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TAsLE I. Imaginary part of the central optical-model potential,
Vcl, in Mev () =0.857).

Efab (MeV)

Vgq, with exclusion principle
Vgl, without exclusion principle
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a The value of X, has been extrapolated.

The integration (3) has been made numerically and
the results, expressed in terms of the mean free path )„
are shown in Fig. 2. For comparison the mean free
paths obtained (a) from an isotropic angular distribution
(with the same k dependence), and (b) from complete
neglect of the exclusion principle, are also plotted.

Finally, Table I shows the imaginary part of the
central optical-model potential, according to formula

(1), at several diferent energies, together with the
corresponding values for the case of no Pauli principle
effect.

III. CONCLUSION

The large value of the nucleon-antinucleon cross
section has long been known to imply a very short mean
free path for antinucleons in nuclear matter. The
exclusion-principle effect considered here increases some-
what the mean free path, but not enough to change the
conclusion that nearly all antinucleon interactions occur
on the nuclear surface.

In the same energy range the nucleon effective mean
free path is larger than 5&10 "cm, showing a striking
difference between the nucleon-nucleus and antinucleon-
nucleus interaction.
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In this paper a particular term in the perturbation expansion for the two-particle scattering amplitude
is examined. We consider the real plane denned by the square of the total four-momentum and the square of
the momentum transfer, and show that the scattering amplitude is an analytic function of both variables
in a certain connected region in this plane. The precise boundary of the region is found. The purpose of this
work is to find some conditions that integral representations of the scattering amplitude must satisfy, with
the hope that such examples may aid the study of such integral representations in general.

We also apply our general result to some particular cases of physical interest.

a recent note' we discussed some properties of
~- the vertex operator in perturbation theory, corre-

sponding to the three-vertex (triangular) Feynman
diagram. For simplicity, we restricted our discussion
to the case of six (possibly different) scalar fIelds, and
studied the matrix element as a function of the three
independent kinematic invariants of the problem,
which in our case were chosen to be the squares of the
three incident four-momenta. We then studied the
properties of the matrix element as a function of one
of these invariants, keeping the other two fixed at
values corresponding to physical particles satisfying a
number of "stability conditions. " The function so
defined was shown to be analytic in a cut plane, and
our objective was to determine the exact position of
the first branch point on the real axis.

*Work done under the auspices of the U. S. Atomic Energy
Commission.

f National Science Foundation Postdoctoral Fellow.' Karplus, Sommerfield, and Wichmann, Phys. Rev. 111, 1187
(1958). This will be referred to as Paper I, References to the
literature may be found the~e.

In this paper we investigate in a similar fashion the
matrix element corresponding to the four-vertex square
diagram of Fig. 1, which describes a contribution in
perturbation theory to the so-called "four-point
function. " We again restrict ourselves to the case of a
number of interacting scalar helds; since the spins of
the particles in no way affect the analytic properties
of the scattering amplitude, spin may, for the purpose
of this study, be ignored.

In this problem we may distinguish six independent
kinematic invariants: the squares of the four incident
four-momenta, the square of the total incident mo-
mentum, and the square of the momentum transfer,
for example.

We keep the erst four variables at fixed values
corresponding to physical particles, and subject to a
number of "stability conditions. "Our limited objective
is to show that the matrix element is an analytic
function of the two remaining variables in a certain
connected region in the plane where both are real, and
to determine the precise boundary of this region. The
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thresholds in the spectral representation of the scat-
tering amplitude may be inferred from this information.
Our hope is that a few examples will aid in the study
of general spectral representations, especially when
several stable particles occur in the theory.

Our discussion is applied to some "realistic" cases
of physical interest. '

Consider the diagram in Fig. 1, where the lines
represent scalar particles. For the sake of symmetry
we take the four-momenta p12, p28, p84, and p41 of the
four particles to be "ingoing, " so that the law of
momentum conservation takes the form

P12+P23+P34+P41—0 (1)

If a constant factor is ignored, the Feynman ampli-
tude for this diagram is given by the integral (real
momenta)

Fxo. 1. Feynman diagram for
general scattering process in
fourth order.

