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Eq. (35a), we obtain finally
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This result is used in Eq. (43b). As a partial check of
the correctness of this result, we may verify the follow-

ing relation:
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since Ii, was calculated in Eq. (35b).
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Stark Effect for Cyclotron Resonance in Degenerate Bands
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A calculation of the motion is given for an electron in a simple band subjected to perpendicular magnetic
and electric 6elds. It is shown that the cyclotron resonance frequency is unaffected by the presence of the
electric 6eld. For degenerate bands, however, there is a Stark shift of the cyclotron transitions between the
low-lying "quantum" states. Calculations using second-order perturbation theory indicate that fractional
line shifts of Av/v0~10% may be obtained under reasonable experimental conditions. This effect may be
useful in the study of the valence bands of germanium and silicon.

I. INTRODUCTION

"N the presence of a magnetic 6eld $C the continuum. . of energy levels for a band coalesces into discrete
sub-bands, the so-called Landau levels. An electric field
applied perpendicular to K perturbs the motion of the
carriers in the crystal giving rise to "Stark" energy
shifts of these Landau levels. For simple bands, how-
ever, an appropriate translation of the coordinate axes
can transform the Schrodinger equation to a form free
of the electric field. Although this transformation dis-
places the Landau levels, it will be shown that the
selection rules allow transitions only between levels
which have undergone equal energy shifts. Conse-
quently, there is no observable e6ect on the cyclotron
resonance lines corresponding to these transitions.

An example where this is not the case is provided by
degenerate bands such as the valence bands in ger-
manium and silicon. In the framework of the e6ective-
mass formalism, Luttinger' has determined in detail the
energy level schemes for these bands in the presence of a
magnetic field. Here the situation is described by a
system of coupled Schrodinger equations. These calcula-
tions predict that the spacing of low-lying energy levels
will deviate considerably from the classical cyclotron
frequencies. These anomalous "quantum" effects have
been observed in germanium by Fletcher, Yager, and
Merritt' in cyclotron resonance and by Zwerdling, Lax,
and Roth' in the oscillatory magneto-absorption effect.

If the above system is perturbed by a uniform electric
field, the coupled Schrodinger equations no longer admit

' J .M. Luttinger, Phys. Rev. 102, 1030 (1956).
~ Fletcher, Yager, and Merritt, Phys. Rev. 100, 747 (1955}.' Zwerdling, Roth, and Lax, Phys. Rev. 109, 2207 (1958).

the simple transformation of the classical case; and,
consequently, the low-lying quantum levels may experi-
ence a Stark shift. That the energy differences do indeed
undergo a shift will be shown in Sec. III using second-
order perturbation theory for the approximate "iso-
tropic" case described by Luttinger. ' In this model the
energy surfaces of the valence band are assumed spheri-
cal rather than Quted so that the energy levels are
independent of the direction of the magnetic field. For
a more realistic comparison with experiment the calcu-
lations in principle can be extended to an anisotropic
case.

Numerical results indicate that the Stark shift may be
large enough to aid in the identification and measure-
ment of many of the cyclotron transitions in germanium
involving the low-lying anomalous magnetic states.

II. SIMPLE BANDS

Let us consider first the motion of an electron or hole
in a simple band subjected to a uniform magnetic 6eld $C

and a uniform electric 6eld 8 perpendicular to X, We
shall assume this band to have ellipsoidal energy sur-
faces similar to those for the conduction bands of silicon
and germanium but centered in the Brillouin zone at
4=0.

