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As a generalization of the Boltzmann equation, the kinetic
equation for a plasma is derived in the form of a generalized
Fokker-Planck equation, by considering unsteady correlations,
including non-Markovian and nonlinear behavior. Both the
binary and ternary correlations are used for many kinds of par-
ticles with different temperatures. The coefficients of the kinetic
equation depend on the law of interaction for a pair of particles
and are influenced by relaxation. The effective potential of fric-
tion consists of two parts: the static part corresponds to the
Debye potential and is isotropic, the dynamical part is axially
symmetrical about the direction of motion, and causes a dynamical
friction. The results show that the friction is proportional to
velocity for slow particles, and inversely proportional to the

square of velocity for fast particles. This tendency of the fast
particles to overcome repulsion is a property connected with the
"run-away" of electrons. A criterion for maximum friction is de-
rived. The triplet interaction, which mainly affects the shielding
phenomena, assures the convergence of the coefficients in case of
distant interaction. Since the length scales of interaction are well
determined in this way, the kinetic equation can be expected to
be valid over a longer range than does the Boltzmann equation.
The large scale agrees with the Debye radius, when the shielding
term is linearized, as should be expected. When time relaxation is
left aside and linearization is made, the kinetic equation degener-
ates to the classical Fokker-Planck equation with convergent
coefficients.

I. INTRODUCTION

~ 'HE object of the present paper is to develop a
method leading to a kinetic equation for a system

of charged particles, interacting according to the Cou-
lomb law. As a result, friction and diffusion of particles
enter into the equation in explicit form. The essential
features and also the principal difficulties of the problem
are: (a) long-range phenomena, (b) nonlinear behavior,
and (c) non-Markovian behavior. The complicated
dynamical process is necessarily of a stochastic nature.
The Boltzmann equation is one method of representing
the latter, but it is not generally adequate when long
range forces are involved. Moreover, the nonlinear be-
havior is expressed in a complicated integral form, so
that linearization is necessary in applications.

The Fokker-Planck equation evades this mathe-
matical difhculty by incorporating the essential non-
linear behavior simply into the coefficients of the equa-
tion. Such an equation is suitable for application to
long-range forces. The problem of treating particles
undergoing numerous weak deAections was originally
encountered in Brownian motion of large molecules
which are thermally agitated by the smaller field mole-
cules. Originally the Fokker-Planck equation was de-
rived for this purpose, and was formulated for a dis-
tribution function at a given instant of time. ' ' Later it
was extended by KolmogoroG, ' Tchen, 4 and Chandra-
sekhar' for a transition function at two instants of
time. However, the process was Markovian which im-

plies dependence of the future on the present, but not
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on the past. Further, since their approach was phe-
nomenological, the coefficients could not be determined
explicitly.

In order to determine the coefficients, some dynamical
behavior must be considered. Early successful attempts
concerning the dynamics of a plasma introduced the
collision concept by means of the Boltzmann equation. ' ~

The use of the integrated Liouville equation by
Gasiorowicz, Neuman, and Riddell' opened up a broad
basic method for treating the dynamical behavior of a
plasma. A generalization including nonuniform dis-
tributions of test and field particles can be effected, and
it forms the essential scheme of the problem of general-
izing the Boltzmann equation into a form suitable for
application to a plasma. Recently the method of
Bogoliubov' has been frequently recommended for this
purpose. Following Bogoliubov's method, Tolmachev"
introduced a chain of linked distributions at different in-
stants, and derived the corresponding Fokker-Planck
equation. The results were divergent at extreme dis-
tances of interaction. Temko" made use of a ternary
correlation, thus introducing sufficient nonlinearity to
insure convergence at large distances. However, two
diGerent expressions for ternary correlations were
necessary, which were inconsistent from the point of
view of symmetry: thus the results imply an unjustifi-
able asymmetry in the polarization eGect. At close
interaction, the latter method still involved divergence,
which must be eliminated by a somewhat arbitrary
cutoff.
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7 Cohen, Spitzer, and McRoutly, Phys. Rev. 80, 230 (1950).
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As mentioned earlier, the classical Fokker-Planck
equation is based on the Markovian process. For a
plasma this condition is usually not met, so that the
interaction will depend not only on the distribution
functions, but also on the evolution of correlations in
time and space. In the present paper a method for
deriving a kinetic equation is developed, which is more
general than the Boltzmann equation. Under certain
circumstances, the resulting kinetic equation can be
written in the form of a generalized Fokker-Planck
equation, involving time derivatives of higher orders in
the distribution functions. These derivatives account
for the non-Markovian behavior. The coefficients are
found in explicit form. The convergence at large dis-
tances follows automatically, as a result of the internal
interaction mechanism itself.

In Sec. II the Liouville equation is integrated. The
binary and ternary correlations are discussed in Sec.
III. In Sec. IV the equation of correlation is integrated,
which leads to the appearance of the time eGect, im-
portant in describing the non-Markovian behavior. To
solve the equation thus obtained, the Fourier trans-
formation is applied, and various transport functions
are investigated (Sec. V). After some simplifications, the
kinetic equation and the generalized Fokker-Planck
equation are obtained (Sec.VI), in a form which permits
the calculation of the dynamical friction, the friction
potential, and the diffusion in explicit form (Sec.
VII—X).

The development shows that the nonlinear behavior
occurs both in the distribution function and in the
shielding phenomena, respectively, as a consequence of
binary and ternary interactions.

+U; +
2mi 1&i(j&X

where U;= U(q;) is the external potential arising from
an external force or wall effect, and nzi is the mass of
particle i.

With these definitions, Eq. (1) can be written as
follows:

BD y, BD BU, BD BP,;BD
~ ~ ~

Bf &&i&&uzi Bq, ~&i&& Bqi Dpi &«&i&& Bqi Bp;

In this form the significance of the Liouville equation
is to determine the transport of D in time and space, the
external force —BU,/Bq, acting on each individual par-
ticle "i,"while the internal interaction takes place be-
tween all possible pairs i, j, with a prescribed potential
@;;.Since D is a probability, it is normalized to unity:

Here and in the following, B/Bq, B/By, and dy represent
grad„grad„and volume element in momentum space,
according to the notation often adopted in the litera-
ture. " In the following the indicial notation will also
be used, when it appears to be more convenient. H is
the Hamiltonian representing the sum of the energies
of the individual particles and of the potentials of pair
interaction:

0' =4(l q' —q I).
Thus

II. DERIVATION OF B-B-G-K-Y EQUATION

The B-B-G-K-Y equation is the integrated form of
the Liouville equation. Although it has been derived by
various authors (Bogoliubov, Born, Green, Kirkwood,
and Yvon), it is rederived in the present section. This
will give at the same time an opportunity of discussing
the mechanism giving rise to the nonlinear behavior.

Let D(t,x~, ,x~) be the distribution function for
the dynamical states of the whole system of E particles,
where t is the time, and x;= (q, , y~) are the coordinates
in phase space (position and momentum) of the par-
ticle i. D is obtained by taking the usual statistical
average over the initial states of the system. " The
fundamental equation which determines the behavior
of the dynamical system in phase space may be written
as the Liouville equation

BD/Bt= [H; D],

where L ] are the Poisson brackets:

lBH BD BH BD
LH; D]=

«' lBq, By, By, Bq,-

Here and in the following, the integration extends over
the whole available domain of the phase space.

Sometimes it is useful to study the motion not of all
the E particles contained in the volume U, but of a set
of s particles; we therefore introduce the distribution
function F(t, ~,x., )x, such that

1
F~(t, x)~' ', x~)d—xy' ' 'dxa

Us

=dxl (Lx~J D(t)x1, ~ ~,xg)dx~+1 ~ dxy

is the probability that the dynamical state of the group
of s particles be located in dx&, ~ ~ ~, dx„respectively,
regardless of the dynamical states of the remainder set
of E sparticles s+1, —

, X.The differential equation
determining F, can be obtained by integrating Kq. (1)
with respect to dx,+& dxz, and multiplying by U'.

'2 S. Chapman and T. G. Cowling, The 3IIatlzematieal I'heory of
nonuniform Gases (Cambridge University Press, Cambridge, 1939
and 1952), Chap. I.
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Simplifications can be made by the use of the following
relations:

Because of the symmetry of D with respect to x«, , xN
the last term of Eq. (3) can be written as follows:

[H(x,); D]dx, =0, (2a)
[Q,&

', D]dXs+1' ' ' dXN
1&i&s ~

s+1&j&X

J [P,;) D]dx,dx, =0, (2b)

= E [H(x');D]+ 2 9';;D],
1(i&j(N

and integrating with respect to dx,+1 dxN, we obtain

where H(x, ) is the Hamiltonian for the individual
particles:

H(x;) =P,2/2222;+ U(q;).

