

The characteristic time for this conversion process is
called T to indicate its intermediate position between
Ty and T's. The shape function g(») has a symmetrical
maximum around the frequency »s:. Its second moment
around this frequency is given by

K2 {Av?)
_ Tr{{(A+B)Xj>i S:iS4i— 2Li>i SzS+i(A+B) %}
Tr{[> > SzaS4i %) .

(4)

This moment has the same order of magnitude as, but
is not identical with, the second moments of Van Vleck
for transitions induced by an external radio-frequency
field.

If the assumption of a Gaussian shape with the
correct second moment (4) is made, the cross-relaxation
probability becomes for g;=g;, S;=3S;, Bi;=0,

E2X 3g484S (S+1) 35 7.7 sin®0,; cos?0,;
- (2m)} A

w

_— gZBZHZ
il ©

212 {Av?)
The cross-relaxation time 7T increases very rapidly
as the splitting of the energy levels of an individual ion
becomes large compared to the spin-spin interaction.
This is the reason why the processes with Am= +£2,
caused by the terms E and F are negligible. They
would lead to an expression in which the exponent in

14 J H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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the Gaussian is 4 times larger than in (5). Hence their
contribution is negligible.

When the splitting approaches zero (H — 0), the
expressions (3) and (4) have to be modified. All terms
of the dipolar interaction then become important.
Truncation is not permissible. The second moment
increases and also the matrix element in Eq. (3) is
increased because the E and F terms also contribute.
In the case that H is not much larger than the dipolar
field, the formula of Kronig-Bouwkamp, who first
considered the problem under discussion, should be
valid:

w= [ (Aw?)ior |F exp{— g2B82H?/ 2% (Aw?Jiot}

It is seen that the cross-relaxation time T becomes
identical with T, in the limit # — 0. If, on the other
hand, T9:>T,, the Zeeman part and the spin-spin
part come separately into equilibrium with the lattice.
The hypothesis of Casimir and du Pré is not valid in
that case. The interesting region is 71> 7T9:>T%. In
this domain the relaxation phenomena mentioned in
the introduction occur.

A warning should be raised against too liberal use of
the Gaussian shape, which is so convenient for computa-
tional purposes. The value of g(0) may be larger by
several orders of magnitude than the Gaussian would
predict. Important situations, in which the tails are
considerably enhanced, include the case of strong
exchange interactions 4; and the case of random
paramagnetic dilution. Calculation of the fourth, and
higher, moments of g(») shows the enhancement of the
tail concomitant with a narrowing at the center.

Interesting new situations arise when three or more
levels are considered or when more than one magnetic
species is present. Some simple examples are shown in
Fig. 1. In Figs. 1(a) and 1(b) the isolated atoms are
assumed to have three energy levels. In case 1(a), two
of them are closely spaced; in 1(b) one is approximately
halfway between the others. They may correspond to a
Ni*tt ion, or nucleus with /=1, in an axially symmetric
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F1G. 1. Some representative situations of double transitions in
which the energy is nearly conserved. The « and g8 transitions
take place simultaneously on neighboring spins. (a) Three levels,
two of which are closely spaced. Example: the Ni** ion in an
axial crystalline field with a small magnetic field. (b) Three
levels, with one approximately halfway between the others.
Example: Ni** in intermediate field. (c) Two closely spaced
pairs of levels. Example: Crt** or a nucleus with /=% in an
axial field, with a small magnetic field parallel to the axis. (d) Two
Kramers doublets with nearly equal spacing. Example: two Cut+
ions with different nuclear spin orientations, or two nuclear spins
I=4% with nearly equal v in a relatively weak external field.
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field with weak or intermediate external magnetic field,
respectively. Case 1(c) corresponds to a case with S
or I=%. Case 1(d) corresponds, e.g., to two species
I,=Ig=1%, with slightly different gyromagnetic ratios.

The dipolar interaction between the ions may
induce transitions in which the sum of Zeeman and
crystalline field energies is nearly conserved. These
transitions are indicated by the arrows. It should be
noted that the two arrows in each case belong to
different ions. The balance of energy is again taken up
by the spin-spin energy.

The probability per unit time for the process
that ion ¢ increases its energy by an amount kv, and
ion j decreases its energy by kwg, the balance of energy
h(vs— va) being taken up by the spin-spin interaction of
the whole array of dipoles, is then given by

i =12 (E;,Ej|3:j| Eit-hvay Ej— hvg) |*gag(»=0), (6a)

where 3C;; is the interaction between ions 7 and j.

If m, is a good quantum number in case 1(d) and
the gyromagnetic ratio has the same sign for the two
species, the matrix element corresponds to the Am2
=—Am= 41 transition from the interaction B in
Eq. (2) and its square is given by

[5Cs; |2 =6 (Ta—Ma) (Tat-ma+1) (Tg+mg)

X (Ig—ms+1)g2g#8' (1—3 cos®0yj)*r;~5.  (7a)

If, however, the gyromagnetic ratios g; and g; have
opposite sign, the transition which nearly conserves
energy has Am= 2 and is determined by the E or F
term in Eq. (2). This is also true for cases 1(a), (b),
and (c), if a magnetic field parallel to the axis of the
crystalline field is applied. In the case of Cr++ ion
in a small parallel field one has, for example, the

transition m.2=% — 1 and mpf=—1— —3.

[3C;|2= (81/16)g) *B%r:;~° sinf;. (7b)
The shape function ge(v) is calculated by the
moment method. The total second moment is

Wrog?= —Tr{[3C(3 3C;;)— (X 3Ci)3C T}/
Tr{[> 5,1}

The total Hamiltonian JC has to be truncated in a
manner appropriate to the particular problem at hand.!®
If m, is a good quantum number, this truncation is
straightforward. The line shape has a maximum at the
frequency ve—wg; ges(v=0) will be appreciable, if
h(va—vg)/gB is not much larger than the local fields.

It is instructive to obtain an estimate of g,s(»=0) in
terms of the observed magnetic resonance lines g.(»)
and gs(v). The second moments of these shape functions
are determined by the expression which results if
2.3¢; in Eq. (8a) is replaced by S.. The rigorous

(8a)

15 Ishiguro, Kambe, and Usui, Physica 17, 310 (1951).
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expression (6a) is replaced by

wiy=h"*| 305 f f 8=(v)gs(v")8(¥'—v")dv'dy".  (6b)

If a Gaussian shape is assumed for g.(v) and gs(») with
second moments (Ax)? and (Awg)? respectively, the
integrations in (6b) which represent the overlap between
the two resonances can be carried out explicitly. The
result is

= (2m) 72|50 | 2[ (Ave)®+ (Avp)? 1
Xexp{— (va—18)%/2[ (Ava)*+ (Avp)*]}.  (8b)

This expression is not rigorous and should be used with
extreme caution. Equations (6a) and (8a) should be
preferred, but g.s(r=0) is of course not determined by
(8a) alone. All higher moments are necessary in
principle. The assumption of a Gaussian with the
second moment given by Eq. (8a) may still lead to
large errors in the tail.

A cross relaxation time 7'»; can be defined by the
relation

QT =2 wipf. 9)

This derivation has physical validity and significance
in the range 71>75:>7T, The right-hand side rep-
resents the probability that spin ¢ will absorb a quantum
hva, while an arbitray spin j emits a quantum hvg; p#
represents the probability for a spin j to be in the
upper state of a vg transition.

It is noteworthy that there is no need for very
closely spaced levels. Figure 1(b) shows that the only
requirement is that some spacings are nearly equal.
If closely spaced levels exist, as in Fig. 1(a), no matrix
element between them is required. The Zeeman energy
of the m= +1 levels of Ni** in an axial crystalline field
with parallel magnetic field can come into Boltzmann
equilibrium with the spin-spin energy via the indicated
process.