Our objective now is to study the integral in Eq. (2)
as a function of the remaining two variables y~s and

y24, to determine the connected region in the corre-
sponding real plane in which the amplitude is an
analytic function of both variables; and to describe
the boundary of this region, say,

y18) g13(y24). (7)

4

D1=Q rxpÃp Q rzzrrjp&j q (3)

where we have used the abbreviations

Pl 8 P12+P28 (P84+P41) )

P 24 P23+P 34 (P41+P12—) )

For convenience we introduce the variables y&l by

pop= m8 +mp —2msm1y84.

With these variables we have

4

D1= p 4132m„s+2 g Q r23411y38mom8
k=1 tb=l l=7c+1

P= dna dn2 dn3 do', 4
J

p Jo kp 4 p

5 (1 Q1—0!2—428 —424)

(2)
D2

Since inspection of Eq. (2) shows that the function is

analytic when any one variable is complex while the
others are real, it follows from Eq. (7) that the singu-
larities of F in the complex y~3 plane are then confined
to part of the real y~3 axis,

y~3&~yi3.

A spectral representation for Ii that displays this
information is

1
I

»3&»4& ImP(t+ie, y„)
&(yro, y24) =»m —

!

— dt. (g)
e—+0 ~ Q

To continue the analysis the following fractional
linear transformation is convenient:

ns (xs/mo——)/ g (x1/m1), p x8= 1.

It may be solved for the x~ .'
4

xs=Coms/ p 411m4
l=l

We subject the four variables associated with the
The region of integration remains unchanged under this

single-particle invariants to the stability conditions
transformation, and in place of Eq, ('2j we obtain

y12) —1, y28) —1, y34) —1, y41) —1, (6)

which state that at each vertex the external mass is
less than the sum of the two masses to which it is
coupled. One might impose further conditions of this
nature by restricting these variables to values less than

this would correspond to triangular conditions,
according to which any mass is less than the sum of any
two other masses to which it is directly coupled. We
will, however, use only conditions (6), which we assume
to hold throughout the remaining part of this paper.

' R. QehD1e ar1d J.G. Taylor /Phys. Rev. 113,371 (1959)) have
treated a variety of general scattering processes without resort to
perturbation theory.

pl ~l ~1 p1
F= dx1 rtxs dxs dx4

"o o "o o

3 (1—x1—x2 —xs —x4)
(9)

m]m2mam4D
4 4

D= Z xo'+2 Z 2 xsxiy31.
k=1 i=k+1

In Appendix A, the analogous transformations are
applied to the triangular vertex diagram considered in
Paper I, and the results are rewritten in the new
notation. This forms a useful introduction to the study
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of the four-point function, since the case of the vertex
function is much simpler.

Some properties of F may be inferred directly when
D is rewritten:

D= (xiyxs —xs —x4)'+ 2xlxs(yis —1)+2xsx4(ys4 —1)

+ 2[xixs (1+y») + xsxs(1+yss)+ xsx4 (1+ys4)
+x,x4(1+y,4)]. (10)

The stability conditions (6) then imply that, in the
region of the x integration, the denominator D cannot
vanish if

region R for which D cannot vanish at all in T. We are
thus led to consider three cases.

Case (i) D.
—can take on nonpositive values on some

edge of T. On an edge two x's are equal to zero, e.g.,
xI, ——x~=0. The smallest value that D assumes on such
an edge is

min[1; -', (1+ysi)].

Because of the stability conditions we need consider
only the two edges x&=F3=0 and x2 ——x4——0; the region
R; therefore is

y»& 1 and y24& 1. (11a) R;: {y»)—1, ys4& —1). (14)

On the other hand, if

y»& —1 and/or ys4& 1, (11b)

the denominator D vanishes at some point in the region
of integration.

Thus F(y», ys4) is an analytic function of both
variables in the region de6ned by the inequalities
(11a). This plane region is included in a larger con-
nected plane region R in which F is an analytic function
of both variables. We shall find the boundary of this
region R and show that R consists of all points (yis ys4)
such that in the range of the x integration the expression
D does not vanish.