Writing Eq. (1) in the form

f= (Ã—S) Q f[$.. si 1, D]dX,+1dX,+2 dXN
«(i&s&

X—S f [4'i, s+1s Fs+1/U ]dXs+ls
«&i&s

and represents the nonlinear behavior. Hence we find

BPs S
=[H. F.]+ — 2 9', .+1, F.+1]dx.+1, (4)

Bt t/'

1 BF.
' ' '

J [H(xi) &
D]dXs+1' 'dXN

Us gsi 1(i(NJ

with
H, = Q H(x;)+

1(i&s 1&i&j&s

+ P [g,&,
' D]dXs+1 ' dxN

1(i&j&N

"[H(x,); D]dx,+, dxN
«(i(s

+ Q, f[H(xi); D]dx,+, .dxN
s+1&i&NJ J

In the special case of s= 1, we have

BF« BII1 BF1 BII«BF1

Bt BQ1 BP« BP« Bq«

X—1 p ~Bits12 BF2 8&12 BF2
(5)

U J 8211 BP1 BP1 8211

and for s= 2,

+ P [y;, ; D]dx,+, dxN
1&i&i&s J

= [H(X1)+H(X2)+$12,' F2]
Bt

+
s+1(i(j&N0

f
[its,&', D]dxs+1' ' ' dxN

Ã—2 p
+ I p [st,„F2]dx„.. (6)

f
[H(X,); D]dxs+.1 dXN

+ + . [4's i D]dxs+1 dxN
1&i&j&s~

H(x,)+ P 4,;;D]dx,+1
J J 1&i &s 1&i&2&s

1&i(s 1&i&j&s

+ 2 f Jf[st,;;D]dx,i.1 dxN. (3)
1(i&s

s+1&g&N

On the right-hand side, the second and fourth terms
vanish, because of Eq. (2). The first and third terms
can be combined to give

In the following we shall need Eqs. (5) and (6) only.
Thus we shall not consider equations for correlations of
higher order.

III. SYMMETRICAL RELATION FOR
TERNARY CORRELATIONS

The integrated Liouville equations (5) and (6) can
be extended to describe a mixture of particles of dif-
ferent kinds totalling )7 particles. The diQerent kinds
are distinguished by subscripts a, b, c, etc. %e shall
thus change the notations for the distribution function
and the correlation functions, in such a way that the
distribution function of a single particle belonging to a
group will be denoted by F, Fb, etc. , with a single sub-
script. This is to replace the symbol F1 used in Eqs. (5)
and (6). The binary correlation function for a pair of
particles belonging to a and b will be denoted by F &,

and the ternary correlation function for three particles
by F,2„ in the place ot F2 and F2 used in Kqs. (5) and
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(6). Thus we have

BF, BII BF BH BF

Bga Bpa Bpa Bga

Nb r Bp,b Bp,b

+2 —
i dybdqb, (7)

V Bq. By.

2
a

H, = +U(q.),
2m

Bpab f BHa Blab) Bpab (BHb Blab) Bpab
+ I +I +

Bt (Bq. Bq. ) By. &Bqb Bqb ) Byb

BH BF,b BHb BF,b N. r

+Q ~

) dqcdpc
Bpa Bga Bpb Bqb c p

Brac Bpabc Brtrbc Bpabc
x + (&)

Bga Bpa B'Qb Bpb

BF, Nb r I B&,b BF,b
dp

Bt b V" ~ Bq, By
(9)

Bpab BHa Bpab BHb Bpab Brtrab Bpab Blab Bpab
~ ~ ~ ~

Bt Bp, Bq By& Bgb Bq Bp, Bqb Byb

Nc f'
I

Brac Bpabc Bpbc Bpbac
+2 —' dq.dp. + . (1o)

V ~ ~ Bga Bpa Bqb Bpb

In Eqs. (9) and (10) we have taken U, =O, so that
BH /Bq, =O, and similarly BHb/Bqb 0——

F,b may depend on q —qb in an arbitrary way, ac-
cording to the relative velocity between the pair of
particles.

We can write

P.b(t, p. ,pb, q- —qb) =F-(t,p.)Pb(t, pb)

+F,b'(t, p„pb, q, qb). (11—)

where E is the number of particles of kind a with mass
ns, and charge e„etc. The summation with respect to b

in Eq. (7) covers all kinds of particles, including 5= a.
The same is true with the summation in Eq. (8). Thus
g„ is the interaction potential of a pair of particles of
the same kind a.

If the volume of the vessel is large, and the region
considered is far from the walls, the distribution func-
tions can be taken as spatially homogeneous; i.e.,
F,(t,p,), Fb(t, pb), and F,(t,p,) do not depend on the
coordinates q„qb, and q, . Only the differences of
the coordinates enter into the correlation functions
F,b(t, p„yb, q,—qb), etc. Under these circumstances the
system of Kqs. (7) and (8) becomes simply

The Maxwellian distributions will be denoted by F,
Fbo, etc. Equation (11)may be considered as the de6ni-
tion of F b', which vanishes asymptotically, when the dis-
tance between the pair of particles increases indefinitely.

After substitution of Eq. (11), we can rewrite Eqs.
(9) and (10) as follows

BP Nb r p By,bBFb
dqbd pb

Bt b V~ J Bq, By,

dFab =—(P b PPb)
dt dt

Bp b B(P Pb) Bgb B(F Fb)

Bg, Bp Bqb Bpb

h~, r ~ Bg., B
+g —, dq, dp, (F,b, —Fbp„)

V~ Bq. Bp,

N r r Brtho B
+p — dq, dp, . (Pb.. P.pb.)—

c V J Bqb Bpb

where

Blab Bpab Brtrba Bpab
+ + (13)

Bga Bpa Bgb Bpb

B p B pb B
~ ~

Bt m Bg mb Bgb

It is to be noted that the product F,Fb on the right-hand
side of Eq. (11) does not contribute to Kqs. (9) and
(12), since

dqb Blab/Bqa= 0.

F,b,=F,Fb,+FbF„+F,F,b 2F,FbF, —(14)

For weak interaction (small @), relation (14) is de-
rived from Eq. (4) by means of an expansion in powers
of a small parameter. The derivation of relation (14)
and its generalization are given in Appendix A.

With the use of relation (14), the two integral terms

In the integral term of Eq. (13), Fbp„and F,Fb, arise
from B(F,Fb)/Bt and Kq. (9).

As is usual with nonlinear dynamical systems, the
equation for the distribution function cannot be solved
independently, a solution requiring a knowledge of the
binary correlation function, which in turn is determined
by an equation involving ternary correlations, and so
forth. Here the system of equations is made deter-
minate by the use of the following symmetrical relation
for the ternary correlation function:
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in Eq. (13) can be replaced by

Ãg t' f Brac B
dq, dp, . (P Fb,+F,F b 2F—FbF,)

c U0 0 gq gy,

+c t' I' B4bc
+Q —~, dq, d p, (FbF„+F,Fb, 2F—bP,P,)

V~ " 8qb Byb

BF, X, t. f BP„
dq dp Pb

Bp, c VJ & Bq,

BFb iV, f «
~ Bgb,

+ 2 — dq.dp.
Qyb c U ~ ~ Qqb

BF, LV. f t' BQ
,

dq,dp, Fb, '

By ~ V~ ~ Bq

BFb S f t
Bgb

+ ' 2 dqcd pc Fac ~

Byb c V ~ ~ Bqb

Here we have omitted terms containing Ii,, which do
not contribute to the integrals, since

)~dqc Brac/Bqa= 0j )t dqc Bgbc/Bqb= 0.

When such a substitution is made, Eqs. (12) and (13)
become

where
+F.b L"o, q —qb

—g("—«o))

g= (p,/nz, )—(pb/mb) = relative velocity.

Except for the case of g=0, the initial correlation can
be made to vanish at to= —~, since the pair of particles
a and 6 will be independent of each other when their
distance is large enough. Thus we have a weakening of
correlations toward the infinite past,

F.b'Lto, q.—qb
—g(t —tb)] =0 for tb

Hence we obtain:

IV. INTEGRATION OF THE CORRELATION EQUATION

The procedure to be used is to integrate the correla-
tion Eq. (16) for F,b. Then a simple substitution into
Eq. (15) will give the kinetic equation for F„ in the
form of a generalized Fokker-Planck equation.