3. CONSERVATION OF ANGULAR MOMENTUM

In the experiments of Abragam and Proctor, as in
other adiabatic (de—) magnetization experiments, the
angular momentum of the spin system is not conserved.
Nor is it in the processes of Kronig and Bouwkamp or
in the Am= =42 processes considered in the preceding
section. For those who are familiar with the magneto-
mechanical experiments of Einstein-de Haas and
Barnett,'® the answer is obvious that the balance of
angular momentum is transferred to the rigid lattice
and appears as a rotation of the whole crystal. Since
the question of angular momentum has been raised on
more than one occasion, a brief general proof will be
given that the transition probabilities which have been
derived are correct, even though the question of
angular momentum has been ignored.

The coordinate ® giving the azimuthal orientation

16 C, J. Gorter and B, Kahn, Physica 7, 753 (1940).
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of the rigid crystal with respect to a fixed coordinate
system is introduced explicitly. The angle ¢.; measures
the azimuthal orientation of the spin pair ¢ and j with
respect to a coordinate system attached to the crystal.
The z axes of the two systems of reference coincide.
Replace ¢;; in Eqgs. (2) by ¢i;+®. The angular momen-
tum associated with the rotation of the crystal is
represented by the operator (%/7)(d/0®). The total
angular momentum around the z-axis is given by

ha
JZ=ZJ' Szj+—“ .
1 3P

It can readily be verified that this operator commutes
with the Hamiltonian (1):

[J.,3¢]=0.

The spin angular momentum 3_;.S,; alone does not
commute with the dipolar interaction, but total angular
momentum is indeed conserved. If the spin system
undergoes a transition Am = -2, the angular momentum
of the crystal changes by — 2#%. The change in rotational
energy associated with this change in rotation is
negligible because of the very large mass of the crystal.
The value of the square of the matrix element |3C;;|2
is not changed by the explicit introduction of ® and
the free rotational wave functions for the crystalline
lattice.

4. CROSS-RELAXATION RATE PROCESSES

The rate equations governing the populations of the
various spin levels should now be modified to take
account of the cross-relaxation of Sec. 2. They will be
written down explicitly for the cases of Figs. 1(a) and
1(d). Extension to other, more complicated, situations
is straightforward.

Case 1(a).—Let n1, n2, and #n; represent the popula-
tions in the three levels. The equilibrium values at
the lattice temperature are 71", n,° and #y’. The energy
difference hvs1=FE.—E; is so much larger than the
dipolar interaction that no cross-relaxation has to be
considered to the ground level £y. The splitting svse= Es
—E, is only slightly—say, two to ten times—larger
than the dipolar width. Cross-relaxation has to be
considered due to the overlap of the vs and vy res-
onances, although their maxima are experimentally
well resolved. The populations #, and #; can now
change also by the cross-relaxation processes. Note that
the population %, is not affected.

(6%2/(9 t)cross rel
=— (6%3/6 #)cross rel= w[na— na— (13— na) ad:l
+ N1 wi[ (nsm1— nam1) — (m3m1— 1971) ad |-
Here w corresponds to the Kronig-Bouwkamp process
described by Eq. (3). The w;;, which are given by

Eqgs. (6) or (8), correspond to the double flips indicated
in Fig. 1(a) and their inverses,
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The equilibrium value of the population to which the
cross-relaxation mechanism tends asymptotically is
not given by the Boltzmann distribution at the lattice
temperature. The equilibrium value is determined by
the requirement that the expectation value of the total
spin Hamiltonian (1) changes by the work done
during the variation of the external field. The processes
are adiabatic in the sense that no heat is transferred to
or from the lattice.

In the limit of high temperatures, ¥7>>hvs;, the
dipolar interaction energy can be defined separately
from the Zeeman and crystalline field energy. Let T be
the lattice temperature, 7.° the initial ‘“Zeeman
temperature” defined by /v3k™ In(n2/n3), Ts* the initial
dipolar temperature, defined by Egip= (3Cint2)/kTs,
and 7.4 the final temperature after the spin system
has come into internal equilibrium adiabatically. This
equilibrium is to be understood in a partial sense, as
only those levels participate between which cross-
relaxation processes are important.

The usual relations between populations and spin
temperature exist.

(ﬂg—— ng) ad = % (N—' 7L1) (hll32) (l/kqu) .

The adiabatic condition can be written

(10)

—fMaw%w;w@mﬂamwymmnm
+Tr(3ind)[(1/kT)— (1/kTwa) 1. (11)

In the high-temperature limit, #,/N may be replaced
by 3.

Introduce next the spin-lattice relaxation mechanism
and radio-frequency fields at »13 and »e3. The complete
rate equations then become, in the same notation as
used for three-level masers,'’

dng
——é;— = W31 (n]__ 7’L3) + W32 (%2— ns)

hV:il
+w13 ("1“ n3— %N;’“)

+w23(1’l2— n3— %Nk—

T,

hy
T

+<w+%z]-wi,->[n2—n3—%z\ ] (12)
kTad

dne hvss
_—= ng(%g— ng) +w23 (1”'3_ 7Z2+%N—)
dt kT

l

hva
+w12[1’l1'— No— %N—'—]

T,

hﬂzz]
ET o)

— (w+3% 25 wﬁ)[”w—nr‘%

1 N. Bloembergen, Phys. Rev. 104, 324 (1956).
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This set of equations should, strictly speaking, be
supplemented with an equation describing the direct
relaxation of the dipolar energy to the lattice. It will
turn out that in many applications the details of this
process and the exact value of T,q are of no importance.

Case 1(d).—Consider a lattice with N, ions with two
energy levels separated by kv, and Ng ions with two
energy levels separated by hvs, va—ygZKra. The cross-
relaxation processes contribute the following term to
the rate equations for the difference in population of
the two a-levels and the two B-levels:

(3A%a/a t)cross = (aAnﬂ/a t)cross

Ng
=—2Ng 1Y wi[ (natng—na"ngh)
=1

— (natng—ngngt)aa . (13)

In the high-temperature approximation, kT>>hvs,
Eq. (13) can be put in the form

(aAn.,/c') t,)cross“_‘ — (1/T21°‘){A1’La— (Ana) ad}
+ (1/T2f){ Ang— (Ang)aa},

where (1/T9®)= (Ng/Na)(1/T»f), and pf=7% is sub-
stituted in Eq. (9).

The complete rate equations in the presence of
spin-lattice relaxation'® and an applied radio-frequency
field at the frequency ». become

d(Any) 1 hive
=— 2WaAna—'—‘(A1’la— 1] /’a——m)
at Ty kT,
1 e
— (A1¢a— INy )
Tor™ kT 2a
1 hvg
+_‘(Anﬂ"‘ %le ),
T215 kTad
d(Anﬂ) 1 hllﬁ
=——/ Ang—3N, g—')
di Tlﬁ le

+

1 hve
(Ana— 1IN, )
Ty* kT aa

1
An,s-— llVg
Tnﬁ( ’

hvg
). (14)
kT aa
These rate equations will now be used to interpret
a number of relaxation experiments. Although in
practice the energy level diagrams are often considerably
more complicated than those shown in Fig. 1, Egs. (12)

and (14) for cases 1(a) and 1(d) contain all the essential
features. The construction of rate equations for cases

18To avoid further nonessential complications, spin-lattice
processes in which the two species participate in a coupled
fashion, such as those considered by I. Solomon [Phys. Rev. 99,
559 (1955)7, are ignored,
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1(b) and 1(c) and for more intricate situations should
be straightforward.

