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Elementary Particles in a Finite World Geometry
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To account for the elementary particles a new physical geometry may be needed. A previous suggestion
that this geometry may be finite is followed up by determining the representations of the orthogonal (Lorentz-
like) group. Because of the existence of a new type of orthogonality-preserving transformation some of the
representations are multiple-valued. A change of value is identified with a gauge transformation and electric
charge is recognized as a certain number determining the many-valuedness of the representation. This charge
number reverses sign under space inversion. The charged pions and sigma particles are correlated with some
of the new representations.

1. INTRODUCTION

'HE most exciting implication of recent discoveries
and not so recent difhculties in physics is that the

Euclidean concept of physical geometry breaks down
for the subatomic world. Obviously this breakdown
cannot be directly tested for there are no measuring rods
small enough. This lack indeed leaves it even possible
that no metric exists in the small. To account for the
elementary particles and their properties a new world
geometry should be attempted, one which is like
ordinary geometry in the large but in the subatomic is
non-Euclidean, non-Riemannian or even nonmetric.

For such a geometry the quantum numbers Q
(electric charge), I (isotopic spin), and U (d'Espagnat-
Prentki number), or Y (the hyper-charge) characterizing
the elementary particles should, like spin, arise naturally
as characteristic of representations of geometric trans-
formations and should be eigenvalues of operators for
these transformations. This is just to say that the
geometry should embrace isotopic spin space.

The Euclidean requirement in the large is a difhculty,
but merely to get a diGerent geometry is simple. Instead
of taking the coordina, tes of world geometry from the
real field (which leads to ordinary Euclidean geometry)
we take them from some other ring. ' To satisfy the
difricult requirement that the geometry be Euclidean in
the large, a large enough part of the world ring must be
like part of the real number system. (For the particular
world ring used in this paper, how to do this is known. )

It is necessary to start out with a simplified world ring
for the practical reason that otherwise it will be hard to
see the physical meaning of the mathematical expres-
sions. Ke shall at first even oversimplify the problem so
that not all our demands will be met, and we naturally
begin with restrictions which reduce the amount of
unfamiliarity as much as is consistent with some
novelty. We shall try a world ring which is a commuta-
tive held, and in order to be sure of eliminating diver-
gency difficulties we shall furthermore assume that it is
of finite order. (Hence there will be no infinite sums and
no infinities can arise. ) So long as the order of the world
ring is sufliciently large (and it must be enormous to

' R. H. Bruck, Am. Math. Monthly 62, Part II, 2 (1955).

provide for the number of points in the world), there can
be no objection in principle to its being finite. Experi-
ment has never forced the conclusion that the number
of points is in6nite, only that it is very large and atomic
physics has always contained the element of discreteness
which is one aspect of finiteness. It might seem a strange
assumption that there should be some particular
number singled out as special in the physical world and
yet we already know of such, namely the fine structure
constant. In fact, the existence of the fine structure
constant is itself the best argument for choosing the
world ring to be hnite.

All 6nite 6elds are known. ' 4 The order of any finite
field is a power of a prime, that is, a number of the
form p" where p is a prime and rt is an integer. For each
such number there is a field and only one 6eld of that
order. Such a number 6eld is also known as a Galois field
and is denoted by GF(p"). If the geometrical coordi-
nates of each point are taken from such a field, that is, if

x„e GF(p"),

the resulting geometry is a finite geometry5 with a finite
number of points and lines. There is a fundamental
length but not a smallest length for the latter concept
loses its meaning, It should be clearly understood that
this is not a cubic lattice theory.

We shall here consider only the case~ n= 1 though it
will later be seen that this geometry is too simple. We
shall find the representations of the orthogonal group
associated with the Minkowski metric form and among
these will be a new type, multivalued. Kith the assump-
tion that the various particle 6eld functions transform
according to these various representations, it will be
possible to recognize the charge number Q as a new

2 L. E. Dickson, Linear Groups (B.G. Teubner, Leipzig, 1901).'B. L. van der Waerden, Modern Algebra (Frederick Ungar
Publishing Company, New York, 1943).