When we consider the right-hand side of Eq. (16),
represented by G(t, q, —qb, p„pb), as provisionally
given, Eq. (16) can be formally integrated along its
characteristics which are given by

dq. /dt= pa/ma; dqb/dt = pb/mb. , dp./dt =dpb/dt= O.

The integral is

Fab (t& qa qb& pa&pb)

f t—tp

d7' G(t —r) qa —qb
—gr, pa, pb)

Eb ««BgbBFb'
' dqbdpbV~" Bq, Bp,

cb (t)qa qb)Pa)Pb) ) d7 G(t T, qa —
qb

—gg, pa)pb) )

0

15
or, when G is written out in its full form,

pa B pb B Blab BFa Bkba BPb—+—. +—— F.b'= . Fb+
Bt m Bq, mb 8qb Bq, gy, gqb jyb

8F, g, ~
+ 'Q dqcdpc

gy, c

Brac
~bc

BFb E, f f+ Q — dqcdpc
Bpb o V" ~ Bqb

Bgbc
p I

Blab BFab Baba BFab
~ -+ . (16)

qa ~ya ~qb ~yb

Equation (16) differs from that of Bogoliubov-Temko,
where the last two terms are missing. Equations (15)
and (16) serve as basis for the dynamical theory of the
plasma and the derivation of the kinetic equation. It is
to be noted that the right-hand side of Eq. (16) con-
sists of three pairs of terms. The erst pair is responsible
for the main structure in the form of the Fokker-
Planck equation. The second pair (nonlinear terms)
controls large distances, and therefore the shielding
phenomena. Finally the last pair, governed by the dis-
turbance F b', refers to small distances.

Fab (t)Pa)Phqa qb)

Blab BFa B4&b BFba
d7. —Fb+ F

~O ~qa 8ya 8qb 8yb

BF, E, t.
+—P — dq, dp, Fb, '

~y ~ U» Qq

BFb E. «Byb,
+ .Q —

) jl dq, dp,
Byb ~ U ~ Bqb

Blab BFab
F +

Bqa By

B4'ba BFab

~qb ~yb t—~ qa —(Palma) ~,ab —(.Pb/m:b) T

where
) " 'c %a (Pa/»a) c Cb (Pbl»b) &

denotes that the variables t, q, qb between the
brackets are to be replaced by t ~, q, —(p,/m, )7, a—nd
qb

—(pb/mb) ~, respectively.
One may ask. where the irreversibility character of the

problem comes in, since the I iouville equation, which
has been used as a starting point, is a theorem taken
from classical mechanics which therefore represents a
reversible relation. The problem of the origin of irre-
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versibility is a general problem in statistical mechanics,
and that it has been studied by authors as lac, Uhlen-
beck, etc., to whom one would refer for a deeper
analysis. It can be observed, however, that in the
present treatment irreversibility is introduced in the
integration of the correlation function with respect to
the time in Eq. (17). Here it has been supposed that
the initial value of I',b' is zero for to ———~, as shown
above. Mathematically it would be possible just as
well to write the integral in a different form with an
integration constant F b'(t0) referring to an instant t0

in the future. However, we do not assume with equal
confidence that F,b' goes to zero when t tends to + 00,
as our habitual method of reasoning assumes that cor-
relation is brought about by what has happened since
some past, and not that correlation is beforehand ar--
ranged in such a way that it will automatically dis-
appear in the future.

Such a condition of the weakening of correlation in
the infinite past must be distinguished from the condi-
tion of the weakening of correlation at large distances.
The latter condition is needed in formulating the de-
generation of correlations, see Eq. (14) and Appendix A.

V. TRANSPORT I'UNCTIONS

In order to analyze the correlation function, we use
the Fourier integral representation

y.b(g) =e.eb dv exp(iv q) Y(v),

)+CO

,F'(bq) =e,eb dv exp(iv q)Z, b(v),

Z,b"'=e,eb dr exp( —iv gr)J dv'ivb'Y(v')

( 8 8
X

l

— lZ.,(t—., p. ,p„v—v').
I gP.b gPbbi

Here the repeated index h denotes a summation. Since
Z b is the Fourier transform of F b', and Z b", Z,b'"
involve Z, b, etc. , Eq. (18b) can be considered as an
integral indicial equation.

On the right-hand side of Eq. (18b), there are 3
transport terms, each consisting of two parts. The term
Z b' is called convection function in momentum space.
Representing a transport of correlation by pair inter-
action, it causes two Auxes: a Aux of diffusion along the
momentum of the test particle itself, and a Aux pro-
ducing a friction. These two cruxes represent the main
structure of the Fokker-Planck equation. The term
Z b" is a shi ding function. It arises from the cross-
interaction of a pair of particles with a third one. It
represents the nonlin( ar behavior due to the coopera-
tion of the third ones ii. overcoming the friction. Finally
the term Z~b" is a secondary convection associated
with disturbnaces in correlation.

In order to calculate the correlation function and to
derive the kinetic equation from Eqs. (18a) and (18b),
we shall investigate the three transport functions. In
doing so, it is convenient to introduce some new nota-
tions, as follows

( 8 8
Bb(t) =

l

— 1[F.(t,p.)Fb(t, pb) j,
(BPab BPbb

Z.b' —— dr exp( —iv g7)ivb Y(v)
0

8 8

EBP i, BPbb)

Z,b"——" dr exp( —iv gr)ivbY(v)J,
(2m)'

X P N„.e.0
gp

,
I dp, Z„(t—r, —v)

0Ip.„J (19a)

BFb
dpi' Z~g(t r~v)

~Pbh

which has the advantage of contracting the various dis-
tances of different kind of particles in one single vari-
a, ble v. Then Eqs. (15) and (17) take the following forms

BF, (2~)'
Q!Ybeb'e, ' l dv—iv Y(v)

Bt V b Bp, J

X)r dpb Z b(t, p. , pb, v), (18a)

Z~b=Z~b +Z~b +Z~b (18b)
with

eb(t,F,Fb,v)= f dr exp( —iv gr)8b(t r), —
0

C(t,F„v)= vb)fdpb eb(t, F„Fb,v),

F '=C(F ',v), the Maxwellian value,
kTb

IIa = drab Zab)

A.(t,p„v) =+1V,e,0H;(t, p„v),

Yo(v) = (20 'v') ' -Y (v—) = (2m') '(v'+K')—

Nbeb', y =mb/m. ,
b VkTb

y*= (mb/m. ) (T./Tb),

F,'= (2rrm, kT,)
'

exp( —P,'/2m kT,),
Fb'= (2nmbkTb) *' exp( —pb'/2mbkTb),

(20)
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where z is the wave number of Debye shielding, i.e.,
the product of the reciprocal of the Debye radius with
2& ' I"p and I „are the Fourier transforms of the Coulomb
potential 1/q and of the Debye potential q

' exp( —bq),
respectively, while P denotes the I'ourier transform of
an arbitrary potential. In hb(t —r), I rho—lds for
F,(t r, —y,) and Fb(t r, y—b).

We shall calculate the transport functions in two
forms: (19a) and

p Vaea' ~Z.b"'dya ———(v/v*)A. ,
b

(22c)

where v* is a wave number of the order of the reciprocal
of the Landau parameter e'/kT, or "molecular diam-
eter, " or mean distance of closest approach. More
rigorously it depends on singlet distributions. Its origin
and the difEiculties involved are indicated in Appendix B.

The sum of Eqs. (22a), (22b), and (22c) yields

p Ebea2) Z.a'dpb, etc. (19b)
A, =iY PcVaea'C

+ ( 2m)'V 'iY—QXaeb(C/F. )A, (v/v*—)A.. (22d)

The latter form is useful in the calculation of BF,/Bt by
means of Eq. (18a).

In principle the procedure is to solve 6rst Z, b from

Eq. (18b). Then a substitution of the solution into Eq.
(18a) will give the kinetic equation. In view of the

special form of the right-hand side of Eq. (18a), it
appears simpler to solve not for Z, b but for A, which is

A, =p +a~a ~Z~bd pa

Before going to this end, it is necessary to simplify the

transport functions as defined by Eqs. (19a). The de-

tails of the transformations will be given in Appendix B.
They amount to reduce Za, of Eqs. (19a) into Z, a, and

to localize the time dependence in the singlet distribu-

tions, in lieu of Z, b In the n. otations of Eqs. (20), the

results of transformations of Eqs. (19a) are

On solving for A, we obtain

A, =QlVaePH. a=i YA. ' +1Vaea2C, (23a)

where

~.=a(F.)
= 1—(2m) V iY' +gaea C/F + (v/v*). (23b)

is the shielding function. When the Coulomb po-
tential is considered,

K P

Ap ——6 (F,') = 1+—+—.
v' v*

(23c)

Y = Vo= (2m'v') —'

and when the singlet distribution is linearized to be
Maxwellian F,=F,', Eq. (23b) reduces to

Zgb =Zvg6gI q

(2m)'
Z~a = ZvbEbYA. ~/F~, '

V

be,eb ZVqeI H
Z IiI

Sm vI" I'

(21a)

(21b)

(21c)

It is to be noted that, after such a linearization, the
shielding function (23c) determines the long-distance
cuto6 at the Debye length and the short-distance
cuto8 at the Landau parameter 1/v*.