To prove this assertion let the region of integration
be T,

T: {xs)0, xi+xs+xs+x4=1), (12)

a,nd let R,' be the region in the real (y», ys4) p»ne in
which D cannot vanish if x is in T. Then, if the point
(y», ys4) is in R', so is the point (y»+Bl ys4+'5s) for
non-negative 8~ and 52. Furthermore, our previous
remarks show that R' is included in the region y»& 1,
y24& —1.Thus, if we let y24 be fixed and such that some
point of the line y24 ——constant belongs to R', then
there is a g» such that the point (yis, ys4) is in R if
and only if y»&y&3. Furthermore, if y»&y», the
integrand is positive. Therefore the point (g»,ys4) is
necessarily a singularity of F as a function of y».' On
the other hand, E is certainly an analytic function of

y» and y24 in R'. Hence R and R' are identical.
The problem is thus to find the region R in which

the expression D cannot vanish if x is in T. The region
T consists of the interior and boundary of an equilateral
tetrahedron. The xl, may then be interpreted as bary-
centric coordinates. We note that at the vertices
(xls

——1, k =1, 2, 3, or 4) we have D= 1. Our procedure
will be as follows: We 6rst 6nd a region R; such that
the expression D is positive on every edge of T if and
only if (y», ys4) is in R;. Next, we find a smaller region
R;; such that the expression D is positive on every face
of T if and only if (yis, ys4) is in R;;. Finally, we find the

Case (is) W—e assume that (y», ys4) is in R; and
consider the possibility that D has a nonpositive value
on the face of T de6ned by x&=0. Except for the
subscripts, the function D is then the same as Dp, Eq.
(A4), which occurs in the vertex problem. The solution
from Appendix A may therefore be used. Accordingly,
we introduce six angles between 0 and m, Oi2 6/3 0/4,

g93 824 834 by the conditions

yf )=cosel ),

which are to be used only when they are real, i.e.,
~ yss ~

& 1. Furthermore, let

I-1——1 yss+ys4 &0
i &

Li ——cos(8ss+8ss) yss+ys4 &0 i

yi4+ys4 ~&0
)

Ls cos(814+8s4) y14+ys4& 0

y»+yi4 ~~0

Ls cos(812+814) yls+y14 &0

y»+yss &~ o
)

L4 cos(812+8ss) yls+yss &0

Ls4= max[L„I.,],
Lis ——max[Ls, L4].

We may then conclude that the region R,; is

R,;: {yis)Lis, ys4) Ls4).

(16)

(17)

(20)

(21)

The denominator D is positive on all faces of T if and
only if (yis, ys4) is in R;;.

Case (iii).—Let (y», ys4) be in R,, We must now
consider the possibility that D can take nonpositive
values in the interior of the tetrahedron T, which means
that D has a nonpositive minimum there. This occurs
if and only if the following conditions are met:

' It may be remarked that if a function is dehned by an integral
like (2), and if the variables ys~ are not restricted to be real, then
the mere fact that for a certain set of y&& the denominator can
vanish in the region of integration in no way guarantees that the
function has a singularity at this point.

(a) y»&1, y»&1, yss&1, yi4&1,

(b) 2sr &8is+8ss+8s4+84i & 2sr

+2 min[8is, 8ss 8s4 84i];
(22)
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then the region R is/.

&: (y24&y24 $13+L13}
+{y13)y13 $24)L24}

+( (318,3 24))0}, (23)
where (a)

and where

~(y18,y24) =
y1s

,
y14

y12 y1s y14

y2s y24

1 ys4

y24 ys4 1

(24)

R=R;;. (26)

The algebraic details are described in Appendix B.
The regions R;, R;;, and R are illustrated in Fig. 2.

The limits used in Eq. (23) may be stated explicitly
by solving Eq. (25). They are

6(LI8,$24 )=0=6($13 «L24)

define y24' and y»' uniquely. If the conditions (22) are
not satisfied, then (b)

I—&a4

and

y L 18 L'2
SII1(814+834)

cos814 sin828+ cos884 sin812

Sill (812+823)
) L41S L44)

cos812 sin884+cos828 sin814
y240= $2=

(27)

(c)

y1s'=~1=
cos812 sin884+ cos814 sin823

L24=L1
SIII (823+834)

cos823 sin814+cos834 sin812—Ss- L24= Ls.
sin(814+812)

(28)

The function g» defined in Eq. (7) may also be directly
inferred from Eq. (23) by solving Eq. (24),'

Fin. 2. (a) The region R;; (b) the region R;,WR;;
(c) the region RWR, ;.

while for negative y it becomes

$13 L41S) y24+ y24 p

g1s= 2y —1 for y24& 1

&y 12/28+ $14/84 $24(y12$34+$14$28)
1—

y24

(EIE3) $24 )f24) L24.