4A. A. Albert, tiundamental Concepts of Higher Algebra (Uni-
versity of Chicago Press, Chicago, Illinois, 1956).

D. J. Struik, Analytic and Projectioe Geometry (Addison-
Wesley Press, Cambridge, Massachusetts, 1953).

G. Jarnefelt, VeroGentlichungen des Finnischen Geodatischen
Institutes, No. 36 (1949).

~ G. Jarnefelt and P. Kustaanheimo, Skandinaviske Mate-
matikerkongress i Trondheim 11, 166 (1949).

G. Jarnefelt, Ann. Acad. Sci. Fennicae Ser. A.I., No. 96 (1951).
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quantum number characteristic of the representation,
though not as an operator for geometric transforma-
tions. It will then appear that the correct conjugation
corresponding to space inversion is not just the parity
operator but includes also reversal of charge. It is
"combined inversion. "

It is our plan to discuss U in another paper and to
derive there the Gell-Mann —Nishijima scheme for
charged particles.

that —1 is "negative, " then these elements can be
"ordered. "An element is "greater than" another if their
difference is "positive. "This is not a true ordering for
the relation is not transitive throughout the whole field,
but it is transitive within the large subset and this
ordering might be called a "local ordering. "

In this way the first cV(lit gz Inp) numbers be-
come "ordered" if the prime is chosen to be of the form

2. FINITE WORLD GEOMETRY AND THE
FINITE WORLD FIELD

p=8x g q, —1,
i=1

(2.2)

A number of years ago it was already conjectured by
Jarnefelt~' that physical geometry might be finite with
the coordinates elements of a finite field of prime order p:

x„e GF(p). (2 1)

~P. Kustaanheimo, Soc. Sci. Fennica, Commentationes Phy. -
Math. 15, 19 (1950).' C. C. MacnuGee, An Introduction to Abstract A/gebra (John
Wiley R Sons, Inc. , New York, 1940), Sec. 17, p. 38."See reference 2, Sec. 61, p. 44.

This finite field consists simply of the integers taken
modnlo the prime p. If p is large enough, the points of
the geometry are so numerous and so "close together"
as to be experimentally indistinguishable from a
continuum. This in itself, however, is not enough to
guarantee an approximation to Euclidean geometry, for
the elements of a finite field are not ordered. They can-
not be classified into positive and negative, nor can
they be compared in magnitude. In the corresponding
geometry the points on a line do not lie in order, and
line segments cannot be said to be longer than or
shorter than other line segments. Finite geometry does
not simply become Euclidean to a better and better
approximation as p is increased.

The way around this obstacle was seen by Kustaan-
heimo. ' It is not necessary to require that the whole
finite geometry be an approximation to Euclidean
geometry. All that is needed is for a large enough part
of finite world geometry to have the Euclidean proper-
ties. In terms of the coordinate field (the number
field from which the coordinates are taken), this means
that a large enough subset of the elements should be
ordered. This may be accomplished by first of all
remarking that half the nonzero elements are squares
(quadratic residues) and half are not squares (non-
residues), and under multiplication the property of
being a square or a not-square is analogous to the
property of being positive or negative. ""However the
analogy breaks down for addition since it is not neces-
sarily true that the sum of two squares is a square.
Nevertheless, if p can be chosen so that the first X
integers are squares (mod p), 1V being enormously large,
and if then the term "positive" is applied to squares and
the term "negative" to not-squares, then the usual
arithmetical rules of signs will hold over a very large
subset of the elements. If furthermore p can be such

where x is an odd integer and g q; is the product of the
first k odd primes. Dirichlet's theorem~ guarantees the
existence of a prime of this form. The argument,
making use of quadratic reciprocity" is that this makes
—1 "negative" and makes 2 and the Grst k odd primes
"positive. '"4

With the coordinate Geld so chosen, the geometry
would appear to be ordinary Euclidean geometry up to
very large and down to very small distances. Jarnefelt"
has estimated roughly that for ordinary geometry to
hold from 10 "cm to 2X10P light years P is of an order
of magnitude given by

10iP81 (2 3)

where

aild

s= x+iy,

x, ys GF(p),

j2= —1.