5. INTERMEDIATE RELAXATION IN
LEIDEN EXPERIMENTS

Paramagnetic dispersion and absorption have been
found at intermediate frequencies (1/72)>w>(1/TY).
This dispersion is independent of the lattice temperature
and may show maxima as a function of an applied dc
magnetic field."" A simple theoretical model, patterned
after the treatment of spin-lattice relaxation by Kronig
and Gorter,? for this new type of relaxation is presented
here. A similar explanation has also been announced by
the Leiden group.!®

Let AH exp(iwf) be a small periodic magnetic field
in an arbitrary direction. In general the energy levels
will shift by (3E/0H)AH exp(iwf). There is a periodic
variation of the populations Az exp(iwf) and a con-
comitant variation in the magnetic moment. Let us
take model 1(a), which applies to the Nit* ion. Sub-
stitute the periodic variation on the left-hand sides of
Eqgs. (12). If w>w;s, w1, wes, the spin-lattice relaxation
terms are negligible. The applied field is not at a
resonance frequency and hence Wy =Wj;,=0. The
periodic variation of the populations in this region is
described simply by

tw(ny—n2)=2(w+3% X wy)[ne—n3— (mo—n3)aal. (15)
The solution is
13— Na= (13— N2)aa (141w a1) (16)

Here Toar=%(w+3% 2 wi)! is determined by Egs. (3)
and (6). The population 7, remains constant.

The susceptibility must now be calculated. The
magnetization is given by

M= %("3— %2) (Msrr* M22) +% (%3+%2) (M33+M22)
~+n1M 1174 contributions from off-diagonal
elements of the magnetic moment operator.

(17)

Only the first term on the right-hand side is frequency-
dependent in the range of interest. Its contribution
goes to zero as w>>T o™

The adiabatic value (n#3—#s).q 1s calculated from
the condition that the work done by the variation of
the external field is equal to the sum of the changes in
Zeeman energy and interaction energy, with the
restriction that only effects arising from a variation
in n3—mn, should be taken into account.

With the relations

é(hvu) hV32
Mas— Mo= y M3—Ne=3N—,
0H kT
a9 (113— ng) .
(%3—-112) adz_”—AH €xp (u’)t): (18)
ad

19 See reference 2, Chap. 4.
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Eq. (11) can be put in the differential form

(hV32) ahV;;z 6 (hllsz)z <3Cint2>
e (2 [ e o)
kT O0H 0H/ o4 kT kT

This can be further transformed into

d . <5Cint2> N h (91/32
(_‘) (n3—mng)= ——— (19)
0H/ wa EN (hv3o)?+(3Cins2) 3 kT OH

Combining Eqgs. (16), (17), (18) and (19), one finds for
the part of the susceptibility which undergoes the
intermediate relaxation

w4

<5Cint2>X%Nh2/kT all32 2 1
X' —ix"= —) — (20
AN (hwse)?+ (Fin2) \ 0H ) 14iwT s

The behavior of x’ as a function of frequency is shown
schematically in Fig. 2. The solid curve is for the
larger separation of the two levels, the dotted curve
has a smaller value of v35. There is the usual spin-lattice
relaxation. For w> 717! the susceptibility drops to its
“adiabatic value.” Then the intermediate relaxation of
part of this adiabatic susceptibility occurs at w= T
The dispersion is temperature-independent and is a
very sensitive function of the separation of the levels
because of 7.

Experimentally, the susceptibility is usually plotted
at constant frequency wversus applied dc field. There
may easily occur a maximum in this plot, because for
certain values of the external field some pairs of levels
of the chromium, manganese, and ferric salts may
become nearly equidistant. This will make T's; about
equal to w™ For the Cu'™ ion, which has a Kramers
doublet, such a maximum of x’(w) vs H should not
occur, in agreement with observation. With the
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¥i16. 2. Qualitative behavior of the real part of the susceptibility
in a dilute paramagnetic salt as a function of frequency, showing
spin-lattice relaxation and cross-relaxation. The solid curve is
for the case where the difference in spacing between the energy
levels is slightly larger than the dipolar field; the dotted curve is
for the opposite case. There may be several regions of cross-
relaxation in systems with many spin levels.
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multiple levels of the Cr, Mn*+ and Fe™ ions,
and the presence of several nonequivalent sites in the
unit cell, the occurrence of several intermediate
relaxation regions is assured. The theory for such
multilevel situations can be patterned after the simple
case 1(a) given here. The algebra will become quite
involved. Since in most experiments polycrystalline
powders have been used, an average over all orientations
of H with respect to the crystalline fields should be
taken. This makes a detailed comparison of published
relaxation curves with theory too cumbersome.

Relaxation experiments should be carried out in
dilute single crystals. Contributions of individual pairs
of levels to the susceptibility may be separated. The
experimental data should be plotted versus frequency
at constant H, because then the energy levels of the
ion remain fixed.

In concentrated paramagnetic salts the dipolar
interaction may indeed be sufficient to connect all
levels with a reasonably short T, close to the value T,
so that the Casimir-du Pré hypothesis has validity.
In very high fields or for very large crystalline fields,
the validity of the hypothesis should break down
even for the concentrated salts. The lumping of the
crystalline field with the dipolar field in the expressions
for the adiabatic susceptibility should be avoided. It
is - permissible only in polycrystalline powders of
concentrated magnetic salts.

6. THERMAL CONTACT IN NUCLEAR
SPIN SYSTEMS

The classic experiments on nuclear spin temperature
and thermal contact between spin systems have been
carried out in lithium fluoride.® It was found that the
Li and F nuclear spins are well isolated from each other
in external fields larger than a few hundred oersteds.
They then come separately into equilibrium with the
lattice in times of the order of several minutes. However,
they come into equilibrium with each other in 6 seconds
in a field of 75 oersteds and in less than 0.1 second in a
field of 40 oersteds.

The appropriate model of spin levels is case 1(d).
Although Li” has I=4% and four equally spaced levels
rather than just two, Egs. (14) can still be used.
These two coupled linear equations of the first order
will in general give two relaxation times A~ determined

by

{(U/T) 41/ To) =NH{(1/TH)+ (1/Tof) =N}

— (1/To*Tof)=0. (21)

A linear combination of two exponentials adapted to
the initial conditions describes the complete decay to
the lattice temperature.

The interest here is in the situation that 7o *8<< T,
The two spin systems come into adiabatic equilibrium
at Taa with a characteristic time [(79®) 1+ (T:f) 1 T
= NgT 2%/ (No+ Ng). The experiment is carried out in a

IN SPIN SYSTEMS 451
short time interval, so that subsequent decay to 7°
cannot take place.

In agreement with the experimental results, the heat
contact should set in rather suddenly below a critical
value of the external magnetic field. Equation (8b)
indicates that two Gaussian resonances separated by
twice their full width at half maximum have a cross-
relaxation time of T3~ 10™T, This shows that two
well-resolved resonances may indeed mix in a time
shorter than Ti. If they are separated by three times
their full width, the mixing time is Ts1~107T,, which
will usually be longer than 7. Substitution of the
second-moment values for Li” and F* into (8b), with
use of Egs. (7a) and (9), gives T21=10 sec at Hy=75
oersteds. This is many orders of magnitude longer than
the observed value of 6 seconds. The Gaussian function
is of course extremely sensitive to small variations in
the effective second moment. It is tempting to invert
the procedure and use the observed cross-relaxation
time as a measure of the overlap and hence as an
exceedingly sensitive tool to measure the line shape far
in the wing. .