(29) 4y2

1+y24

y(0. (32)—1 for 1&y24& 2y2 —1

A great simplification results when the scattering
process is the elastic scattering of equal particles with
equal internal masses. Then we have

y12= y2s= ys4= y14= y.

The boundary of the region R for positive y is

(30)

y» = —1 for y24& —1, y ~&0, (31)

f Note added in proof. —To this description of the region R there
must occasionally be added those points {y»,y24) whose abscissas
and ordinates are greater than the abscissa and ordinate of any
point satisfying condition (23).

4 The quantities X&, X&, IC3, E'4 are defined by Kq. (82) and its
appropriate permutations.

We shall examine several scattering processes illus-

trative of the various cases (Fig. 1). If p12 and p23

(—p14 and —p34) are the initial (final) four-momenta,
then the total four-momentum squared (W2) and the
square of the four-momentum transfer (—62) are given

by

(P12+P23) (P14+P34)
)maxL(M12+M28)2, (MI4+M84)2],

(33)~'= —(P12+P14)'= —(P23+P34)')max[ —(M» —M14)', —(M23 M34) ].
The inequalities define the physically accessible regions
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of H/" and 6 . In terms of y» and y24, we have

mls+ m83 —W'
- ruin(y12y28 —[(1—y12') (1—y28')]', y14y84

—[(1—y14') (1—y84') j'), (34a)
2m]8$3

m '+m 3+63

2' 25$4

)max(y12y14+[(1 y14 ) (1 y12 )]* y28y34+[(1 y28 ) (1 y34 )j j (34b)

Suppose we seek a spectral representation of the
scattering amplitude in terms of t/t/" for a fixed physical
value of 4413. Then the inequality (34b) guarantees that
the threshold for y» is I.». The "normal" threshold
determined by the mass of one real intermediate state
is L»= —1. Equations (17), (19) show L») —1 only
if a sufficient number of y», y», y34, y&4 are suKciently
negative. To see which processes might exhibit "ab-
normal" thresholds, we list in Table I the values of the
y's (and corresponding e's) for ten possible interactions.
We observe that there are only six vertices which have
negative y's, and that virtual dissociations of E and x
are not among them. Thus we conclude that a spectral
representation of F for pion-nucleon scattering as a
function of g ' would have a threshold g at

old. For Z-nucleon scattering [Fig. 3 (b)$, we have

Ls L4 L» —cos (86'+ 120') = —0.899)—1,
W'= (Mrs+Ms)8 0.202—MbrM3,

If we do not confine our study to the coupling of
particles that have been observed, but also include
virtual fields with masses that are limited only by the
stability conditions, then the spectral representations
have "abnormal" thresholds in many more cases. Some
of these. have been mentioned in Paper I. Since the
general derivations of dispersion relations presuppose
a "normal" threshold but do not limit particles in
intermediate states to the few kinds that have been

W'= (Mlt+m )'

which is considered normal. We next investigate the
diagram for pion-deuteron scattering illustrated in Fig.
3(a). Then

(a) (b)
4

Ls= L4 L13 cos (174'+——8') =———0.999)—1,
W'= (2M11 )3—0.002MPP,

which is just slightly diferent from the normal thresh-
FIG. 3. (a) Feynman diagram for pion-deuteron scattering.

(b) Feynman diagram for Z-nucleon scattering.

—0.995
0.999
0.999

0.075
0.075
0.989

174'
30
30

86'
86'

80

0.14
0.14
0.96

—0.13
0.55
0.90

82'
82'
16

97'
57'
26'

TAsz.z I. Values of y and corresponding 0 for ten possible inter-
actions. The table is read with reference to a particular trilinear
coupling, for example Z A. x. The parameter y and angle 8 for the
process Z —+ A.+~ which are

cose=y= (M3,3+m ' Air')/2', ttl-,
are found in the line opposite Z in the box containing Z, A, x
together. There is no need to distinguish particles from anti-
particles.

observed, these derivations cannot be applied to some
cases of interest.