(2 5)

(2 6)

(2 &)

This set of p' "complex" numbers also forms a field, the
finite field GF(p').

For a prime of the form

(2.8)

as is the case with the prime given by Eq. (2.2), it will

"T. Nagell, Introduction to %umber Theory (John Wiley @
Sons, Inc., New York, 1951), Chap. IV, Sec. 44."See reference 10, Sec. 19, p. 63.

'4 P. Kustaanheimo, Ann. Acad. Sci. Fennicae Ser. A.I., No. 129
(1952). Kustaanheimo shows that the necessary condition is
p=8m II g; —y', where x and y are integers such that p is prime.
However, the essential results of the present stage of the theory are
not aftected by requiring x to be odd and y' to be unity."See reference 8 and also reference 14.' See reference 2, Sec. 64, p. 46.

Once the limits of "ordinary" dimensions are exceeded,
however, the geometry becomes quite diferent because
the coordinate field is not completely ordered.

Exemplifying the novelties which arise in such a
theory are the solutions (p+1 of them") which exist for
the equation

(24)

For these solutions, at least one of n, P is outside the
range of "ordinary" arithmetical behavior.

. It will be convenient to introduce "complex" numbers
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readily be seen that

Also

since"

zy = —z.

g~= X—
ZP)

(2 9)

(2.10)

example is

where

g: xo = —xz, xi = —nxi+pxz)
xz ——+xp, xz =pxi+nxz,

~2+p2—

(3.3)

(3.4)
xy= g

in GF(P), (2.11)

and all other terms in the expansion of (x+zy)" contain
p(—=0) as a factor. "Thus "complex conjugation" may
be performed by raising to the power p.

(2.12)

When these are adjoined to the Lorentz group, the
resulting set of operations forms a group which we shall
call the extended orthogonal group.

As in ordinary geometry, there exists a homomorphic
group of 2)&2 matrices, the spinor group defined as
follows.

Ke first set up the matrix""

It follows that
s~'= s*s=x'+y'. (2.13)

(xo+xz xi—zxz )x=]
(x,+zx, x,—x, i

This number is not necessarily "positive. "For numbers
n, p which form a solution set of Kq. (2.4), we have

=x01+0 ix1+0 2x2+0 zx 8 ) (3.5)

n+z—p,

f' =f"=n iP

(2.14)

(2 13)
IIXII =xo (3.6)

where 0 ~, a~, o.
~ are the Pauli matrices. The matrix X has

as its determinant the metric form.

0'+'=f*f =~'+P'= 1— (2.16)

3. EXTENDED ORTHOGONAL GROUP AND
THE SPINOR GROUP

In finite geometry the analog of the Lorentz group is
the finite group of linear transformations leaving
invariant the quadratic form

We now subject the matrix X to the linear trans-
formation

X'= a*Xa, (3.7)

where a is a 2&&2 matrix with coe%cients from the
"complex" finite field GF(p') and where a* is the
Hermitian conjugate of u. If we set

Xo X] gg Xg ) (3 1) X = xp +0'ixi +0'zxz +0 zxz, (3 g)

which we shall call the metric form. As in ordinary
geometry, these linear transformations are of determi-
nant +1 or —1, the former making up a normal sub-

group of index two called the proper Lorentz group.
This subgroup is of order'

we obtain from (3.7) a linear transformation of the
co-ordinates which is real because"

(3.9)

If it holds true that

p'(p'+ 1) (p' —1) (3 2) II~I~'II~II =
II~II

"+'=1 (3.10)