In the case of LiF, for example, the wings will have
some bumps. It should be noted that the Zeeman
energy is more nearly conserved when two Li’ nuclei
flip Amy;=2, for each Am=—1 of the F'® nuclei. The
square of the matrix element [3C;|? in Eq. (6a) for
these processes is smaller by a factor ((Ar?)ni/vid)
X[ (vr—2v1i)/vr P=~3X 10~ for Hy=75 oersteds, but
this is more than offset by the enormous increase in
the Gaussian function, which now has (vrp—2w1;)?
instead of (vr—wwi)? in the exponent. The factor in
square brackets is included to take account of the
partial cancellation of terms in the second-order
perturbation calculation, as will be discussed in more
detail in Sec. 7. In terms of the moment method one
may say that the truncation of 3¢ should not exclude
terms I,ril.;. Inclusion of such terms gives rise to
small bumps in g(») near the frequency vp—2vp:. If
the approximation of the overlap integral (6b) is used,
one finds the value of the cross-relaxation time is 3
seconds, which is in excellent agreement with the
experimental value of 6 seconds. At Ho=40 oersteds,
the cross-relaxation time should be 0.06 second, again
in agreement with observation.

Experiments by one of us (P.S.P.) are under way to
determine accurately the shape of the overlap as a
function of the external field. Cross-relaxation time
measurements may also be useful to detect quadrupole
background broadening. Similar experiments are also
being carried out by various other workers. 2!

It can be concluded that all observations on energy
transfer between nuclear spin systems are consistent
with the theory of spin-spin interaction presented in

2 R. T. Schumacher, Phys. Rev. 112, 837 (1958).
2 M. J. Weber and E. L. Hahn, Bull. Am. Phys. Soc. Ser. II,
3, 329 (1958).
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F1G. 3. A reproduction of the resonances in Cu(NH,)2(SOy)s
-6H,0 observed by GANT, taken from Fig. 1 of reference 9.
Resonance 5 is saturated. The arrows indicate a process of
multiple spin flips by which the energy is spread through the
structure and cross-saturation occurs. Each arrow represents the
simultaneous flip-flop of two spins. The change in Zeeman energy
is equal to the length of the arrow. Zeeman energy is conserved

for two arrows of equal and opposite length. Four spins are
involved in such a process.
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this paper. In particular, the discussion of Abragam
and Proctor is entirely justified. Their condition that
a spin process be adiabatic in the thermodynamic sense
can now be made more quantitative:

1 dH, 1

Ta

H, dt

This condition is usually not fulfilled if yHo>5{Aw?)?.
For such high external fields, however, the difference in
magnetization in an adiabatic change of H, and the
constant magnetization in a rapidly changing H, is
less than 59.

7. CROSS-SATURATION EFFECTS IN
PARAMAGNETIC SALTS

A series of stimulating experiments on paramagnetic
resonance saturation and relaxation at liquid helium
temperatures in magnetically dilute gadolinium magne-
sium nitrate, chromium potassium cyanide, and
copper ammonium Tutton salt have been reported by
Giordmaine, Alsop, Nash, and Townes.?? Since the
most detailed experimental results were obtained on
Cu(NH,)2(SO4)2-6H,0, attention will be focused on
this salt. There are two nonequivalent Cu™ ions in
the unit cell and the paramagnetic resonance spectrum
consists of sets of four lines, corresponding to the
four orientations of the copper nuclear spin. A reproduc-
tion of these eight lines as observed by GANT? is
shown in Fig. 3. The spacing of the hyperfine compo-
nents in one set was about 100 oersteds. The other set,
which had more closely spaced lines, was separated by
about 100 oersteds from one hyperfine component in
the first set. The full width at half-maximum of each
component was 20 oersteds. This width is caused
mainly by interactions with proton spins. The dipolar

2 See reference 9. This paper will henceforth be referred to as
GANT.
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interactions between the copper ions in the diluted salt
would give only 3 oersteds. The relaxation time 7';= 20
sec.

The most striking observations were cross-saturation
effects, i.e., on steady-state saturation of one of the
eight lines, some or all of the others would also show
saturation. Furthermore, if one resonance was inverted
or saturated by adiabatic rapid passage, it was observed
to recover very rapidly in intensity with a characteristic
time of 1072 —10~* secK 7.

An interpretation of these results is proposed in
terms of the spin-spin interactions described by Egs.
(14). This interpretation is very different from the
hot-phonon theory proposed by GANT.

It has already been shown in the case of nuclear
resonance that the combination of spin-lattice and of
cross-relaxation gives rise to two characteristic times
given by Eq. (21). In the case that T3 <<7", these two
times are just T and 7. The short time, 10~ sec,
may be identified with 7. In this time the intensity
of a resonance is shared with adjacent resonances and
since there are a total of eight resonances, the intensity
of a saturated transition results in a time 7'»; to within
159 of its equilibrium value.

The cross-saturation is described by the steady-state
solution of Egs. (14). Note that the ions @ and 8 may
be two copper ions in different crystallographic positions
or similar Cut* ions with different nuclear orientations.
The @ Cut* jon is saturated by a resonance field at v,
with an induced transition probability W,.

If terms of the order of k(va—vg)/kT; and h(va—vs)/
kT .4 are neglected compared to unity, the steady-state
solution of the relative intensity of the « transition may
be written in the form

Xo 1 1 Tof/To~ \!
=1/[1+2Wa(~ L ) J (22)
Xa, 0" Te THF14+T/TF

If T9f=Ty2<KT, it is seen that the « resonance is
saturated as if it had an effective relaxation time
{1/ Te)+1/T#)}

This relaxation is at the root of the apparent dis-
crepancy between the determination of 7'y from the
steady-state saturation experiments by Eschenfelder?®
and the Leiden results** on spin-lattice relaxation in
dilute chromium salt. In the latter case, one measures
the rates (1/74®), (1/T+#), and (1/T17) for the various
spin levels, or averages of these quantities over all
orientations in the unit cell and crystallites in the
powder. In the steady-state saturation, one measures
the much faster rate >.; (1/747), summed over all
resonances j which, through cross-relaxation, are also
saturated.

22 A, H. Eschenfelder and R. T. Weidner, Phys. Rev. 92, 869

(1953).
2 Van der Marel, van den Broek, and Gorter, Physica 23, 361
(1957).
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The intensity of the B-resonance showing the cross-
saturation is simply

(X" /Xg,0"") = 1=[(Xa"" /X, ) —1]
X (14 NgTo2/ N TH)L. (23)

For No= Nz and T»°<KT+#, the a and B resonances are
saturated to the same degree. The 8 resonance remains
unsaturated only when T'51* > T4,

Is it reasonable to expect cross-relaxation times
between 10~ and 16— sec for the resonances of GANT
shown in Fig. 3? A superficial application of Eq. (8b)
seems to indicate that the spin-spin cross-relaxation time
is longer than T;. For a separation of the resonances by
190 oersteds and a calculated dipolar width of less
than 3 oersteds, Eq. (8b) would give T'y=et* 0T,
This result is an erroneous application of the theory.

The shape of a line in a crystal with random magnetic
dilution is not a Gaussian with Van Vleck’s value of
the second moment. The experimental line shape is
narrower in the center and much more intense in the
wings as first shown by Abrahams and Kittel.?® If the
magnetic dilution is f, and Z the number of nearest
neighbors, the chance for an ion to have a neighboring
magnetic ion is Z f. The second-moment contribution of
a magnetic nearest neighbor is roughly Z=! times the
second moment in the concentrated salt. If Zf<1, the
situations in which more than one neighboring ion is
magnetic may be ignored. An expression replacing
Eq. (8) which should approximate the overlap of wings
in dilute magnetic materials would be

Z (va—vg)?
2[<AVa2>conc+ <AVﬂ2>mnc] ’

with f=10"2 Z=38, (Ava?)cono= {A*)cono= 200 Mc/sec,
va— vg=280 Mc/sec, this yields Ty =10° T’y ®n°.