—
g =Ml =mb +mp 2mbm, y33, —

M33= m.'+m.s—2m.m,y18,

M33= m, '+mb' 2m, mby—»,

xl mn/(m, n——+m bp+ m,p),
xs mbp/(m ——n+mbp+m. y),
xs m,y/(m. n+——mbp+ m.y),

(A1)

(A2)

APPENDIX A

Consider the expression (4) in Paper I for the vertex
operator. The substitutions

—0.50
0.58
0.994

0.058
0.058
0.993

0.052
0.052
0.995

120'
54'

60

86.5'
86.5'

70

87'
87'
6'

M

—0.31
0.66
0.92

—0.24
0.57
0.93

—0.07
0.44
0.93

108'
49'
23'

104'
55'
21

940
64'
22'

Do=&i +&3 +&3 +2(&1&syls+&1&3yls+&2&sy38). (A4)

enable us to rewrite tj.. ;ntegral as

1

~o ~o ~o
41'(1—Xl—X3—X8)

X (A3)
(xlmbm. +xsm +mx msmb)D3
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y»& —1, y»& —1, y») —1. (AS)

In the case of the vertex operator, two of these con-
ditions can always be interpreted as stability conditions
that the physical particles have to satisfy.

Since Do is positive on the boundary of the triangle

F4, Do can vanish in the interior only if it has a non-

positive minimum there. This minimum may be deter-
mined by differentiation, and one must then find the
condition that this minimum in fact lies inside F4. We
may distinguish two cases:

y12+y13 &~o, (A6a)

y12+y»&0 (in this latter case y12&1, y13&1). (A6b)

To study the erst case, we may assume y»~& y~3. I.et

~=mink1, y ]. (A7)

Then we may write

D8=—(x2 —x3+XxI)2+ (1—X2)x12+2(x2x8 (1+y23)

+x»2(y12 —&)+»x8(y13+&)]. (Ag)

Each term in this expression is non-negative, and hence
in this case Do cannot vanish if y») —1.

In the second case we write

Do—= (x1+x2y12+x8y13)'+ fx (1 2y1,')2—
x8(1 y18 ) ] +2x2x3jy28 y12y13

+L(1—y»')(1 —y»')]'} (A9)

Hence D8 is positive if t see Eq. (1S)]

y23) y»y18 L (1 y12 ) (1 yl3 )]'=cos (812+813). (A10)

The condition (A6b) takes the form 812+813)2r. We

The problem is then to investigate under what condi-

tions the denominator Do can vanish in the range of
integration.

We compare this problem with the problem in Case

(ii) in the text of this paper to determine the conditions
under which the expression D can take nonpositive
values on the particular face x4——0, and note that the
two problems are identical. We are thus to consider

Do when x&, x&, x3 satisfy the conditions x& &~0, x2&~0,

x3&&0, and x1+x2+x3——1. We may interpret this region,

F4, as the face of an equilateral triangle described by
the barycentric coordinates x1, x2, and x3. As in Case (i)
in the text, we impose the conditions on the y&& which

state that Do cannot vanish on any edge of this triangle,
s.e.,

also note that if y28
——cos(812+813) and

sin (812+813)
x] &0,

sin812+sin813 sin(812+813)

sln0q3
x2- &0,

sin8»+ sin8» —sin (812+818)

SlnOIg
x3- &0,

Sln812+ slI1818 SIII (812+818)

(A11)

then Do ——0. Thus the necessary and sufficient condition
that Do be positive on the face F4 is given by the
inequality (A10). Comparing the results just obtained
wi.th the results in the appendix of Paper I, we see that
they are identical.

A graphical solution to the problem in Paper I may
be obtained as follows: In a plane draw three vectors
m, m~, m, of lengths ns„vs~, ns, from a common origin
0, such that ~m, —m3~ =M3 and ~m, —m, )

=M2. Then
the threshold p,

' of the spectral representation of F as
a function of —q' is

~

m3 —m,
~

', provided that the fIgure
can be drawn at all and. provided that the origin 0 lies
inside the triangle determined by the end points of
m„, m3, m, . Otherwise the threshold is (m3+228, )2.

APPENDIX B

In this Appendix we consider Case (iii) of the text.
We let (y18,y24). be in R;; so that D cannot vanish on
any of the faces F&, F2, F3, F4 of the tetrahedron T. We
seek a region R;,' such that D vanishes at some point
in the interior of T if and only if (y13,y24) is in R,; . We
proceed by 6nding necessary conditions for the ex-
istence of a region R; .