Under the transformations of the whole Lorentz
group the orthogonality of two vectors is preserved, and
in ordinary geometry these are the only linear trans-
formations with this property (apart from the dilatations
of space, which we will not consider in this paper). In
finite geometry, however, there exist transformations
preserving orthogonality but reversing the sign of the
metric form. They are outer automorphisms of the
Lorentz group. ' We shall call these the extraordinary
orthogonal transformations. They can all be generated
from the Lorentz group by a single one of them. An

'7 Fermat's theorem. See reference 10, Sec. 11,p. 24; reference 4,
Sec. 13, theorem 20, p. 46; and reference 3, Vol. 1, Sec. 37, par-
ticularly p. 118.

'8 See reference 10, Sec. 11, Example 4, p. 26.
' See reference 2, Sec. 172, p. 160. When Dickson refers to the

orthogonal group he means this subgroup of determinant +1.
~ J. Dieudonne, On the Automorphisms of the Classical Groups

(Memoirs of the American Mathematical Society, New York,
1951),No. 2, Chap. X and particularly p. 51.

then the transformation is a Lorentz transformation
since

—Xo X] X2 Xg (3.11)

Unexpectedly the transformation —I, reversing space
and time coordinates, is also induced in this way:

where

(l Oy
~(—I) =

I

&0
(3.12)

(3.13)

"H. Weyl, Theory of Groups and Quantum Mechanics (Dover
Publications, New York, 1950), Chap. III, Sec. 8(c)."H. Boerner, Darstellungen eon Grup pen (Springer-Verlag,
Berlin, 1955},Chap. IX, Sec. 3.

2' This equation is true for GF (p2) but not generally for GF(p")
where n)2.
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~a, n=0, 1, . p

where co is any finite complex number satisfying

(3.14)

Such a situation is not possible with ordinary complex
numbers.

The set of matrices a satisfying Eq. (3.10) forms a
group homomorphic to the proper Lorentz group and,
as shown in Appendix I, this homomorphism is p+1 to
one. All matrices of the form

then the matrices a"&'& also form a representation for
each j, where

j=O, 2, 1, 2, (p —1)/2. (4.1)

(j=0 signi6es the identity representation. )
We denote the complex conjugate of the matrix a by

the symbol a. As shown by Brauer and Nesbitt, the
irreducible representations of GLH(2, p') are given by

~~a~~
"a&"&Xa&'"', (direct product) (4.2)

(o~'= 1 (3.15) where

map onto the same Lorentz transformation.
To induce an extraordinary orthogonal transforma-

tion, we see from Eq. (3.11) that we must have

For our subgroup,
n=O, 1, .p' —2.

(4.3)

the range of values of n becomes
3.16

The transformation g [Eq. (3)j arises from or alternatively
as=0, 1, .2p+1, (4.4)

~(g) =
I

OP
(3.17)

It can be seen from Eq. (3.16) that when these are
included in the spinor group the homomorphism cannot,
as in ordinary geometry, be made two to one by
restricting to the unimodular group

(3.18)

As a result we are left with a group of 2&(2 matrices

satisfying
(3.19)

e=O, +-', , +1, +(p+-', ), p+1. (4.6)

We should note by the way that for the extraordinary
orthogonal transformation g,

m=0, +1, +2, . +p, p+1, (4.5)

the other values merely repeating these representations.
From the homomorphism it is seen that these are

also representations of the proper extended orthogonal
group. They are not, however, all the representations.
Because the homomorphism is not one to one, we may
take e to be half-integral and still remain within the
range of multivaluedness of the representations.

and possessing a p+1 to one homomorphism onto the
proper extended orthogonal group. We shall call this
the extended spinor group.

where
(4.7)

(4.8)