This admittedly very qualitative argument gives
order-of-magnitude agreement with the experimental
cross-relaxation times. Itshould be realized that theshape
of far wings is not well known and the argument here
is that a reasonable shape of the wing can give the
required overlap.

A more potent mechanism in the case of eight
copper resonances is provided by the observation that
quadruple spin flips can exactly conserve the Zeeman
energy.

A process of simultaneous double flip-flops is indicated
in Fig. 3. Two ions make a downward transition at the
frequency ., while ions at frequencies vg and v go up.
Consider in general four spins e, o/, 8, 8/ with S=3.
The effect of nuclear spins and local fields of other spins
in the crystal is lumped with the Zeeman energy.
The @, o’ spins are initially upward, the 8, 8’ spins
downward. If all spins are reversed, energy is conserved:

T21::' (Zf)——l (A Va2)conc_; eXP

Vot Vo —vg— v =0.

25 C, Kittel and E. Abrahams, Phys. Rev. 90, 238 (1953).
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‘The matrix element of the dipolar interaction which
connects the initial and final “Zeeman-state” derives
its most important contribution from a double applica-
tion of the operators of type B [Eq. (2b)] because of

the assumed inequalities of the type
[A] < | va— 8| < Ve
The matrix element is consequently

BagBarg[h(vs— ve) + Aaar+ Apsr+Aapr+ Aper T
+ Burg Bag[ 1 (v — var )+ Aar+ Ayt Aagr+ Apar T
+ Bugr Boar [ h(va—v87) F Aaar+ Appr+ AcptAarp T
+ BagBag/ [ 1 (ver — v8)+ Aaar+ Aggr+ Aagt Aerp T7

The matrix element vanishes if the dipolar interactions
of the type 4 given by Eq. (2a) are ignored. Then the
energy denominators of the first term and the second
term, in which the two flip-flops occur in reverse order,
would have opposite sign. Similarly, the third and
fourth terms would cancel each other. If the of pair
and «'f’ pair are very far apart, the dipolar terms
Aaar, Aggry Aagr, and Ager will be small. They are calc-
ulated from Eq. (2a) by allowing a change in quantum
number of one constituent, AS;=--1. It is reasonable
that the probability for a simultaneous act of two pairs
vanishes, if there is no physical interaction between
the pairs.

The probability per unit time for the quadruple
spin flip is then obtained in the usual way by squaring
the matrix element and integrating over a narrow
frequency range around the maximum.

The order of magnitude can be estimated by consider-
ing the case that of are a pair of nearest neighbors, and
so is @’8’. The distance between the two pairs corre-
sponds to the average distance in the diluted salt. The
probability for this initial situation is (Zf)2. It is not
necessary to introduce additional factors of § to specify
af, o/’ among the eight possible states. The equal
spacing between components appears to make double
flip-flops possible in most configurations. The probability
then becomes

w=li2| A | ditute’gmax (v) (Zf)*[ | B| neighbor®/ h? (va—vp)* I,

or
Toa= (Tz)dilute (Zf)_2 ‘ B l neighbor 4 /it (Va—' V§)4.

With Zf=10"1 and Bneighbor/h(va—vg)~%, one finds
T91=10'T 5 in excellent agreement with the observations.

Worded in a different way, the true line shape of
each resonance is not Gaussian, but has small bumps
which fall just under an adjacent resonance. These side
bumps are of a similar nature to those shown by
Van Vleck. He omitted these in the truncation of the
Hamiltonian for the purpose of calculating the second
moment. Here we should not cut off the terms in
SiaS_g between different ions although we do omit
other terms in the dipolar interaction. The bumps in
the wing are extremely important, because the interest
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Is in processes which may be more than a million times
slower than T'. The exact values of the cross-relaxation
times will be sensitive to the exact positioning of the
lines, but values of T ranging between 10°7; and
1087y can hardly be avoided. It is believed that this
is the most effective mechanism in the copper salt.
It explains the rapid transfer of energy to the wing
components if the central resonances are saturated and
can also account for the asymmetry and partial cross-
saturation if a line in the wing is saturated.

The possibility of spin-spin processes had been
ruled out by GANT on the basis of the observation that
a strong microwave field applied at a frequency
between the two resonances does not produce saturation.
The assumption hidden in this argument is that the
energy would have to be transported from resonance
Vo to wg via the small fraction of spins resonating in
intermediate fields. The essence .of the spin-spin
processes is, however, that a jump from resonance
vo — vg can be made, the balance of energy being taken
up by a large number of transitions within the res-
onances », and g, or, even better, as explained in the
preceding paragraph, the jump from resonance v, — g
is accompanied by a simultaneous jump vy — v;, with
Vot vy = vgtvs.

From a similar viewpoint it may be said that the
radio-frequency field, off resonance, still produces
transitions at the frequency w,, while the balance of
energy is again taken up by multiple spin rearrange-
ments. The transition probability for such an induced
transition is reduced by a factor g(¥—va)/gmax(0). In
order to produce saturation of the a-resonance the
microwave intensity should be stepped up by a factor
108 or more, if applied far away from resonance.
Sufficient power cannot be fed into the spin system in
the far wings to combat spin-lattice relaxation in the
center of the resonance.

It is therefore concluded that spin-spin interactions
offer a possible explanation for the cross-saturation
effects of GANT. Further discussion of and comparison
with their hot-phonon theory will be postponed until
the final section.

8. INHOMOGENEOUS BROADENING AND
HOMOGENEOUS SATURATION

In sufficiently diluted magnetic substances the line
width is usually determined by local variations of
nuclear spin arrangements or a distribution of crystal-
line field parameters. Inasmuch as the dipolar interac-
tions between the ions contribute only a small fraction
of the observed second moment, the line is said to have
an inhomogeneous broadening.

This type of inhomogeneity should be carefully
distinguished from that produced by a gradient in the
external fields or by the use of a polycrystalline
anisotropic material. In the latter case spins in different
parts of the crystal or in different crystallites have
different resonant frequencies. Different spin popula-
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tions in different parts of the resonant curve can only
come into equilibrium by spin diffusion in space.26
This is a very slow process and inhomogeneous satura-
tion—*“‘eating a hole”’—occurs readily.?”

In the former microscopic type of inhomogeneous
broadening, adjacent spins will have quite different
resonant frequencies. The situation is then more a
problem of spin diffusion in the frequency domain
rather than in space. The problem can be considered as
the cross-effect between two resonances @ and 8 both
of which have the same continuous distribution. A
qualitative solution can readily be given. Assume that
the resonances with a dipolar second moment (Ap?)
are distributed uniformly over a frequency interval
(1/T4*). Take a frequency v, in this distribution. The
probability to make a cross-transition to »g is of the
order of To' if wet3To'<wp<we+3iT:! and is
essentially zero outside this interval. The probability
that the »g of an adjacent spin is indeed in the required
interval is T5*/T,. The most probable time to cover a
frequency interval T'5 is therefore T2(Ts/T2*). To
diffuse across the whole distribution (T3/T5*)? steps
have to be taken. The time required for an absorbed
quantum to diffuse through the inhomogeneous
resonance?® would be 7T'*/T'5*.