VI. KINETIC EQUATION AND GENERALIZED
FOKKER-PLANCK EQUATION

Z~a=Zoa +Z~b +Zga

(2~)' enweb 'LPg61I, H~
=ivb~bY+ ivbebYA. /F.+

V
(21d)

P cVaea2 Z.b'dpa iY Q Naeb2C, ——
b

(22a)

P Eaea2 Z.b"dyb=
(2~)'

i Y+1Vaea2 (C'/F. )A„(22b)
V

When Eqs. (21) are integrated with respect to pb,

multiplied by Ãbeb', and summed over b, we can write

the transport functions in the forms

The knowledge of h., found in Eq. (23a) enables us
to calculate F„ from Eq. (18a), which can be rewritten
as follows:

(2~)' 8 l-
—e,' dv ivY(v)A, (f,P,v) . (24)

V By,

It is to be remarked that, according to the integral on
the right-hand. side of Eq. (24), only odd values of
A, (v) may contribute to F„since Y(v) is necessarily
even. Thus in the following the odd terms will be care-
fully distinguished from the even ones. Such a screening
against the even part in A, has the effect of selecting
the real values of the collision integral, so that any
periodicity must be ruled out in the distribution
function.
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After substitution for A„we obtain from Eq. (24)

aF, (2~)' t 8

Bt V ~ BP.b b

8 (2m)'
e.' t dv ibrbV'Q Ebeb2A, '

Bp.b V

dr dpb exp( —iv. gr) ~
F,

EBPbb

8 (2m)'
d, „„i,„y'2 p ATbeb2A

—i
a a

~p.b- V

BFa $
dr, i dpb ezp( —iV gr)1 Fb 1 (25)

Since the right-hand side of Eq. (25) consists of two
terms in the first and the second derivatives of F with
respect to p„Eq. (25) takes the shape of the Fokker-
Planck equation. The coefFicients before the two deriva-
tives determine the friction and the diffusion. These
coeKcients involve time integrations of the past history
of the distribution functions, with the "memory" kernel
depending on relative velocities and distances between
particles.

If the distribution F,(t—r) varies slowly with time,
a series development is permissible which reduces Eq.
(25) to the following differential equation:

The terms contributed by r/0 represent the non-
Markovian behavior.

Since the integrated Liouville equations (7) and (8),
from which the kinetic equation is derived in the forms
(25) or (26), are nonlinear, the latter is generally ex-
pected to be nonlinear too. This is seen from the de-
pendence of 6 on J „and from the dependence of the
coefricients 2, 8 on P, through the summation over all
particles including the kind a. However, no significant
difference can be expected, when the nonequilibrium
distribution in 6 is replaced by an equilibrium dis-
tribution, since the long range interaction is represented
by the summation term in Eq. (25), and each term of
the sum is a small deviation from the Maxwellian dis-
tribution only.

Moreover, in the kinetic Eq. (26), the particle a may
be considered as a test particle, the motion of which is
nonstationary. It is embedded in a cloud of other par-
ticles b (field particles), which interact with each other
and with g. For the same reason, we- shall assume that
the field particles are in equilibrium with a distribution
Iit,=Ii~', and shall investigate the motion of the test
particle belonging to the plasma. As a consequence,
Eqs. (25) and (26) become linearized.

Furthermore, if we confine ourselves to the terms
with r =0, by neglecting the non-Markovian behavior,
Eq. (26) degenerates into the following classical Fokker-
Planck equation:

(Ab (AO, Fb )F )
Bt BP,b

t A &&"'(—A„Fb) F,]
QPab r=O Bt

gp
Bbb'(AP, Fb') . (28)

8pah,8 8 t9P
+ P —Bbb'"' . (26)

BP,b ~b Bt' BP.b Equations (25), (26), and (28) are different forms of
the fundamental kinetic equation for a plasma. Equa-
tion (25) is the integral form of the kinetic equation,
while in Eq. (26) the integral form is replaced by a
series expansion. The nonlinear behavior of Eqs. (25)
and (26) is included in the denominator 6, and in the
coefIicients. The non-Markovian behavior results from
the relation of the distribution function Ii to the
correlation F F~, taken at an earlier time t—7-. Such a
memory should be distributed according to the spectrum
of the potential function by means of the factor
exp( —iv gr). Finally Eq. (28) is the degenerate form
of the kinetic equation in the Fokker-Planck type, ob-
tained by keeping only terms with r=0 in the series
expansion. The coefficients in the Fokker-Planck equa-
tion (28) are found to depend on the law of interaction;
they will be calculated in Sec. VII.

Equation (28) can also be written in the following
form:

The values of the coefFicients are:

(2m)'
A bi'&(A„Fb) = e,' dv i bob Y'(v)

Xp & bb'te4 '(i)F/bA
6 (27a)

(2~)'
Bbb'"'(a. ,Fb) = e.' "dv i blab Y'(v)

V
XQ Xbeb't3'"'(Fb)/&. ,

where

gp'(~i
—7' (27b)

~Pab

( r)" BFb-
pb&"&(Fb) =

~~ dr dpb exp( iv gr)—
0 ~Pbb

QO (—r)"
p'&"'(Fb) = dr dpb exp( —iv gr) Fb.,!

(A b*F,)+ (Bbb*F.) (29a)
~Pab ~Pab~Pab
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by introducing
&a*=&a'+8B»0/8p. a,

&ca*=&A:ao.
(29b)

In the following, A I,
*and A &' will be called, respectively,

dynamical friction and friction by potarization; B»* or
B»o will be called diglsion. By taking the moment of
Eq. (29a), the dynamical friction Aa is obtained.

VII. COEFFICIENTS OF THE FOKKER-
PLANCK EQUATION

In order to study the friction and the diffusion in a
plasma, we shall investigate the coefficients AI,' and
B»' in the Fokker-Planck equation (28) by means of
the Maxwellian approximation. They can be calculated
by the use of formulas (27a), rewritten as follows

0 is the angle between y and v. The transformation of
Eqs. (31b) and the intermediate calculations leading to
Eqs. (32) are referred to Appendix C.

Some relations connecting the two coefficients can be
derived as follows. First, we can write the relation

~a'= 2f—.(p.a/p. )Baa', (34a)

which is derived immediately from Eqs. (32) for the
case T,= Ta. Another relation is obtained, if Eqs. (30)
are written in the form

(2n-)' ~~I I
Aa'= e,' Q Naea2y '

b 8paa

(2s.)'
Baa'= e,' Q Naca'T»,

P' b

(2s.)'
Aa = e 2 dv vavaI 2(v) P Naea2Pao(Fao)/60,

b

where

Taa(y) = ~dv vavaV't3"60

(2m.)'
Baa'= e 2 dv vava V'(v) P Naca'P" (Fa')/Ao,

b

(30)

If TI,I, can be represented by a power function

&Ia= V*"pIa("),
where

o0 8Fa' 8P"
dp e p(-"C)

Jp 8pba 8paa
(31a)

8Baio E'(r —1)
Ago=

8p.a E"(r)
(34b)

where pj,~'"& does not depend on the field particles b,
we obtain

P"(Fa') = dr dpa exp( —iv gr)Fa'.
Jp a&

With the substitution of Fao, Eqs. (31a) become

V kTb paa
T ZVIt; 7 )

ma

iva
Pa'(Fao) = —— dr r exp-

mb~ p & a'= &Baa'/8p. a,
(31b)

and hence Eq. (29b) becomes

2m6

v'kTa p, a
7. —IVI, r .

ma
P"(Fa') = ~ dr exp-

Jp A *=2A ' (34c)2mb

This equation is valid for T 4 Tb or T = Tb. The nota-
tions E and E' are defined by Eqs. (36b).