4. REPRESENTATIONS OF THE
ORTHOGONAL GROUP

Since among the representations should be included
the "vector" representation according to which the
coordinates transform (the orthogonal group itself), the
representations we seek must be matrices having
coefficients in GF(p) or GF(p'), '4 that is, they should be
modular representations. We can get the modular
representations of the orthogonal group from those of
the spinor group because of the homomorphism. The
spinor group is a subgroup of the two dimensional
general linear homogeneous group GLH(2, p2) over the
complex finite field GF(p'), and all the irreducible
modular representations of this group have been given
by Brauer and Nesbitt. ~'

If we denote by Pi, $2 the components of the spinor P
which is transformed by the spinor matrices a and by
ii"&', the matrices of dimension 2j+1 by which the
monomials Pi'++&', m=0, ~1, ~j transform,

'40r even in some further extension of the number field if
necessary."R. Brauer and C. ¹sbitt, Ann. Math. 42, 556 (1941),Sec. 30.

but rather

For a Lorentz transformation for which

(4.10)

(4.11)

(4.12)

the factor ~~a~~" merely produces a change to another
value of the same representation. It gives no contribu-
tion to the spin. By itself it is a one-dimensional spin-
zero representation. In analogy with the case of ordinary
geometry, we say that the representation (4.2) corre-
sponds to a spin j+k.

To represent the improper transformations a doubling
of the components is required. Space inversion is
induced by the nonlinear transformation

X =EX' (4.13)

and i is not a square in GF(p'). To take the square root,
an extension to GF(p') is necessary. If we define

(4 9)

then it is not true that
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where X means the complex conjugate of X and

(0 1y

03
(4.14)

zero) in agreement with the experimental fact that all
charges are multiples of a basic unit.

The usual unimodular spinor representation corre-
sponds to the representation

In the four-component form, the representations are

(a 0 ) (a 0

&0 .ae-i) Eo Ilail*a*-i)
'

and space inversion is

0 0 1 0
0 0 0

0 0 0 '

.0 1 0 0.

(4.15)

(4.16)

and from the present point of view is a neutral repre-
sentation artificially charged.

The 4-component representations of Eq. (4.15) trans-
form under a gauge transformation not simply by
multiplication by a phase factor but by a phase factor
for the 6rst two components and by its inverse for the
last two components, like a phase factor containing a
ys operator.

The two singly charged representations of "simplest"
form are

In this 4-component theory, however, covariants trans-
forming like scalar, pseudoscalar, or tensor do not exist
in general, for their existence depends on the condition"

and
a, m=0, j=-'„4=0, (5 6)

(5.7)

(4.17)

which cannot be applied here. Because of this, the
Brauer-WeyP' method of deriving the four-component
spinor representation cannot be used in this theory, nor
can the full a.rray of covariant interactions arise as in
the usual theory. In particular, only V, A arise.

5. GAUGE TRANSFORMATIONS AND
THE CHARGE NUMBER

The multivaluedness of the representation consists in
the fact that the p+1 spinor matrices related by

the former being of spin ~ and the latter of spin zero. It
seems natural to identify this latter with the x+ meson
and because of the similarity of the two in isotopic spin
space we identify the former with the Z+ particle.

6. COMBINED INVERSION

We can see from Eqs. (4.15) and (4.16) that under
space inversion the representation is changed into one
similar to its complex conjugate. Under a guage
transformation

(6.1)

the complex conjugate representations transform by

where
(5.1)

(5 2)

c~e @6, (6.2)

(6.3)
all represent the same element of the orthogonal group.

This means that co 1 is just as much a representation
of the identity I of the orthogonal group as 1 itself is.
Hence the transformation on the spinor,

(5.3)

where
lail

"a&'&'&)&a&s" ~~'Ilail "a"~&xa&'"&

Q=2(n+ j—k). (5 5)

From the form of this transformation we recognize
that the representation label Q is to be identified with
charge number. It is an integer (positive, negative, or

"R. Brauer and H. Weyl, Am. J. Math. 57, 425 (1935).

is to be considered as having the same physical effect as
multiplying by the identity. Since, from Eq. (5.2), co is
like a phase factor, what we have here corresponds to a
gauge transformation and gauge invariance.