This random step model. ignores the existence of
quadruple and higher-order spin flips of the type
indicated in Fig. 4. Under certain conditions this
mechanism may be faster than the diffusion process.
If the time (T 21) multiple or T9%/ (T2*)? is shorter than T,
the inhomogeneous structure will show homogeneous
saturation in the steady state. If by a short pulse a
small fraction near the center of the structure has been
saturated or inverted, this ‘“hole” will be distributed
evenly over the entire structure in a time T2/ (T2*)?,
and subsequent return to the lattice temperature
will occur in a time 7. Such effects, depicted in Fig. 4,

1, *
/- /-
T, T,

F16. 4. Inhomogeneous line, saturated by a short radio-frequency
pulse at »o. The line recovers to the dotted curve in a time T
=~ T3/ T2*® by simultaneous flip-flops indicated by arrows. Further
recovery to equilibrium takes a time 7.

26 N. Bloembergen, Physica 15, 286 (1949).

27 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

28 A. M. Portis, Phys. Rev. 104, 584 (1956), has considered
spin-diffusion in the frequency domain in more detail. His method
would give a characteristic time T.%/T5*. The multiple spin
flips will always give an answer shorter than this time, and should
then always be taken into account. We are indebted to Professor
Portis for correspondence on this point.
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have been observed by Bowers and Mims® in nickel
fluosilicate.

These effects are apparently the same in nature as
those which occur between the eight resonances in
the copper Tutton salt. The only difference is that there
the eight resonances are discrete, while in an inhomo-
geneous structure a continuous distribution occurs.
With the possible exception of extremely dilute magnetic
substances (less than 1:10%), it appears that homo-
geneous saturation should be the rule rather than the
the exception. In the steady-state saturation factor
Y?H*T1T, the value of T should usually be taken as
To*, the inverse of the observed total width. An
alternative way of stating this fact is to say that
Eq. (22) for the saturation factor has to be used with
T/Ts* resonances in parallel.

Finally, the general case of two inhomogeneously
broadened structures will be discussed briefly.

Consider two rectangular inhomogeneous resonances
4 and B. It is tempting to argue that if the center of 4
is saturated the energy will diffuse to the edge of the
A distribution. Then the Gaussian overlap of the true
resonance shapes which are represented by the dotted
lines will take it to the edge of B whence it will diffuse
further. Due to the narrow width of the true resonances,
the middle step is very slow. A much faster way can
again be devised—e.g., by a sixfold spin flip. The three
arrows in Fig. 5 show the three simultaneous flip-flops
which conserve energy and transfer one spin from the
A to the B resonance.

No attempt will be made here to develop a mathemat-
ical theory of random walk with multiple steps. The
distribution of splittings will in general not have a
rectangular shape. For a Gaussian shape, the random
walk theory for an harmonically bound particle may be
applied,* but multiple steps will again complicate the
picture further.

9. A CRUCIAL EXPERIMENT: THE CROSS-MASER
EFFECT. FURTHER IMPLICATIONS
FOR MASER OPERATION

It has been shown that spin-spin interactions can
account satisfactorily for all observations made by
GANT. They have used the model of a “hot-phonon”
region to explain the results. How can a choice be made
between these two different interpretations?
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Fic. 5. Two rectangular inhomogeneous line structures. The
energy contact is not through the wings of the true line shapes,
but through multiple spin flip-flops, indicated by the arrows.

¥ K. D. Bowers and W. B. Mims, Bull. Am. Phys. Soc. Ser.
II, 3, 325 (1958).

30 Noise and Stochastic Processes, edited by N. Wax (Dover
Publications, New York, 1954), c.f. p. 305.
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In the first place, the experiments on LiF and other
nuclear spin systems at room temperature show that
spin-spin processes are capable of producing cross-
saturation. A “hot-phonon” region is out of the question
in this case, as the lattice vibrations are a good thermal
reservoir at room temperature. The existence of
similar spin-spin processes must therefore be admitted
in electron-spin systems. Since they alone can give
a satisfactory explanation of the observations, there
is no need to invoke a second mechanism.

An attempt has been made to show the existence of
cross-saturation effects in dilute K;Cr(CN)g at 77°K.
At this temperature the spin-lattice relaxation should
take place predominantly by Raman processes. Phonons
of all frequencies participate and constitute a thermal
reservoir without limited heating. Unfortunately,
T: at 77°K is too short so that no saturation could be
obtained.

There is, however, another positive criterion. There
is one thing a spin-spin contact can do which hot
phonons cannot do. Spin-spin interactions can produce
not only cross-saturation, but even cross-maser effects.
They can, in other words, establish a contact at negative
temperatures.’! This is already contained in Eq. (23).
Xg'' can be negative, if X,””’<0, and the last factor is
sufficiently close to or larger than unity. This will be
true when No=~Npg, T9*<KT¥. The system of energy
levels of an harmonic oscillator has no upper bound
and such a systen cannot attain negative temperature.
The a-system at a negative temperature could therefore
heat the phonons at most to an infinite positive tempera-
ture. The hot-phonon mechanism could never give
X" <0.

A critical experiment would require a salt containing
one ion, species @, with three spin levels and another,
species 8, with two spin levels. The first ion should be
made emissive at the frequency », by three-level
maser pumping. The x”’(vg) of the well-resolved but
nearby resonance wz should then be observed, as
indicated in Fig. 6.

Unfortunately such a paramagnetic substance is not
readily available, and the actual experiment was
performed on two nonequivalent Cr atoms in K;5(0.995
Co0)(0.005 Cr)(CN)g. The spin levels are sketched in
Fig. 7. The magnetic field was applied in the ab plane
which contains the z-axes of the crystalline fields for
both ions. The magnetic field was near 1080 oersteds

3 N. F. Ramsey, Phys. Rev. 103, 20 (1956).
2 J. H. Van Vleck, Suppl. Nuovo cimento 6, 1081 (1957).
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and made angles of 4°30" and 16°30" with the principal
crystal field axes of the two ions. The transition
frequencies »3, fell in the L-band, the pump frequencies
ve4 in the X-band. The maser cavity was tunable at
X-band frequency by a sliding coupling diaphragm.
A N\,/4 section on both sides provided good electrical
connection with the fixed guide. Data were taken at
4.2°K on a small crystal to get reliable values for x”.

The ordinary self-saturation curves of the ions at
X-band, i.e., Xa”(ves) vs H.p, 4%(ves) and Xp" (v24) vs
H,;, 5*(v24), are shown in Fig. 8. The two ions saturate
at different power levels because of the different
matrix elements in the two different orientations. These
data will be needed in the subsequent analysis.

In Fig. 9 the L-band susceptibility X4"'(vss) of ion A
is plotted as a function of power saturation at X-band
of ion 4 (closed points) or ion B (open points). The
magnetic field was held fixed at 1087 oersteds. The
X-band tuning was changed. The two X-band res-
onances are 210 Mc/sec apart, the L-band resonances
are just resolved at 50 Mc/sec. Note that the “cross-
maser” effect is stronger than the “self-maser” effect.

This last situation is no longer true if the L-band
resonances are separated further. Figure 10 shows the
data, when H,=1080 oersteds, but makes angles of
10°30” and 22°30’ with the axes at the two Cr ions in
the unit cell. The L-band resonances are now separated
by 150 Mc/sec, the X-band resonances by 250 Mc/sec.

Finally, the L-band resonances of ion B have been
observed under the same conditions as the data in
Fig. 9, except that the magnitude of H, was changed
by 15 oersteds. These data are represented by curves 1
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F1c. 8. Self-saturation curves for the X-band transitions of
ions A and B. Magnitude and orientation of the field are the same
as in Figs. 9 and 11. The solid curves obey the theoretical expres-
sion (1+4+cH2)™. :
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and 4 in Fig. 11. The data of Fig. 9 are repeated for
comparison. For ion B the self-maser effect is stronger
than the cross-maser effect.