When the masses and temperatures for the two kinds
of particles are identical, Eq. (34b) reduces to the well-
known relation

After some transformations of Eqs. (31b) and sub-
stitution into Eqs. (30), the latter are reduced to

28a
Aa' ——— (kT.) im. 'p. a

~V
VkVJ&

dv P Naca'ma'(T, /Ta) &U&, (32)
V Ap

2e t vI va
Baa' —— (kT,) *' dv Q Naegma'(T, /Ta) &Ui,

V'~O &

where

Ui ——(w/2) l exp (—I'/2),
m=it2t cos8,

(33)1= (maT, /m, Ta)tf. , f.=p, (2m, kT ) I,

cos8=p~ava/p~v.

2@a
Aa' — (kT——,) & P Naca'(ma)l(T, /Ta)&1a,

~Vm,
where

vavapaa
Ia (m-/2)&) dv——exp( —|2 cos'8).

V Ap

We introduce spherical coordinates with p along the
polar axis, and write

va= v(nia cos8+n2a sin8 cosQ+n3a sin8 sing),

VIII. FRICTION BY POLARIZATION AND
DYNAMICAL FRICTION

Since the two frictions are related by simple ex-
pressions (29b) and (34c), we shall calculate only the
friction by polarization Aa' from the first of Eqs. (32),
which can be rewritten as follows, after substitution for
Ui from notation (33):
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where o.», e», o.» are the direction cosines of vI, . Carry-
ing out the integration with regard to p, one obtains

~l
Ii, = (2m')&P, iL ds s' exp( —

f 2s').

pak
Q„o— le 2 Lf

—2

2
X E'(—1)——f, Q Et,'(—',-) exp( —y*i ')

Here

and

s'= cos8,

v'+~'+ v'/v* (35a)

for large f, (.37b)

When the mass of electron is assumed negligible as
compared to the mass of ion, Eq. (36a) degenerates
into the following formula of friction for ion a.

=ln(1+ v*'/~') &—ln(v*/s).

The term v'/v* plays the role of a, cutoff at the upper
limit v*. Carrying out the integration with regard to z,
wtl obtain

4zrlV e 2 d
~ '= le'(p. /p. )L - (f. ' er8.)

VkT, df.

2+/ e,4

(p.dp—.)L
VkT.

Ik= —2 '*s'PaaLl 'Io,

Hence

I,= (f-' erff—).

A i-.
'= ', e.'(p.„/p.-)L QEb'(0) IO,

4s' (fag Ta) "

Kg '(r) = '-'V
hei,'( ——~,

VkTi, (m„Tq J

4s f'mg T,q
'

K "()= X, „'I ——i,
UkT, Em Tb)

where l is defined by Eqs. (33), and

(35b)

(36a)

(4/3+m)f„ for small f',
(37c)

', for large f,.

Here l, is the dimensionless velocity defined by Eqs.
(33). The friction for slow particles increases linearly
with increasing velocity, as in Brownian motion, while
the friction of fast particles decreases inversely as the
square of the velocity. Thus the fast particles are not
so much hindered by the plasma cloud as are the slow

ones, a property compatible with the conditions of
fusion.

The maximum value of expression (37c) is deter-
mined by the condition

d2

(f'.-' erff'. ) =0.

K'(r) =P Kg-"(r), K'(r) =P Eg'"-(r), This gives

f =097.
~' =E'(0), s"=E"(0) (36b)

The wave number a of Debye shielding was defined in
Eqs. (20) too.

The ratio p, i/p, indicates tha, t the friction is opposed
to the direction of the motion. The following asymptotic
formulas can be used

A criterion for maximum friction is thus obtained: The
friction is largest, when the kinetic energy and the
thermal energy are about equal.

IX. FRICTIONAL POTENTIAL

On the basis of the frictional force AI„.', we introduce
a friction potential iP, which can be represented by the
Fourier expansion:

= —(4/3+m) 1'(1—3sf'2), for smail j;
'Ll —(2/gs. )1 exp( —f') j, for large f'.

Thus Eq. (36a) reduces to

We have

dv g(v) exp(iv q.).

Ai,' ———(cia/Bq, ~)a. =o

dv g(v)ivi. ,

2 P.i, 3 E'(-', )
e.' LK'( ,')f „ I——-

3irl p. 5 E'(-,')

for small I"„, (37a)

Now according to Eqs. (C4) of Appendix C,

A i,
' ———(2s.ea)' dv, v&F'6,—'

X (-,'i~'+D rI'&a( s) i I'2( s)))
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where both odd and even terms are retained in the (C1), Eq. (38b) reduces to
integrand, it follows that

q(v) = —i(27re, )'I"Ao '{-,'i~'+D, [I'i(—$)—iPo( —$)j)

tp= —i(2~e,)' dv exp(iv q,)F'Ao '

where

&=) d» exp(iv q.)v 'a—
o 'P—.bv, /P. v (40)

The notation D and I' have been defined in Eqs. (C1).
The friction potential can be written as a sum:

P=go+Pi,
where

Po ——e,'~~dv exp(iv q,)2n'~'I"/Ao (38a)

fi 2ie—,' ——~dv exp(iv q.)2m'I"Ao 'D.

depends on the velocity and is thus a nonequilibrium
contribution to the potential,

A. Equilibrium Potential

By taking the Coulomb force in Eq. (38a), we find

the following equilibrium potential:

K

dv exp(iv q.)
2x'~ P K P P P

e 2

=—(1—e
—"o.)

ga

for (39a)

It is to be noted that the shielding effect of the plasma
cloud is indicated by the exponential function. The
equilibrium potential is isotropic, as expected.

B. Nonequilibrium Potential Field about
a Moving Particle

In A we have found that the equilibrium potential is
isotropic about the test particle u. If the particle a
moves with a velocity p, /mb, in the k direction, it is

expected that an excess of particles of charge equal to
e will accumulate ahead of the moving particle a and,
conversely, that an excess of particles of charge opposite
to e will accumulate behind it. Under such circum-
stances, polarization occurs, and the potential field be-
comes asymmetrical. In the present section we shall
investigate the asymmetrical distribution of the non-
equilibrium potential 6eld about a moving particle of
low energy.

If the Coulomb expression for I is used and the
values for D„ I'~, and I'2 are substituted from Eqs.

is independent of velocity and is the equilibrium po-
tential, while

which, substituted into Eq. (39b), yields

1r b 8~ K (o) p~ qg,

1
4 gg & papa

(41)

Note that the usual Coulomb factor e,'/q, occurs in
both potentials (39a) and (41). However, the non-
equilibrium potential has a directional dependence,
which results in an ellipsoidal anisotropy. The shielding
effect of the plasma cloud depends on the mass ratio in
the nonequilibrium potential, in contradistinction to the
case of equilibrium potential.

X. DIFFUSION

The coe%.cient of diffusion in momentum space is

given by the second of Eqs. (32), which after slight
transformation may be rewritten in the following form:

ea2

p.g, ' p Kb" (-',)Ibb,
2'x

(42)

&avq

Igp, —— dv Vg
J ps'

&A.~a
=(or/2)&, dv

J
exp( —l

o cos'8),
vAo

(43a)

where E&" is the shielding wave number dehned by
Eqs. (36b).

After integration with the use of polar coordinates,
Eq. (43a) is transformed into:

m2

Ibb= L —(3nibnib —5—bb)
——(t ' erff)

v2 2l dl

+ (8,„—n, „n,„)~'erff. , (43b)

where 0;& is a unit vector along the direction of p, .
On substituting Eq. (43b) into Eq. (42), we obtain

&bbo= 4e.oLpd'. '
P

X p Kb '(0) ——',(3nibnib —ebb) —(Q' erff)

After some simplifying transformations which we
refer to Appendix D, we reduce Eq. (40) to

pa' ga
J=ior (2x'q,) ',
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The asymptotic values are

~A:h
3

e 'Lp 1
'E"(-')

with
for large f„(44c)

~ik= p.k/p. , ~ih= p.a/p. .