Under a gauge transformation (5.1), the general
representation I Eq. (4.2)) undergoes the transformation

respectively.

'7. CONCLUSION

(6.5)

Taking world geometry to be finite, we have found
part of the meaning of electric charge. In 6nite geometry

2' L. D. Landau, Nuclear Phys. 3, 127 (1957)."T.D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).
-"' A. Salam, Nuovo cimento 5, 299 (1957).
~ L. C. Biedenharn and H. E.Rohrschach, Phys. Rev. 107, 1075

(1957).

from Eq. (5.2), which is characteristic of a particle of
the opposite sign of the charge.

In this theory the mirror image of a charged particle
has the opposite charge. The space inversion operator is
the "combined inversion" of Landau. We will designate
it by CI'. We will identify two conjugate representations
related by CI' as particle and antiparticle. ""Hence
the representations according to which the m (—=fr+)
and the Z+ particles transform are

(6 4)
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some representations of the orthogonal group are many-
valued, a change of value being a gauge transformation.
The charge number determines the degree of multi-
valuedness. Space inversion produces reversal of sign
and is therefore "combined inversion. "

The hypercharge number V and the Gell-Mann-
Nishijima scheme are to be discussed in another paper.

Looking back over the argument, we find that electric
charge arises from the existence of linear transforma-
tions reversing the sign of the metric form, and these
occur because the world coordinate field is not com-
pletely ordered. It is strongly suggested that any
theory accounting for electric charge must possess this
feature.

Looking forward to the future development, we see
that there are two main lines of generalization. First of
all of course, the charge number is to be not just a
representation label but also a coupling constant to the
electromagnetic field. These two properties are related
through the notion of afline connection. "To advance on
this line will require a calculus and a generalization of
the metric form.

Secondly, to identify Q as a geometric operator will

require such an extension of the coordinate algebra as
will make isotopic space part of the geometry.
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APPENDIX

In this Appendix we show that the homomorphism
relation of the spinor group to the proper Lorentz group
is p+1 to one.

First of all, the Lorentz transformation induced by

(A.1)

must be proper, that is, its determinant must be +1.
This may be shown by the same line of argument as
followed by Boerner" for the case of ordinary geometry.
Secondly, two spinor matrices which differ otherwise
than by a multiple co" of the identity, where co is a phase
factor, must lead to di6erent Lorentz transformations.
For suppose that a~ and a2 are two spinor matrices lead-
ing to the same Lorentz transformation. Then a~a2 '—=a

"P.G. Bergmann, Phys. Rev. 107, 624 (1957).

must lead to the identity Lorentz transformation,

a*Xu= X.

Taking X= i, we have
@*a=i

(i.e., a must be unitary). Hence

and from (A.2)

(A.2)

(A.3)

(A.4)

(A.S)

so that a must commute with every X and must there-
fore be a scalar multiple of the identity

a= Xi.
I

But since u is unitary, we must have

)*X=1,

(A.6)

(A.7)
that is,

where

Thus

A=co", n=0, 1, p

Ql~ = i.

0 q
= co"G2.

(A.S)

(A.9)

There are p+1 a's differing from each other by such a
phase factor, all of which lead to the same proper
Loreritz transformation. If they diGer otherwise, they
must lead to diGerent Lorentz transformations.

The spinor matrices are of the form

(n P)
si

with coefficients in GF(p'), so that each coefficient may
take on p' different values. They are not independent,
however, but are related by the condition

N=O, 1, p. (A.11)

For n/0 there are p'(p' —1) such matrices, and for n=O
there are p'(p' —1), giving a total of

(A.12)

none of them differing (for fixed cu) merely by a phase
factor. They must lead to p'(p'+1)(p' —1) different
Lorentz transformations. But this is just the order of
the proper Lorentz group and hence every proper
Lorentz transformation must arise. Since there are p+1
spinor matrices which induce each Lorentz transforma-
tion, the homomorphism must be p+1 to one.