An interpretation of these data in terms of the
hot-phonon theory is now attempted. Cross-maser
action may result from cross-saturation between the
two X-band resonances. The location of the bottom
levels, as illustrated in Fig. 7, is such that none of the
frequencies 913, ¥13, 714 lies in the vicinity of the observed
transitions. Their existence will be ignored in the
following discussion.

At most, ion 4 can be saturated to the same extent
as ion B when Hg?(v24) is applied. With the aid of the
dotted lines in Fig. 8 the value H 4%(vs4) is obtained,
which would give the same saturation of X"/ (va4).
With the self-maser curve in Fig. 9 one can plot the
corresponding maser effect given by the crosses and the
dotted line. This computed curve practically coincides
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F1c. 9. Self- and cross-maser effects of ion A. Full circles:
X4" (v32) vs Ha%(vas). Open circles: Xa”’ (vs2) vs Hp?(vas). The
magnetic field of magnitude 1087 oersteds makes angles of
4°30” and 16°30’ with the crystalline field axes of the two ions.
The crosses are points calculated on the basis of maximum
phonon interaction at X-band and zero phonon interaction at
L-band. The inserts represent the observed line profiles.

with the observed curve for the cross-maser effect.
If L-band hot-phonon interaction were admitted, the
dotted curve would be pushed towards the axis x’’ — 0.
Then a discrepancy would result. The data of Fig. 9
could be explained by a complete phonon heat inter-
change between the X-band resonances (210 Mc/sec
apart) and no phonon contact between the L-band
resonances (50 Mc/sec apart). This explanation is
unlikely, but possible.

The data of Fig. 10 show that the cross-maser effect
becomes much smaller when the X-band resonances
are separated by 250 Mc/sec rather than 210 Mc/sec.
This would indicate a drastic decrease from 1009
phonon contact at 210 Mc/sec separation to less than
309, contact at 250 Mc/sec.

The situation becomes impossible, however, if we
try to explain also the self- and cross-maser effect on
ion B, given by curves 1 and 4 in Fig. 11. Again the
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construction with Fig. 8 is used. If there really is
1009, phonon contact at 210 Mc/sec separation between
the X-band resonances, the cross effect on ion B
should have been much larger and x”’ of curve 1 should
have gone through zero at 3 milliwatts instead of 70
milliwatts. The conclusion is that the hot-phonon
theory cannot account for all observations of Figs. 8-11.
If the contact by spin-spin interactions is adopted, a
quite natural explanation results. Since the X-band
resonances are far apart, cross-saturation at X-band
is assumed to be small. The contact between the L-band
resonances can be estimated from the pair of curves
3 and 4 in Fig. 11 to be about 809, which is reasonable.
If we take the pair of curves 1 and 2, for both of which
the X-band resonance of ion A4 is saturated, one gets
709, for this contact. It is possible that a small cross-
saturation at X-band is still present. Presumably this
would then also be caused by spin-spin interactions.
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Fic. 10. Self- and cross-maser effects of ion A. Full circles:
Xa" (v32) vs Ha2(v2s). Open circles: X4''(vs2) vs Hp?(v24). The
magnetic field of magnitude 1080 oersteds makes angles of 10°30’
and 22°30" with the crystalline field axes of the two ions. The
inserts represent the line profiles as a function of frequency.
Due to different values of dv/0H, for different resonances the
observed profiles vs Ho have different widths.

The smaller cross-saturation in Fig. 10 also follows
readily from the much reduced overlap of the L-band
resonances. It is also clear why the absolute value of
the self-maser effect is increased. The L-band 4
resonance does not have to ‘“drag along” the L-band
B resonance to the same extent as in Fig. 9.

Spin-spin interactions alone can account for all
observations of Figs. 8-11. Hot phonons do not have to
be invoked at all.

The entire resonance at the frequency vssappears to be
inverted. The bandwidth over which a paramagnetic
salt in a three-level maser is emissive is equal to the
entire width of the observed resonance curve. Even if
it has a so-called inhomogeneous line width, the maser
effect will be homogeneous. This statement is contrary
to one made by GANT. It is of great importance for
the operation of a three-level maser. It is, within wide
limits, immaterial whether the paramagnetic resonance
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Fic. 11. Self- and cross-maser effects of ions 4 and B. A Curve 1:
X5" (v32) vs Ha2(v24), at Hy=1072 oersteds. @ Curve 2: X4 (v32)
vs H 4%(vas), at Ho=1087 oersteds. O Curve 3: X" (vs2) vs H8*(vas),
at Ho=1087 oersteds. A Curve 4: X' (vss) vs Hp®(va4), at Hy
=1072 oersteds. Curves 2 and 3 are the same as in Fig. 9. The
inserts represent the line profiles as a function of frequency.
Due to different values of dv/dH, for different transitions, the
observed profiles vs Ho shown in Fig. 9 have a different appearance.
The angles between H, and the principal axes of the two non-
equivalent ions are 4°30’ and 16°30 for all four curves.

is broadened homogeneously or inhomogeneously on
a microscopic scale. The saturation will occur homo-
geneously over the entire pumping frequency resonance
and the salt will amplify over the entire maser frequency
resonance.

This statement is in agreement with observations on
the band width of a traveling-wave maser,® and the
observed gain-bandwidth product of various cavity-
type masers. It has been pointed out previously* by
one of us (N.B.) that three-level maser action is
incompatible with a dominant interaction with hot
phonons. The steady-state condition would then be
one of three hot-phonon regions and three saturated
resonances.

The lower frequency limit »e3 of a three-level maser
is set by the overlap of the resonances viz and »ia.
The steady-state solution of Eq. (12) in the limit of
heavy pumping W3, — «, #;—n3— 0 becomes

1 AN — (wsotw+3 X, wiy) vaetwava
3RT  wotwat2(w+3 2, wi) .

Ng— Ny

The condition for maser action becomes now
- 1
warver> (Was+w+% 25 wij)vae.

This cannot be fulfilled if the cross-relaxation time
becomes much shorter than T';:

w-{-% Zj w¢j>>W21, W32.

This will be a reason for maser failure at low frequencies
and with more concentrated paramagnetic salts. The

3 Degrasse, Schulz-Dubois, and Scovil, Bell System Tech.
J. 38, 305 (1959).
% N. Bloembergen, Phys. Rev. 109, 2209 (1958).
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overlap is of course a very sensitive function of v
and concentration.

The experimental results of Strandberg ef al.35 are
also reinterpreted. It is clear from the spacing of energy
levels in Fig. 3. of this reference that the cross-saturation
effect can account very well for the operation of the
S-band maser without invoking hot phonons.

Strandberg®® has shown that the hot-phonon theory
should lead to a different relation between saturation
level and incident power. We have found that the
steady-state saturation curve of the Crt++ resonance in
MgO follows the theoretical curve (1+4++*H 2T:T5*)!
with constant 7'172* very well to over 909, saturation.
The saturation curves of Fig. 8 point to the same conclu-
sion. The bottleneck for energy transfer in dilute
paramagnetic substances is between the spins and the
lattice.

In more recent experiments with dilute gadolinium
ethylsulphate and chrome alum, Davis; Strandberg,
and Kyhl*” have measured the true spin-lattice relaxa-
tion time. The interpretation of the data in this paper is
in general agreement with the present conclusions,
with the exception of the interpretation of Fig. 4. It
was found that the recovery (relaxation) rate of the
microwave susceptibility increased rapidly above a
certain critical level of monitor power. This should not
be ascribed to phonon heating at high monitor power
levels, but is probably a consequence of the conventional
rate equations. The recovery rate is (1/7.)+v*Hmon®
Xg(v). The measured relaxation is consequently
T1(14-cH mon?)™Y, where ¢ is a constant.