One may verify that the above values (44b) and (44c)
of 8»', together with the values of AA,

' found in Eqs.
(37a) and (37b), satisfy the relation (34b). For that
purpose, the derivatives of B&z' may be calculated from
Eqs. (44b) and (44c) as follows:

» '/~p"= (2/3V' )—~.'(p. /p. )LK"(l)f.
for small f„

45
&Bka'/&p. a = ,'e.'(p.k/p—.)-LE"(0)1 . '

for large 1,.
The following simplifications are used in the derivation
of Eqs. (45)

~ (Paf a ~kh)/~Pah f a Pak/Paql

~ (&lk&lhPaf a )/BPah fa Pak/Pay

~(&la&i+a )/~Pah 4/a Pak/Pa r

~(~khl')/~ p-a= 2f -'p "/p'
By comparing Eqs. (37a), (37b), and (45), we obtain

the following relation

E"(-,')
X ' 4h (a&lk&1h+ ra~ah)f a

l E()'
for small f'„(44b)

Bka'= iae 'LPg 'K"(0)

1K"(-1)
X (&ka —~|haik)+ — (3&imia &ka—)t a

'
2 E"(0)

1. The product e,eaVO of Eq. (25) must be replaced
by the Fourier transform of @;;in its general form.

2. The denominator 6 must be calculated anew for
the general potential of interaction. In practice, when
the potential varies more rapidly than the Coulomb
law, the convergence of the integral of the kinetic equa-
tion (25) is ensured at distant interaction, even without
interference by ternary correlation. Thus we may
approximate 6 by unity.

The Fokker-Planck equation has been derived earlier
by Chandrasekhar, Spitzer, Rosenbluth, etc. The ki-
netic equation (25) in the general Fokker-Planck form
developed here has the following advantages: (a) It
considers triple correlations. (b) As a consequence, the
coeKcients of friction and diffusion are convergent
without external cutoffs. (c) The non-Markovian be-
havior is considered.
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APPENDIX A. DEGENERATION OF CORRELATIONS

Under the assumption of weak interaction (small p),
the correlation of any order can be degenerated into
binary correlations and singlet distributions. In order
to derive a formula of degeneration of correlations, we
start from Eq. (4) which governs the correlation func-
tions, and which is rewritten in a slightly different form
as follows:

dF, Bp;; Bp,

dt i&i&i&~ Bgi Bpi

1it' 8$;, ,+g Bp.+y
+ d.„, Z — ', (A1)

J 1(r(& U Bq& Dpi

K2(r—1) BBkho

E"(r) Bp.h

where
pi 8

&&'&' ~i ~q, i
r=a2 for sm, all i,
=0 for large t,.

This result was predicted in Eq. (34b).
Formulas (44) indicate that the diffusion coeKcient

of ions is nearly independent of temperature at low tem-
perature and varies as T:at high temperature.

XI. DISCUSSIONS

The development given in Sec. II—IV leading to the
kinetic equation (25) may be adapted to the case of a
more general interaction potential p;; than the Coulomb
interaction. To go to such a generalization, the follow-
ing modifications must be kept in mind:

But in order to avoid the reduction into dimensionless
form, we can carry out the expansion in powers of 1/X
as follows

oo

p p p(r)
—oh"

(A2)

We assume that the interaction is small by writing

0 = (1/~)f

where X is a large quantity. If Eq. (A1) were reduced
into dimensionless form, the dimensionless expression of
1/X would be

1/X = (e'/kT) (1V/U) &.
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Such an expansion has been used by Bogoliubov' and
suggested by Burgers. By substituting Eq. (A2) into
Eq. (A1), and by reducing into the same order of
magnitude, we obtain

(jF (&—i)

1(i(j(s

It can be written as

1&l(s

t'ai

yEj

Consider now the expression

F2"'(p.,p;) II Fi(pi). (A8)

1&i&j&s gg; /pi

E cliff, g~i BFg+i

V Bq; Bp;
(A3)

1&i&j&s
Fi(p')Fi(p') II Fi(pi)

1&l&s
l gigj

s(s—1)
II Fi(pi) (A9)

1&l&s

where r denotes the order of approximation.
For the zero-order approximation (r=0), Eq. (A3)

reduces into the following equation:

Thus we can write

F."'=—rr F (p)
1(l(s

dF. "&/Ch =0

from which we obtain the solution

F (0) = II Fi(p,)l(i(s
(A4)

1&i&j&s
F2"'(p', ph) II Fi(pi)

1(l&s
l &igj

s(s—1)
II Fi(pi), (All)

dP 0) sF1(pi)

1&i&j&s gg; l&l&s /pi

slav sFi(p')—Fi(p) II Fi(pi). (AS)
1&i&j&s ()q; 1&l&s

1&i&j

The integral term of Eq. (A3) is not carried over into
Eq. (AS), because the integration of BP...+i/Bq, +i with
respect to dg, +1 is zero in the present case of r= 1.

The expression under the summation sign of Eq.
(AS) is exactly

CFgo&(x;, x,) Bp,i BFi(p;)—F (p), (i«) («)

so that Eq. (AS) can be rewritten as follows

dP 0) —F2"'(x',x) II F (pi),
dt 1&i&j«dt 1&l&s

Z

whence, after integration, we have

F,"&= Q F "'(x,,x;) II F,(p,). (A7)
1(i&j&s 1&l(s

l gi&j

The integration constant, which would contain the
parameters p1, ,p„must vanish, if the following con-
dition of the weakening of correlations at large dis-
tances is to be fulfilled:

F'2( xx,)=0 if
~ q,—q„.

~

= ~

The time dependence is included in F,(p;) after the
integration along the characteristics.

Further, for the first order approximation (&=1),
Eq. (A3) reduces into

1&l&s

1(i&&&s 1& Z&s
l +j', Qj

' s(s-1)—1 II F&(pi). (A12)
1&l&s

We conclude that the correlation of any order can
be degenerated into P1 and F2 as a 6rst approximation
by formula (A12). Such a degeneration of correlations
serve as a basis for solving the hierarchy of equations
of correlations in Sec. III. In fact when s= 3, Eq. (A12)
degenerates into Eq. (14) of Sec. III, which is the crucial
equation for breaking the chain of correlations in the
problem.

APPENDIX B. TRANSFORMATION OF
TRANSPORT FUNCTIONS

In the following paragraphs (a), (b), and (c), we arc
concerned with some details of transformation of the
three transport functions, as defined by Eqs. (19a).
The results of transformation are given in Eqs. (21).

(a) Convection Function

By means of the notations (20), the convection func-
tion may be written as follows:

Z~g = ZPgfhht, F.

(b) Shielding Function

The shielding function has the role of shielding the
interaction potential at large distances by the plasma
cloud.

by adding (AS) and subtracting (A9) from the right-
hand side of (A10). Finally when Eq. (A7) is added
term by term to Eq. (A11), after multiplication of the
former equation by 1/X, we obtain

F,= P Fg(x xh) II Fi(pi)
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The shielding function has two parts, one of which,
Zb, BF /8 p„may be considered as a compensating term.
We shall assume there that the distance effect is much
more important than the effect of anisotropy. There-
fore, in such a compensating term, the dependence of
the correlation on the distribution functions can assume
the following structure:

Zb, ——FbF,y(v), (82)

where g(v) should not; contain any additions, l distribu-
tion or time variation.

In the equilibrium case, Zb, is found to be isotropic,
and x(v) agrees with the Debye distribution

x(v)= Y.(v), (83)

Z.b" (t,F„F,,v)

(2n.)'
P cV,e,'ivhY(v). .

which is spherical and is shielded at the Debye radius.
In the nonequilibrium case, Zb, should be anisotropic,
with an ellipsoidal distribution. Thus the assumption
(82) amounts to replace the correlation ellipsoid Zb,
by an effective correlation sphere, with a radius and a
distribution adjusted to the true correlation. It is to be
expected that such a simplification holds for distances
not too small, i.e., v not too large. Since the shielding
function is effective at large distances only, the simpli6-
cation made in Eq. (82) is reasonable.

From Eq. (82), there results the following relation:

Zb, (t,Pb, P„—v) = (Fb/F. )Z.,(t,P., P„V),

so that the shielding function defined by Eq. (19a) can
be written as follows

a practice would disturb the coherent balance of the
pair and introduce some unwarranted asymmetry. We
shall here retain them as unknowns in the differential
equation.

As is justifiable on the basis of Eq. (82), we replace

by
A. (t—r, p.,v)/F (t—r, p.)

A. (t,p.,v)/F. (t,p.)
in Eq. (84) so that the latt;er reduces to

Z,b"(t,F„Fb,v)

(2m)' A. (t,p.,v)
bvhY(v)eh(t&Fa&Fb&V) . (85)

U F,(t,p,)

Accordingly, A,/F, gets separated from the time
integral.

(c) Secondary Convection

The secondary convection function Z b'", as defined.

by the third of Eqs. (19a), is originated from the dis-
turbances of the binary correlation function, and there-
fore controls close encounters. It can be inferred that
the effect of close encounters will be much less than that
of the "grazing" deQections, if the density of the gas is
low. We shall assume that Z b"' is not an im-

portant term, and shall estimate it by allowing rough
approximations.