)k'+k-' k;i.(a)=a i-
2rrs, 2rrs. &

where k is the usual band wave number that varies over
the Brillouin zone. In (1) mr and ms are the effective
masses, respectively, along the transverse and principal
axes of the energy ellipsoids. It is not difficult to extend
the results to bands having displaced minima at k=-kp.
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The symmetry of the energy ellipsoid about the
principal axis allows us to orient the x and y coordinate
axes so that an arbitrary external magnetic field will lie
along a direction in the xs plane. If we assign new
coordinates x», x2, and x3 with $C in the x3 direction, then
x3 will lie in the xs plane at an angle 8 with respect to s.
The x2 axis is taken along 8 which is chosen perpen-
dicular to the xs plane for all orientations of X. In the
new coordinate system the energy ellipsoids are de-
scribed by

e(k) =k' -(k22+ (ki cos8+k3 sin8)'j
28$»

+—(ki sin8 —k~ cos8)' . (2)
2m2

In (7) the coordinates xi and xa are cyclic, so that we
obtain the well-known solution4

1
f„(r)=—exp -(p, 'x,+p, 'x,) u„(x,+&).

L k

The normalization of the plane waves is assumed for a
cube of length I on a side. Using periodic boundary
conditions, the momenta pi' and p3' are

pi'=2m. hindi/L, iii=0, &1, &2,

p '=2irhn /I. , e =0, &1, +2,
The functions e„(x2+)) in (8) are one-dimensional
harmonic oscillator functions displaced from the origin
by an amount

With X along the x3 axis it is convenient to work in the
"Landau" gauge4 for the magnetic vector potential

c pc pc28
pi'+ p3'

eX AeX eX2
(10)

A= (—Xx„O,0).

Furthermore, the electric potential is

V= —e&2.

(3) where

1 (1 1i
—=

)
——

(
sin8 cos8

&mi m2&

cos 8 sin 0

P(r) = ~,(r)f(r), e(e) =km&(e+-', )+—(pi"+pa'2)+ — p, (12)
2p X 2pc2where pp(r) is the Bloch function for the band at k= 0,

and f(r) is obtained from a Schrodinger equation
where co =eX/m*c is the cyclotron frequency in terms of
m*, the effective mass associated with the cyclotron

(6) resonance, defined bye~ p —-A I+I' f(r)=.f(r).
c )

The effects of the electron spin are not essential here and
will be neglected. +

The motion of an electron in a band with external P BS»

fields applied is described (in the effective mass theory)
The eigenvalues of 7 are

by a zero-order wave function'

Here, p= (A/i)V is the momentum operator. The po-
tential V derives in the present case from the external
electric field given in (4).

Taking e(k) from (2) and the potentials from (3) and
(4) we obtain

1 (( eX
— p2'+~ ( pi+ x2

~
cos8+p~sin8

~

i2mi 0I c )
1 ( eX

—
~ pi+ x2

~
si118—p3cos8

2m2 0 c

—eBx2—e f(r) =0. (7)

4 L. Landau, Z. Physik 64, 629 (1930).
5This procedure is based on a theorem due G. H. Wannier,

Phys. Rev. 52, 191 (1937). See also J. C. Slater, Phys. Rev. 76,
1592 (1949); J. M. Luttinger, Phys. Rev. S4, 814 (1951);E. N.
Adams, II, Phys. Rev. 85, 41 (1952); J. Chem. Phys. 21, 2013
(1953); and J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869
(1954).

1 (cos'8 sin'8 q '
, +( mi mm, ) (13)

e ( ( e

mc& & c )

U we set mi ——m2 ——m, then (12) reduces to the energy
for a free electron of mass ns moving in the given electric
and magnetic fields:

pP cpi' mc' (8 ) '
e, (e) =a~, (e+-,')i- + h —

~

—), (14)
X 2 &X)

and (uo ——eX/mc.
Although the levels in (12) and (14) are clearly

shifted by the application of the electric field, we shall
show that no Stark effect results owing to operation of
the selection rules for electric dipole transitions. The
probability for the absorption of electromagnetic radia-
tion is proportional to the square of the matrix element
for electric dipole transitions:
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where A' is the vector potential describing the incident
em radiation. By making the dipole approximation we
are assuming essentially that the spatial variation of A'

can be neglected over the extent of an oscillator system.
Using the zero-order wave functions in (5) we write the
matrix elements

M rn f

crystal
pp*(r)f *(r)

)& A'
i y ——A

i pp(r)f (r)dr, (16)
E c j.

f
X p p*(r)A' yp p(r)dr

~ cell

~ crystal

with 0 the unit cell volume. The integral which contains
the Bloch functions is zero because the matrix element
of A' y between Bloch states contributes only for
interband transitions connecting states of diferent
parlt, y.