Since D is positive on the boundaries of T, it can
vanish inside T only if it assumes a nonpositive mini-
mum inside T. We shall show that if such is the case
D can be negative only in the two regions x»0 and
x8&0 (k= 1, 2, 3, 4) in the four-dimensional Euclidean
x space. In particular D is non-negative on the four
hyperplanes x~=0.

To prove these remarks we observe that since D is a
quadratic function of the x&, it can have only one
extreme value on any hyperplane. In particular, if-
as our assumptions state —on the hyperplane x1+x2
+x3+x4——1, D has a minimum value within T and is
positive on the boundaries of T, then it must be positive
throughout the rest of this hyperplane. Now suppose
that we evaluate D at some point x' such that x,'+x, '
+x3'+x4'=c. Then the hyperplane x1+x2+x,+x4=c,
passing through x', is parallel to the hyperplane
x1+x2+x3+x4—1, on which lies the point x' defIned
by x8'=cx8'. Furthermore D(x')=c'D(x'), and since
D(x') can be negative only for x8') 0, so then can D(x')
be negative only in one of the regions xj,'&0 or xA,.'&0,
depending on the sign of c.

The quadratic form D may be written in diagonal
form in many ways, some of which can be obta, ined
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from the following by suitable interchange of indices:

y28 y12y13 y24 y12y14 )D= (~1+»y»+»y»+»y14)'+(1 —y»')
l »+» +~4-

1-y,22 1-y,,s 3

E4 f (y34 y1sy14) (1 y12 ) (y28 y12yls) (y24 y12y14) )+ l xs+x4
l + (a/E4)»2, (81)

E4

where
E4= 1 y12 y13 y28 +2yisy13y23 (82)

In order that D take a nonpositive value, at least one
of the coeKcients: 1, 1—y12', E4/(1 —y12'), 6/E4, must
be nonpositive. But we have just shown that for (yis, y24)
in E,;, D takes a nonpositive minimum inside T only if
D is positive definite for x4 ——0. This allows us to con-
clude that necessary conditions for D to vanish inside
T are lyisl (1, E4&0, 6&~0. By considering other
ways of writing D, we 6nd that the region E; can be
no larger than that defined by4

E)&0,

a&0.

(83a)

(83b)

(83c)

&=0 ~y
P.4

rE

vrruzz K;&O, h, &0
~~m K) 0,&&0

Fzo. 4. The regions deined by Kq. (8&).

The inequality (83a) permits us to introduce the
real angles 8», 023, 834, 814 defined in Eq. (15). It then
follows from the structure of the K; that there exists a
region in the (yis, y24) plane in which condition (83b)
is satisied if and only if

012+~28+&34+fi14—2 niinp12, 028,884p14$&22r. (84)

Because each E, depends on. y~3 or on y24 but not on
both, the region defined by (83b) is a rectangle with
edges parallel to the coordinate axes. The curve

lies inside this rectangle and is tangent to all four edges.
The situation is depicted in Fig. 4.

Now, it follows from the argument after Eq. (12)
that the region R;,' must have in common with E,;
those parts of its boundary that separate it from regions
of smaller y, s and (or) y24. For this reason the lines
marked l~3 and l~4 in Fig. 4 must actually be 1.~3 and
524, respectively, if there is to be a region E;, and only
the section marked I in Fig. 4 can be a part of E; . The
condition that 1/3 I-]3 and jt24 —1-24 is

012+023+084+~41&23r.

The inequalities (85) and (86) are necessary con
ditions for the existence of a region E,, It is simple
to show that the conditions are also sufhcient by
choosing some point in the region I, Fig. 4, and ex-
hibiting a negative D for some values of the x; in T.

The threshold @~3' of a spectral representation of F
as a function of p132 corresponding to the conditions
that allow D to vanish inside T has a graphical con-
struction. Draw, in three dimensions, four vectors m~,

m~, m3, m4 of lengths no~, ns2, m3, m4 from a common
origin 0. Adjust their directions so that

lmi —msl =M12,
l
ms —msl =M23,

p 4'= lms —m4I' ~

Then the threshold is p132= lmi —msl', provided that
the figure can be drawn at all and provided that the
origin 0 lies inside the tetrahedron determined by the
end points of m~, m~, m3, m4. If this is not the case,
draw figures of the type described at the end of Ap-
pendix A with the vectors m~, m2, m3 and m~, m3, m4,
and obtain the threshold given there.