If the assumption (82) is used in the secondary con-
vection function, we can write in the integrand of the
third of Eqs. (19a):

t&' 8 8
IZab &ah) dpb Zab/Fa @hHa /Fa&

&aP.„aP,hi

dr exp( —iv gr)hh(t r, F„,Fb)—
0

Zaa(t r& pa& pa&v)

F.(t-,p.)
(2m)'

ivh Y
~

dr exp (—iv .gr) &ah (t—r)
U

A. (t r, y. ,v)—X, (84)
F.(t—r, p.)

where A, is defined by Eqs. (20).
Since the two parts of the shielding function have

certain properties of nonlinearity and of coupled sym-
metry that produce the compensating phenomena, it is
important in the following calculations either to leave
the correlation function in unknown form in each part
or to assume a known form such as Eq. (82). It would
not be appropriate to treat them differently, by taking
one correlation as unknown and the other known. Such

so that the secondary convection function becomes

Z.b'" ——e,eb ~ dr ~dv'exp( —iv gr)ivh'Y(v')
0

8 8
X (

— (Zab(t r,p, pb, v —v )
~ &-Ipah tlpbh ~

=e.eb ~t d7 exp( iv gr)8h(t——7)
J~

By replacing

r H, '(t r, p„v—v')—
d v' ivh' Y (v')

F.(t—7,P.)

by
H.b (t r, y. ,v v')/F. (t r—,p.)— —

H. '(t, p.,v —v')/F. (t—r, y.)
on the basis of Eq. (82), we can write Z b" in the
following approximate form:
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Z, b
' e—,eb dr exp( —iv gr) 8b(t —r)

value, as will be shown later. It follows that

Rb= (ivb/82rv) (V„/V)'. (88)

By substituting Eq. (88) into Eq. (87), we obtainH, '(t, p„v—v')
dv' ivb'V(v')

aJ F.(t,p.) e.ebivbpbH. ' t' V~I ' '

82r VV F, EV)
(89)

H, '(t,p„v—v')
=e, ebpb) dv' ivb'V(v')

~a
(86) and

e, i tV&''
Q Nbeb dpb Z b

82r vV k V)

XQ Nbeb'(C/F, )H, b. (810)

A rough estimate of expression (86) can be made by
using the equilibrium approximation (83) for H, . To
this end, we write expression (86) as follows:

Here

H, '(t, y. ,v)
Zab = 8afbtIt, R P,.

F V', (v)

H, 'b(t, y„v—v')
Rb

~
dv' 2vb'V(V')

p.

t dv'ivI, 'V(v') Vb(~ v —v'~)

Zvg= (22r2)
—' d v'

v V Y K

The summation term of the right-hand side of Eq.
(810) can be approximated by

('pbNbeb2H, b )
+1Vbeb'CH, '=QNbeb'CH, "

~

b b QbNbeb2H Obj
where H "is the equilibrium value of H, b, according to
Eq. (83). We have then

(QbNbeb'C )
gcVbebpCH .b

I

'—
I Z Nb e'bH. ,

b

k QONbeb b

so that Eq. (810) simplifies into:
for the case of a Coulomb field. The integration can be
performed by taking spherical polar coordinates with v

along the polar axis. Then we can write beb yb ab

——(v/2') (V /V)' ' p Nbeb'H ' (811)
dv' d8 dp2

0 0

Rb (22r2) '——

iv'(n~b cose+o.2b sine cosp2+upb sing sin 20)

&(sine
v 2vv cosH+v +K

where n~~, o.2I„n3y, are the direction cosines of vI, . After
integration with respect to y and with 2'= cos8, we find

where roughly
(v*) '=e. /k2T. . (812)

By comparing Eqs. (85) and (89) it is seen that the
role of Z,b'" must lie in the region of large v, and is
supposed to be overtaken by Z, b in the region of
small v. For this reason the asymptotic expressions (89)
and (811) for large v can be taken, they are

where
Rb= (in2b/82r)RO,

~ P1~00

8a8b ivy, ey, H
Z III—

ab )
Sm vI' F,

(813)

dss
4O v" 2svv'+ —v'+K'

= (2/Or)L —(v' —1)&+v2 sin '(1/v)] v'=1+K /v'

=0 for v/K=O,

=1 for v/K= 00.

Rp increases monotonically from 0 to unity as v/K in-
creases. As a convenient value for Eo, we may take

Rp—(V„/V)',

where the exponent s is an empirical parameter. Its
value lies between 0 and 1. The final result does not
depend appreciably on the particular choice of this

r
g Nbeb' dpb Z,b"' (v/v*)—p—Nbeb'Ho', (814)

b b

where the exponent s does not play any role, as was
mentioned earlier. Equation (814) suggests a cutoff of
the interaction potential at the Landau distance (812).

It is to be noted that the quantity v* defined by Eq.
(812) gives only a very rough estimate of the cutoff
of the interaction potential at small distances. A more
detailed account of v* may be obtained from Eqs.
(810) and (811) for the case of particles of like charge.
Here the repulsion overs an adequate mechanism of
cutoff in the interaction potential. However, difficulties
may appear when we deal with particles of opposite
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charge, because the expression (B10) can be positive,
negative or zero. For instance, if we have only two kinds
of particles, both with unit charge, one kind positive,
the other negative, with the same number density for
each of them, we find that QNbeb' vanishes. When the
positive ions have a multiple charge, while the gas as a
whole again is neutral, QNbeb will be positive, and thus
(B10) will be positive if e, is positive (ions), and nega-
tive if e, is negative (that is, when the subscript a
belongs to the electrons). In the latter case, Ap of Eq.
(23c) might become zero for some large value of v. It
is thus necessary to introduce the value of v~ as an
upper limit for v. Probably the Landau value kT/e' as
upper limit will serve equally well.

The eGect of the cutoff introduced in this way can be
interpreted by observing that it amounts to a change
in the Fourier transform of the Coulomb potential func-
tion between two particles, of such nature that the po-
tential for small distances (of the order e'/kT) does not
go to infinity as 1/r, but is limited to a finite value. This
has the consequence that the features which might be
produced by close encounters between particles are not
described in the proper way. But close encounters be-
tween particles of opposite charge never can be de-
scribed in a proper way unless attention. is given to the
possibility of a chemical combination. On the other
hand, from the general structure of the equations it can
be inferred that the eGect of close encounters will be
much less than that of the "grazing" deAections when
the density of the gas is low. We shall assume therefore
that the cutoff does not introduce a serious error.

APPENDIX C. TRANSFORMATIONS OF THE
COEFFICIENTS OF THE FOKKER-

PLANCK EQUATION

We shall transform the expressions (30) for the co-
eKcients of the Fokker-Planck equation. Since even
values of P' and P" in v will contribute, we shall make a
careful distinction between the even and the odd parts,
and therefore introduce the following notations:

Here

AbP= —(2me,)' dv vb Y'Qg,

(2m)'
Bbb = e~ (kTs) dv(vbvb/v) Y QB

(C4)

Q~=Ap '{2i"+D.LPi( —2) —iPp( —l)3),
(C5)

Q&
——Ap '[Pi(—2) —zP&( ——,')].

Separating the even and odd terms in Eqs. (C5), one
can reduce Eqs. (C4) to

, f
AbP= —(27re,)' dv vbV D,Pi( —2)hp i

(2m-)'

Bbb —— e,P(kT,) l dv (vbvb/v) VPPi( —2)Ap ',

Then we can rewrite Eqs. (31b) in the form

pb'(Fb") = —(vb/v'kTb) [i+u(Ui —iUp) j,
(C2)p" (Fb') = (mb/v'kTb)*'(Ui i—Up)

From Eqs. (C2), it then follows that

QbNbeb2pbp = —(V/2pr) (vb/v')

X{-'' '+D.[Pi(——,') —iP&(—-')j), (C3)

Z» o'p"=("kT.) 'LP (—l) —P (—l)3
Hence C(F,') written in the notation (20) can be
calculated. The result is

C(F ')/F '= (i/kTb) —(Ui i U—p)

x (m.kT.)
—'(mb/v'kTb)Ivbp. b(1—T./Tb).

The last term can be neglected, if T and T~ are not
very different. This simplification results in the approxi-
mate value C" in notation (20).