Using the vector potential A from (3) and the eigen-
functions f(r) from (8), we obtain the off-diagonal
matrix elements

e
~m, n

—6nl, nl'6n3, n3'c4 2

SEC

for intraband transitions from oscillator state m to state
e. It should be born in mind that in addition to the
Landau principal quantum number e, the quantum
numbers ei and m3 also are necessary to specify the
eigenfunctions f(r)

The Bloch functions pp(r) are rapidly varying with
the lattice periodicity a, while f(r) are slowly varying
functions having a "range"

rp= (Ac/eR)' 10 ' cm

essentially equal to the cyclotron radius. Under these
conditions it is possible to split the matrix elements (16)
to allow integration separately over rapidly and slowly
varying parts. The error incurred in breaking up the
integral in this way will be of the order (a/rp)' 10 ' for
ordinary microwave experiments. In this approximation
the matrix element (16) becomes

e (2m)'
p o*(r) p p(r)« f-*(r)

ssc 0 ~ crystal

e i- e (2~)'
)& A'

i y —-A
i f„(r)drc) mc n

III. DEGENERATE BANDS

A. The Cyclotron Resonance

The cyclotron resonance in degenerate bands differs
markedly from the nondegenerate situation. For ger-
manium and silicon degeneracy occurs for the valence
bands at k=0 where, in the absence of spin-orbit
coupling, there are three degenerate space wave func-
tions belonging to the representation I'» of the crystal
point group. Each of these space functions is, in turn,
twofold degenerate due to spin. The spin-orbit coupling
partially lifts the sixfold degeneracy by separating the
states into fourfold and twofold states which correspond,
respectively, to p; and P; multiplets in the limit of tight
binding. In germanium, for instance, this splitting
amounts to roughly 0.3 ev which is much larger than the
energies involved in ordinary microwave cyclotron
resonance, so we need be concerned here only with the
upper fourfold degenerate band. When the magnetic
field is applied, the remaining degeneracy at k=0 is
removed and the band is separated, thereby, into four
sets of Landau levels, one pair corresponding to the
"heavy" holes and the other pair to the "light" holes.

Luttinger and Kohn' have applied the effective-mass
approximation to the cyclotron resonance for such
degenerate bands. Their results give the zeroth-order
wave function

k=2 f (r)p', p(r), (19)

where p,. 0 are the four degenerate Bloch wave functions
of the unperturbed system at k=0. The functions f, (r)
satisfy a set of coupled equations,

where

Q, (D;, ~k ke 6,; p) f, (r) =0, —

k= (A/i) V —(e/c)A.

(20)

The constants D,,' &, analogous to the effective masses
for a nondegenerate band, are given by

which contribute to cyclotron transitions. The integral
in (18) is a well-known matrix element between
harmonic-oscillator states. Clearly transitions will occur
only when the following selection rules are obeyed:

aN, =O,

ae, =0,
De= &1.

Since the principal quantum number e appears in the
energy eigenvalues (12) as Atp(e+-,'), we conclude that
the allowed transitions give rise to absorption only at
the conventional cyclotron frequency +. In other words,
an electric field perpendicular to K has no observable
e8ect upon the cyclotron resonance.