Although it has been shown that phonon heating is
neither a necessary nor a sufficient condition for the
explanation of relaxation effects in the dilute para-
magnetic substances studied, it may well exist on a
limited scale. Due to the spin-spin processes the
warmed phonon region should be at least as wide as
the region of homogeneous spin saturation. Note that
the phonon bandwidth is now a consequence rather
than a cause of the homogeneous saturation. Suppose a
paramagnetic resonance at 3000 Mc/sec in K3(0.995
Co0)(0.005 Cr)(CN) has a spin-lattice relaxation time
T1=10"2 sec and is saturated over an effective band-
width of 60 Mc/sec. Suppose further that Raman
processes are excluded. Let AT be the temperature
difference between the phonons in the interior of the
crystal with linear dimension ¢=0.4 cm; ¢=1.5X10%
cm/sec is the velocity of sound, and 75 is the heat
transfer coefficient at the surface. Equate the power
absorbed by spins to the power carried away by the

phonons:
1/ 4k 12mv?Av 2¢
—(——)NhuTl—1=—-———— —nkAT.
4\ kT et a

35 Strandberg, Davis, Faughnan, Kyhl, and Wolga, Phys. Rev.
109, 1988 (1958).

3 M. W. P. Strandberg, Phys. Rev. 110, 65 (1958).

3 Davis, Strandberg, and Kyhl, Phys. Rev. 111, 1268 (1958).
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With N=1.7X10¥ ions/cc, =1 and T=4°K and
y=3X10° cps, one finds AT=0.3°K. Although this
temperature rise is rather small, it indicates that a
significant rise in phonon temperature may well occur
in concentrated paramagnetic salts, especially when
T, is also short. The interesting relaxation phenomena
found by van der Marel**?® in concentrated salts at
low temperatures appear to indicate phonon heating.

Recent experiments by Bowers and Mims® in nickel
fluosilicate show that the acoustical impedance mis-
match at the surface measured by 7 is not important.
It makes no difference whether the crystal is cooled by
helium vapor or liquid. Perhaps the phonon scattering
in real crystals with physical and chemical imperfec-
tions is stronger than present theories indicate. Heat
conduction experiments by Dransfeld® appear to show
that the scattering of microwave phonons by electronic
spins is not the most important scattering mechanism.
Much further work is needed to clear up the phonon
aspect of the problem, but in dilute paramagnetic
salts above 1°K the phonon heating problem plays a
minor role.

10. CONCLUSION

The results obtained in this paper may be summarized
as follows:

1. In most dilute paramagnetic substances, in
particular in dilute K;Cr(CN)s, Cu(NH,)2(SOy4)s
-6 H,O, and NiSiFg-6 HyO, phonon heating plays a
secondary role, if any, in the relaxation mechanism.

2. High-order spin-spin interactions, such as mul-
tiple simultaneous flip-flops, account for observed
cross-saturation and cross-maser effects.

3. These processes determine a ‘‘cross-relaxation”
time T'5; which is intermediate between 7y and T's.

4. This time T determines how fast two nearby
resonances or two spin systems are brought to the same
effective temperature.

5. This time also determines the intermediate-
frequency temperature-independent relaxation found
by de Vryer and Gorter.

6. The existence and the extent of thermodynamic
equilibrium in a multilevel spin system are characterized
by a large number of cross-relaxation times.

7. Even so-called inhomogeneously broadened lines
will usually show a homogeneous steady-state satura-
tion, unless the inhomogeneity has a macroscopic
spatial distribution.

8. Paramagnetic salts used in multiple-level masers
are emissive over the full width of the magnetic
resonance.

38 Van der Marel, van den Broek, and Gorter, Physica 24, 101

(1958).
% K. Dransfeld, Bull. Am. Phys. Soc. Ser. IT, 3, 325 (1958).
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9. The low-frequency limit of such masers is deter-
mined by the overlap of adjacent resonances.
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Formulas for the low-temperature lattice specific heat are developed on the basis of the general adiabatic
and harmonic assumptions, independently of special models or numerical procedures. Explicit simple
formulas are obtained for 6p(0), the equivalent Debye characteristic temperature at 0°K, and for the
curvature of 0p(7’) at 0°K. Discussions are given of the resulting dependence of 65(0) on physical parameters
and the significance of the formula for 85(0) as a check on the basic assumptions, of the absence of a linear
term in 6p(T"), and of the dependence of the curvature on the dispersion of elastic waves. 8p(0) is calculated
for Ge as 374.0°K; an error of £=2°K is estimated as due to errors in the elastic constants whereas the
computational error is negligible. 6p(T') is calculated for Ge for [7/6p(0)]<0.11 using two models. The first
is a simple model of the frequency spectrum which gives results like typical force-constant models, and
disagrees with measurement. The second is a model of the frequency spectrum based on the direct measure-
ments by inelastic neutron scattering; this model shows much greater dispersion, and gives much better

agreement of 6p(7) with measurement.

I. INTRODUCTION AND SUMMARY

HE technique of low-temperature specific heat

measurements now provides sufficient accuracy
at temperatures low enough to permit reasonable
extrapolation to 0°K in many cases. Accordingly,
attention may be focused on the limiting behavior at
0°K, which is a point of particular simplicity for
theoretical discussion, as will be shown below. The
observed specific heat curves show substantial devia-
tions from the Debye approximation rather close to
0°K, even for simple monatomic lattices. Considerable
work has been devoted to explaining these deviations
as properties of various microscopic models of the
dynamics of crystal lattices, and conversely, successful
explanations support the validity of these models and
the assumptions underlying them.! Several workers
have paid particular attention to the limiting behavior
at 0°K. Blackman! has emphasized the occurrence of
deviations from the limiting 7% law at substantially
lower temperatures than the Debye approximation
would give, on the basis of calculations on various
force constant models. Bhatia and Horton? discuss the
limiting curvature of the equivalent Debye charac-

* Work supported by the Office of Naval Research.

! For recent reviews with many illustrations of specific heat
behavior see, for example, M. Blackman, in Handbuch der Physik
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I, p. 325; D. H.
Parkinson, in Reports on Progress in Physics (The Physical
Society, London, 1958), Vol. XXI, p. 226.

2 A. B. Bhatia and G. K. Horton, Phys. Rev. 98, 1715 (1955).

teristic temperature, p(7), at 0°K, and point out that
0p(T) could curve upward although it usually curves
downward.

Barron and Morrison® emphasize the importance of
fitting specific heat data near 0°K, not only with terms
in 73 but also 7% and 77. Bhatia and Tauber, and
Betts, Bhatia, and Wyman* have developed approxi-
mate methods for evaluating the limiting value of
6p(T) at 0°K based on expansions in harmonic poly-
nomials. (Older methods may be found in Blackman.?)
Horton and Schiff> have applied similar approximate
methods (refined somewhat) to the evaluation of the
curvature of 6p(7) at 0°K, and confirmed an upward
curvature for a particular model of Pb. De Launay® has
tabulated accurate values of 6p(0) for cubic lattices
over a range of elastic parameters and has also tabu-
lated the curvature for a special force-constant model.

Most of the discussions of the low-temperature form
of C, or 8p(7) in the above references, are complicated
by the use of special force-constant models, or by special
computational approximations, such as Houston’s
method.? In this paper we develop general expressions

( 3T. H. K. Barron and J. A. Morrison, Can. J. Phys. 35, 799
1957).

4 A. B. Bhatia and G. E. Tauber, Phil. Mag. 45, 1211 (1954);
Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1956).

5 G. K. Horton and H. Schiff, Can. J. Phys. 36, 1127 (1958).

6 J. de Launay, in Solid State Physics, edited by F. Seitz and
D.zTurnbull (Academic Press, Inc.,, New York, 1956), Vol. 2,
p- 219.