When. Eqs. (C3) are substituted into Eqs. (30), the
coeScients in the Fokker-Planck equation can be
written as follows:

o = Tb/T. ,

{..=p. (2m.kT.)-I,

t = (mbT./m. Tb) it.,

f &k&h

m~
—

(kT~) zP~b J: dv-
x t/' v Ap

(C1) or, with the use of notations (C1), we can write

cos8= p,bvb/p, v, 8 being the angle between y, and v,

u =42{' cos8,

Ui= (vr/2)& exp( —u'/2), even in v,

U2 ——exp( —u'/2) I du' exp(u"/2), odd in v,
0

Pi(r) =Q Nbeb'(mb) Io"Ui,

Pp(r) =P Nbeb'(mb) Io'U2,

Do= (8m'/m, )i(VkT.) 'f. cos8. —

Xp Nbeb'mb (T,/Tb)'Ui,

2e~ f var I
B,„'= (kT,)

—
dv Q cVbebpmb&(T, /Tb) ~Ui.

mV " vb6p b

This result of transformations is used in Eqs. (32).

APPENDIX D. ANISOTROPIC DISTRIBUTION OF
THE FRICTION POTENTIAL

The anisotropic part of the friction potential, given

by Eq. (39b), contains a geometrical factor J illustrat-
ing an ellipsoidal anisotropy. It is defined by Eq. (40),
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rewritten as follows:

J=] dv exp(iv q )v 8d p IP«vk/Pav. (D1)

In order to calculate J, we use spherical coordinates
with g along the polar axis.

First we have
v ~ (la='vqa cos(P.

Let p„y', ((t
' be the coordinates of p, . Then

y, v =p,v(cos(p cos(p'+sing siny sin(p' siny'

+sin(p cosy sin((t
' cosy').

With these coordinates, Eq. (D1) takes the form

Hence Eq. (D2) becomes

J= lri cos(P'(2/(2q, ) '.

Here the cosine dependence determines the ellipsoidal
anisotropy. The result (D3) is used to reduce Eq.
(39b) to Kq. (41).

APPENDIX E. GEOMETRICAL TENSOR
OF DIFFUSION IJ,J„

The diffusion coeffi.cient BJ,J,
' is a tensor characterized

by the geometrical factor Ikh, defined by Eq. (43a).
In order to calculate JkJ„we use spherical coordinates,

with p =0.1 along the polar axis, and 0;~, 0;3 as other
orthogonal axes. If o.1J„o,2J„and n3J, are projections of
(21, (82, and (28 along the directions of p, k, we can write

p 2''

.I= '

dv d)J/ dy v 'hp 'sin(Pe'"""'&
40 ap

X (cos(P cos(P'+sin(P siny sin(J' siny'

Also

vk= v((2/k cos8+(22k sin8 cosy+mph sin8 siny).

ph —p (QI/ cos8+(22/ sin8 cosy+(28h sin8 sin y),
+sing cosy sin(p' cosy' ),

which, after integration with respect to p, reduces into Hence
dv= v slnSdNydv.

00 1

J=28r COS)P/ ~ v 25 'dv t dSSe'"" With S=COS(P.0 J
VkVh

Ikh ——(2)/2)' ) dv
~

d8 sin8 dy exp( —{2 cos'8).
~u &~0

Further integration with respect to s gives After integration with respect to q, and putting cos0= s,
we have

]sinvq
J=42ri cos(P' ' v

P ( Pqa
with

) dv—cosvq,
~ ) (D2)
&ga Ikh= (7l/2)2 ~ dv ~ ds 2' P /8 p

CosP Pa ' fa/Paqa.
X {(2)k(2lhs'+-2' ((22k&2k+(28k(28h) (1 8 )}exp( { s )

Now denote the integral in the right-hand side of
Kq. (D2) by

Now, since
~iko'iJ8 ~khan

(SlnVqa COSVqa)
M= ~" 2~()-)

~

— ——— (dv,
v qa vqa )

and introduce the auxiliary integral

we can write

so that
(22k(22k+(28k(28/) 8kh (21k(21/))

1t t" e"" 1" e "2

S= v 268 ' sinvq, dv= — dv + dv
J, 2, [~, , „j

it is easy to verify the following relation:

t

Ikh=(2m')*' ' dv(php) '

~1

X d& exp( VS ){S( (21k(21h 8kh)+ (8kh k&1(h2)1} ~

BM
=—(S—2M).

Bg~ g~

When we replace the integrals in s by the following
va, lues:

As a good approximation we can write
3f=-,'S,

and

1

Jt dk exp( —{2s2)=+8.erf{/{,

valid for large q . Since the asymptotic value of 5 is

S=(~2q,) ',
we find

M=(2/(2q ) '

+2). d
ds 82 exp( —{282) = — — (erft/{), —

"1
and the integral with respect to v by L, according to
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Eq. (35a), we obtain finally

vr'
t

1 d
Ii i = L——(3ntsrrU, —&r i)— (erg/f')

v2 t 2f df

This result is used in Eq. (43b). As a partial check of
the correctness of this result, we may verify the follow-

ing relation:

Ia Pa/d sky

+ (~ks rrtk~rrh) erik/i
since Ii, was calculated in Eq. (35b).
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Stark Effect for Cyclotron Resonance in Degenerate Bands

J. C. HENsEL AND MARTIN PETER
BelL Telephone Laboratories, MNrruy Hill, Rex Jersey

t,'Received November 24, 1958)

A calculation of the motion is given for an electron in a simple band subjected to perpendicular magnetic
and electric 6elds. It is shown that the cyclotron resonance frequency is unaffected by the presence of the
electric 6eld. For degenerate bands, however, there is a Stark shift of the cyclotron transitions between the
low-lying "quantum" states. Calculations using second-order perturbation theory indicate that fractional
line shifts of Av/v0~10% may be obtained under reasonable experimental conditions. This effect may be
useful in the study of the valence bands of germanium and silicon.

I. INTRODUCTION

"N the presence of a magnetic 6eld $C the continuum. . of energy levels for a band coalesces into discrete
sub-bands, the so-called Landau levels. An electric field
applied perpendicular to K perturbs the motion of the
carriers in the crystal giving rise to "Stark" energy
shifts of these Landau levels. For simple bands, how-
ever, an appropriate translation of the coordinate axes
can transform the Schrodinger equation to a form free
of the electric field. Although this transformation dis-
places the Landau levels, it will be shown that the
selection rules allow transitions only between levels
which have undergone equal energy shifts. Conse-
quently, there is no observable e6ect on the cyclotron
resonance lines corresponding to these transitions.

An example where this is not the case is provided by
degenerate bands such as the valence bands in ger-
manium and silicon. In the framework of the e6ective-
mass formalism, Luttinger' has determined in detail the
energy level schemes for these bands in the presence of a
magnetic field. Here the situation is described by a
system of coupled Schrodinger equations. These calcula-
tions predict that the spacing of low-lying energy levels
will deviate considerably from the classical cyclotron
frequencies. These anomalous "quantum" effects have
been observed in germanium by Fletcher, Yager, and
Merritt' in cyclotron resonance and by Zwerdling, Lax,
and Roth' in the oscillatory magneto-absorption effect.

If the above system is perturbed by a uniform electric
field, the coupled Schrodinger equations no longer admit

' J .M. Luttinger, Phys. Rev. 102, 1030 (1956).
~ Fletcher, Yager, and Merritt, Phys. Rev. 100, 747 (1955}.' Zwerdling, Roth, and Lax, Phys. Rev. 109, 2207 (1958).

the simple transformation of the classical case; and,
consequently, the low-lying quantum levels may experi-
ence a Stark shift. That the energy differences do indeed
undergo a shift will be shown in Sec. III using second-
order perturbation theory for the approximate "iso-
tropic" case described by Luttinger. ' In this model the
energy surfaces of the valence band are assumed spheri-
cal rather than Quted so that the energy levels are
independent of the direction of the magnetic field. For
a more realistic comparison with experiment the calcu-
lations in principle can be extended to an anisotropic
case.

Numerical results indicate that the Stark shift may be
large enough to aid in the identification and measure-
ment of many of the cyclotron transitions in germanium
involving the low-lying anomalous magnetic states.

II. SIMPLE BANDS

Let us consider first the motion of an electron or hole
in a simple band subjected to a uniform magnetic 6eld $C

and a uniform electric 6eld 8 perpendicular to X, We
shall assume this band to have ellipsoidal energy sur-
faces similar to those for the conduction bands of silicon
and germanium but centered in the Brillouin zone at
4=0.

)k'+k-' k;i.(a)=a i-
2rrs, 2rrs. &

where k is the usual band wave number that varies over
the Brillouin zone. In (1) mr and ms are the effective
masses, respectively, along the transverse and principal
axes of the energy ellipsoids. It is not difficult to extend
the results to bands having displaced minima at k=-kp.