( eK
u~(x, )l p,+—x, ie„(xp)dxp, (18)

'4 crystal i c

x, ; m;,'I'
D ' ~= tl 't't p+—Q

21g 8$ & Cf)
—6 s

(22)
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in which the summation index i extends over all states
of the unperturbed system excluding the four degenerate
states. ep is the energy of the degenerate set j, and
e; is the energy of each state i not in the degenerate set.
The quantities x,; are momentum matrix elements be-
tween states i and j at k=0.

If a matrix D is defined by its elements (using summa-
tion convention for tr and P)

D,; =D,; ~k kp,

then the Schrodinger equation (20) is rewritten

(D—E)f=0.

(23)

(A'/2m) pi ——A,

(iz'/2m) y2 =—,'8,
(A2/2m) ps= -,'(82+-', C2) l.

(25)

The constant ~ arises from the noncommutivity of k&

and k2 and does not appear in the classical cyclotron
resonance. Theoretical estimates by Kohn' indicate that

q is negligibly small for germanium and silicon.
A particularly simple solution obtains for the

Schrodinger equation (24) when the energy surfaces are
spherical rather than Ruted. In this "isotropic" case

p3 f Luttinger' finds that the 4)(4 matrix D
decouples into a pair of 2)&2 matrices which can be
diagonalized exactly (see Appendix A). The resulting
zero-order wave functions (19) are

Since the quantities D, , & are to be determined ex-

perimentally, Luttinger' has constructed the explicit
representation of the Hamiltonian D in terms of five
parameters y~, y2, y3, ~, and q taking into account the
symmetry of the diamond lattice. The p&, p2, and p3 are
related to the band parameters A, 8, and C of
Dresselhaus, Kip, and Kittel' by

B. The Stark Shift

An electric field 8 applied to the system perpen-
dicular to the magnetic field X perturbs the original
energy levels pi~(zz) and 02+(2z), giving a Stark line shift
for the cyclotron electric dipole transitions. The
Hamiltonian for the electric field is

H'= —eSx2, (27)

with energies measured in usual units. Second-order
perturbation theory gives for the weak-6eld case the
level shifts in each of the decoupled systems "1"and "2"
designated generically by "i":

1 I (m, i+ JH'f22, i+) I'
~&'+(u) =

Iztpp 0;g(zz) —p,p(m)

( (m, z IH'—rn, ia)(2

0,~(zz) —0; (m)
(28)

with the summation extending over all states ns except
m=e. The energy denominator contains the cyclotron
frequency cpp= eK/mc for a free electron.

A typical matrix element in (28)

(m, i+ (H'lzz, j+)= I P;+*(m)H'f;+(n)dr (29)
~ crystal

The integrand of (30) contains both rapidly varying
Bloch functions p2, p(r) as well as the slowly varying
harmonic oscillator functions I„. Following the pro-
cedure in Sec. II, we can integrate each part separately:

involves integrals of the form

M, „=)" happ*(r)u (,x2)H'qs pu„(x2)dr (30).
crystal

tP 1+ (zz) LPl, 0(r) tzi+u —2 (x2)

pz
+ p 2, p(r)bijou„(X2) 5 exP

~

-Pi'Xi ~,
I )'

4 2+(zz) E'Ps, 0 (r) tz2+u —2 (x2)

+p4p(r)bz~u (x2, )5 exp~ —Pi'xi ~,

(26)

(22r)'
3f „~= — ' q, p~Pp pdr

~ cell

X
~crystal

u„(x2)H'u„(x2)dx2, (31)

with an error of order (tz/rp)2. We are thus left with
reduced matrix elements containing only the u„:

corresponding to four "ladders" of energy eigenvalues
pi~(zz) and 02~(zz). In this notation the "1"and "2"
label the decoupled systems and the (+) and (—),
which distinguish between the two eigensolutions of
each system, refer in the limit of high quantum numbers
to the light and heavy holes, respectively. The N„are the
ordinary one-dimensional harmonic oscillator functions,
and the g's and b's are constants depending upon y~, y,
and K.

6 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
7%. Kohn (private communication to R. R. Goodman).

(m, z+ IH'lu, j~)=~'~~ ~(m —2(H'[u —2)

+b,,b,,(m[H'~u) (32).
Bearing in mind that the argument of the u is (c/eAX) '*

)&[p'+ (eX/c) x. 5, we can compute these reduced matrix
elements in a straightforward manner:

( Ck ) l fgp -'*

(m ( H'/, 2z) = —eh
]
—

) (
—

[ b„„ i
E e3'.) E2)

(zz+1) s c8
+I — lb„,„„+—p, 'b„. „. (33)2) Se
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AE;~(e) =E;~(e)mc'(h/K)',

where the dimensionless Stark coefficient E;+ is

(34)

(A,~(n 1)B—;~(n) ]' (A;~(n)B;+(n+1) ('
E;~(n) = —+-

e,~ (n) e,+—(n 1) — e,~(n) —e;+(n+1)

(A, (n —1)B.;~(n))'-

e,g(n) —e; (n —1)

Clearly the diagonal term (ch/K) pi' does not imply a
first-order Stark shift of the resonance, since it con-
tributes an identical energy shift to all levels. The Qrst-
order term, incidentally, has appeared previously in (14).

Using Eqs. (28), (32), and (33) we obtain the final
expression for the energy shifts:

180-

160-

+ 140-

Q
&~12P-0

V
~X100-

z
80-

3.

220- P1+(P)
4.

Ji
200-

Ea+(n) fa (n)

3-
11 l$

11

11

11

1l
1

2. t)

JA;g(n)B, (n+1) ('

e;~(e)—e, (e+1)
(35)

For conciseness we have introduced in (35) the matrices

A,~ (n) = [ (n —1)"g;~(n); (e+1)~b.;~ (n) j,
~II;~(e) q

B +(n) =
I I (36)
&b, (n)

In the isotropic case, four matrix elements contribute to
(35). In general, however, when the Hamiltonian D does
not decouple, E;+(e) contains up to eight nonvanishing
matrix elements.

Since the isotropic approximation y~=ya=y applies
best to germanium where the actual values of y2 and y3
differ by about 15%%u~ from the mean y, the coeKcients
E,~(e) are evaluated for a "germanium-like" crystal
using the constants

60-

40-

20i-

0-

6.
5 ~

Ji
4

3
Jl

2.
0.

I I I I I I I I I I I I

0123 0123 0123
as/yes iN[(voLTJCM) /(GAuss)

6.
)i

5.
n

3.
2

I I ~ I

01 R3
X 1010

I'xo. 1. The low-lying energy levels for cyclotron resonance in
spherical degenerate bands calculated for the values pi = 13.2, and
p=5.0, and ~=4.0. To the right of each unperturbed level the
Stark shift is shown as a function of Ss/3C~. The solid arrows indi-
cate the allowed absorption transitions between unperturbed
levels, while the dotted arrows represent the first-forbidden
transitions.

For silicon this approximation is probably unsatis-
factory. The results of the calculations are tabulated in
Table I up to and including the levels n=6. In the
classical limit of high quantum numbers, the constant in
the Stark level shift approaches

yg= 13.2, y= 5.0, a=4.0. E=—m*/2m, (37)
This value of p was selected as being approximately the
mean of the best presently known values'

y2= 4.|, yg= 5.6.

TAsLx I. The Stark-shift coefficients E. The limiting value as
II —& ~ is E= —mA/2m. The column headings label the ladders in
the notation of Luttinger. '

where m* is the eGective mass associated with the
transitions in a particular ladder. The limiting values of
E are also included in Table I.

When the level shifts B,E are added to the original
energy levels, the energy states of the perturbed system
are

E,~(n) =Itr(AC/mc) e,„(n)+E,~(n)mc'(8/K)' (38)

—0.0610
+0.1044—0.0029—0.0161—0.0190—0.0201—0.0207—0.0216

~ ~ ~

—0.2979—0.2244—0.1886—0.1746—0.1685—0.1553

—0.0275—0.0082—0.0170—0.0193—0.0202—0.0208—0.0210—0.0216

~ ~ ~

—0.1699—0.1710—0.1667—0.1639—0.1621—0.1553

a See reference 1.

R. R. Goodman, thesis, University of Michigan, 1958 (un-
published) .

expressed in the dimensionless cyclotron energies c and
Stark shift coefficients E. A plot of the energy levels
obtained in this way is shown in Fig. 1. It has been
convenient to divide (38) by BC to give a universal

energy scale independent of the magnetic field at a zero
electric 6eld strength. Arrows drawn in Fig. 1 indicate
the absorption transitions between the low-lying states.
The selection rule, De= +1, derived in Sec. II, a,pplies
here.

For the lowest quantum transitions involving "light"
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holes, the Stark effect gives a line shift of

x , (w)
(y,—y) (8y'+pi' —3yiy+21~y —21~pi)

for the transition (1+,0) ~ (1+,1) and

am= me'( —
/

&x&x, (40)
(pi+ y) (8y'+pi'+3yiy 2Iiy 21~pi)— —

for the transition (2+,0) ~ (2+,1). Analogous expres-
sions for the higher transitions are considerably more
complex.

IV. DISCUSSION

As shown in Fig. 1, the theory predicts marked
shifts for the I.andau levels of the degenerate valence
bands of germanium when an electric field is applied,
especially for the low-lying anomalous states. Because
of the nonuniform displacement, we can expect a large
Stark line shift for the cyclotron resonances. A typical
case with 8=0.3 volt/cm and %=1000 gauss gives
h'/H' 1X10 "which produces a fractional line shift of
Dv/i o 10%%uq for some transitions. While this effect
should be directly observable, detection of even much
smaller shifts could be achieved by application of an
electrical square-wave modulation of a fraction of a
volt/cm amplitude and a few kilocycles per second in

frequency to the sample. The subsequent coherent
demodulation of the resonance absorption signal would
allow identification and measurement of these levels in

spite of the presence of strong electron transitions.
In the region of high quantum numbers e, the levels

within a "ladder" undergo identical shifts and the Stark
eRect vanishes. On the other hand, for transitions be-
tween ladders a considerable line shift will still occur
because the level displacements for light and heavy
holes do not approach the same limit as e~~. Such
transitions, however, become highly forbidden as e~~;
so, in short, there are no Stark shifts in the "classical"
limit of large e. Although they are 6rst forbidden, the
lower transitions between ladders should give especially
large energy shifts —a property which should be helpful
in their detection.

The experimental feasibility of observing Stark shifts
rests strongly upon limitations set by the magnitude of
the electric field that can be applied to silicon or
germanium. Although fields up to approximately 5
volts/cm can be usually reached before breakdown,
there is evidence that "heating" of the carriers occurs
considerably below this limit. A current estimate indi-

S. Koenig (private communication).

cates the holes will reach a temperature of approximately
10'—20'K for a field of 1 volt/cm. In order to observe
the cyclotron quantum eRects, however, the lowest
possible temperature should be maintained in order to
encourage preferential population of the lower states. If
this end is to be achieved it seems clear that the upper
limit of 8 will be several tenths of a volt/cm. If one is
willing to sacrifice line intensity in the anomalous
transitions, the limit may be raised possibly to 1
volt/cm.

A quantitative comparison with experimental results
will undoubtedly require further calculations when the
values of p2 and p3 are determined with more certainty
from microwave cyclotron resonance. The isotropic case
used here was chosen for its simplicity and does not
exactly describe the valence band in either germanium
or silicon. It is believed, however, that the second-order
perturbation calculations can be readily extended to the
anisotropic cases discussed by t,uttinger' and Goodman.

APPENDIX A. CYCLOTRON RESONANCE FOR
DEGENERATE BANDS WITH SPHERICAL

ENERGY SURFACES

By assuming spherical energy surfaces &2=&3=&
(also setting k, =0), Luttinger' finds that the matrix
D (23) decouples into a pair of 2X2 matrices designated
jgi and D2.

hi+ V)(a'a+ 2)+ l ~

—v3yat'

(V. V)(a'a+i)+2»—
D2 ——

—&3ya'

(»- V) (a'a+-') —-'&-

—v3ya'

(xi+ V)(a'a+i) —-'K-

(A.1)

The quantities at and a are creation and annihilation
operators:

at = (c/2e3'. A)-**(ki+ik,),
a= (c/2eXA)&(ki —ikp).

(A.2)

The Landau gauge (3) for the magnetic field has been
employed here. Since we are dealing with holes, it has
been convenient to replace D by D in writing (A.1),so-
that the energy level scheme will be arranged so that the
energy increases with ascending order of excited states.

The Schrodinger equations for the two decoupled
systems are

(Di—ei)fi= o,

(D2 e2)f~=0, — (A.3)

with the energies ei and e2 measured in units of 5 (e3'./mc).
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Since (A.3) is cyclic in xi, we write

fi —exp[(i/5) pi'xi]g„ i(x~),
(A.4)

f,= exp[(z/a) p, 'x,]g„,,(x,),

which is equivalent to a canonical transformation of
variables ki —+ x2. By this transformation (A.1), (A.2),
and (A.3) retain the same form but undergo the
replacements

pi+ (eX/c)xg ~pi'+ (eae/c)x2,

~ gn, l)

~ gn, 2.

The properties of a~ and a,

for m&2 and

eiy(n) Vln (g71+7 gK)

&{[pn—(yi ~+-,'y)]2+3''n(n 1)—}&,

e,~(n) =y,n —(-,'y, y+ ', ~)—

+{[yn+ (yi ~ ',—y-)]'+3y'n(n 1—)}l

(A.8)

for rs&2. The energy levels are thus grouped into four
"ladders" designated by (+) for the light holes and (—)
for the heavy holes.

Finally, with the aid of the eigenvalues ei+(n) and
e2~(n) the determinantal equations are solved for the
coefFicients a,~(n) and bz( n) which are normalized
according to

a~u„= (n+1)~u„+i,

a'+'(n)+b'+'(n) =1.
(A.S)

For m&2, we have

(A.9)

allow solutions to (A.3) (transformed) to be written at
once:

ai~(n)u„,

ai+ (n) = a2+ (n) =0,

bi+(n) = b2+(n) = 1.
(A.10)

gn, Xy=
bi~(n)u.

a2~(n) u„2
gn, 2y=

bing(n)u.

(A.6)
Calling

pi &3y——[n(n 1)]—l, pg
——pi,

(A.11)
qi=Vn —(Vi —~+4~), q =en+Hi ~ 2~), —

ei+(n) = (Vi—V) (n+ 2)—2~,

e2+(n) = (pi+ y) (n+-', )—-', ~
(A.7)

where the u„are the ordinary one-dimensional harmonic
oscillator functions of the argument

(c/efiX. )*'[p,'+ (eae/-c)x2].

For n &2, a&+ and a2+ are to be taken equal to zero. The
notation (&) labels the two eigensolutions of the
determinantal equations for the a's and b's.

The eigenvalues of the determinantal equations are

and

ai~(n) — Ei~(n) pi,

bi+(n) =&i+(n) L
—qi+ (pi'+qi')'],

E&~ (n) = [2pi2+ 2qP+ 2q& (pi2+ qi2) l]—l,

a2~(n) = —X2~(n) p2,

b2+ (n) =&~+(n) [q2+ (p2'+ q~') ']
N2+(n) = [2p2'+2q2'&2q2(p2'+q2 )'] '*.

(A.12)

(A.13)


