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region. The statistical errors in counting the electron
tracks amount to ~109, when the subtraction of the
background is taken into account.

The over-all uncertainty in the half-life given by the
present measurement is thus believed to be ~159%,.

It probably should be added that a very small
fraction of the electron tracks starting from the neutron
beam seemed to have a kind of cluster at the point of
origin (Iig. 15). Although this could possibly be attri-
buted to the decay proton, it must be emphasized that
the measurements described above give no evidence
for this.

VII. CONCLUSIONS

The cloud chamber method of measuring the half-life
of the free neutron proved successful. The main sources
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of error seem to be in the flux measurement and in the
poor statistics. If the statistical error can be reduced to
~39%, and the error in the flux measurement to some-
thing like 3-49,, an over-all error of about 6-79, should
result.

Although the present determination has not improved
on the best previous measurement of the half-life of the
neutron, it has about equal accuracy and confirms it by
an independent method.
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The nuclear matrix elements which are needed to determine the internal conversion coefficients when a
finite nucleus is employed are derived for nuclei for which the shell model wave functions are a good zero-
order approximation for low-energy processes. Using configuration mixing, general expressions are derived
for these matrix elements. It is shown that the nuclear structure alteration can be ten to twenty percent or
more for /-forbidden transitions. Numerical results are given for the M1 and E2 279-kev transitions in T1203,

I. INTRODUCTION

HE internal conversion coefficients convey im-
portant information about the atomic nucleus.

The point nucleus calculations of the internal conversion
coefficients! have been extremely valuable in deter-
mining the angular momentum and parity of nuclei.
However, for large values of the atomic number, Z, cor-
rections must be made for the extended nucleus. Sliv
et al.? have calculated the alteration in the coefficients
when the electron wave functions calculated for an ex-
tended, rather than a point nucleus, are used, i.e., the
static effect. More recently, the conversion coefficients
with the static effect included also have been calculated

* This research was supported in part by the Oak Ridge Insti-
tute of Nuclear Studies and in part by the U. S. Air Force through
the Air Force Office of Scientific Research of the Air Research and
Development Command. For a more detailed treatment of this
work see the Oak Ridge National Laboratory Report ORNL-2556
(unpublished).
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1 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76, 1883
(1949) ; and unpublished tables by M. E. Rose et al.

2 L. A. Sliv and I. M. Band, Leningrad Physico-Technical Insti-
tute Reports 1956 and 1958 [translation: Reports 57ICCK1 and
S8ICCL1, issued by Physics Department, University of Illinois,
Urbana, Illinois (unpublished)].

by Rose.? But without rather unphysical assumptions
about the nuclear currents, the calculation of the
internal conversion coefficients for a finite nuclear size
requires the knowledge of the nuclear wave functions in
order to calculate certain nuclear matrix elements (or
the demonstration that they are unimportant).*

This dependence of the conversion coefficients on the
nuclear wave functions makes the use of the experi-
mental results less straightforward for determining
nuclear properties. However, it has the advantage that
an accurate measurement of the coefficients can give
additional information about the details of nuclear
structure. In particular, conversion coefficients can now
help to provide information about the accuracy of
nuclear models.

In the original work of Church and Weneser and in
the more recent work of Green and Rose® the internal
conversion coefficients are given by the power series ex-
pressions which separate the alterations which proceed

- 3M. E. Rose, Internal Conversion Coefficients (North-Holland
Publishing Company, Amsterdam, 1958).
4E. L. Church and J. Weneser, Phys. Rev. 104, 1382 (1956).
5T. A. Green and M. E. Rose, Oak Ridge National Laboratory
Report ORNL-2395 (unpublished) ; Phys. Rev. 110, 105 (1958).
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from the use of electron wave functions associated with
an extended nucleus from those depending directly on
the nuclear wave functions. To the extent that the
electron wave functions do not depend on the precise
shape of the nuclear charge density, this work makes
possible the calculation of the nuclear structure depend-
ence without laborious recalculation of electron wave
functions.

It is the aim of the present work to consider nuclei for
which the shell model supplies a good zero-order ap-
proximation for nuclear wave functions, at least in so
far as they are needed to determine certain nuclear
matrix elements. Since the largest effects are to be ex-
pected for transitions in which selection rules diminish
the gamma-transition probability, it is important to
derive the matrix elements for nuclear wave functions
perturbed by configuration mixing.

In Sec. II, general expressions are given which enable
one to readily calculate the matrix elements for any
order of electric or magnetic 2Z-pole transitions for any
nucleus which is suitably described by a configuration-
mixed wave function. The method used for deriving the
configuration-mixed wave function follows closely that
of Arima, Horie, and Sano.$

The application of these results to M1 and E2
transitions is done in Sec. ITI. Numerical results are
obtained for the 279-kev transition in TI*®, When the
alteration of the conversion coefficients is large, the
results depend to some extent upon the radial nuclear
wave functions employed. Therefore, a study is made,
using harmonic oscillator wave functions, which should
indicate the dependence on the radial nuclear wave
functions.

II. NUCLEAR MATRIX ELEMENTS WITH
CONFIGURATION MIXING

The expressions of Green and Rose for the internal
conversion coefficients are based on the usual assump-
tions that the electron charge and current are given by
the Dirac operators, and obey a conservation of charge
equation. The many-electron aspects are approximated
by a screening model. A phenomenological nuclear
charge and current distribution is employed, with the
assumption that these are also related by a charge
conservation equation, and that M dependence of the
matrix element of the nuclear current is given by an
angular momentum conserving Clebsch-Gordan coeffi-
cient. Both of these latter two assumptions are valid for
the nuclear charge density and current used in the
present work.

For the present work, it is convenient to express the
conversion coefficients as the ratio of the internal con-
version coefficients with nuclear structure included to
those obtained when the currents are limited to the
nuclear surface as assumed by Sliv. From Egs. (47),

6 A. Arima and H. Horie, Progr. Theoret. Phys. (Kyoto) 12, 623

(1954) ; H. Horie and A. Arima, Phys. Rev. 99, 778 (1955) ; Arima,
Horie, and Sano, Progr. Theoret. Phys. (Kyoto) 17, 567 (1957).
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(61), and (62) of reference 5, the ratio of the internal
conversion coefficients to those of Sliv are given by

Br |1—p_reto—IZ_r|*+y;
10 |1—p_reie=rZ 1|+

(1)
and

ar  |1—w_g1e L2 |2+ |UL—wrei™Z |2

—= > (2)

ar’ |[1—w_r 16173 ;024 | U —wrei™ss 0|2

where Br(an) is the magnetic (electric) 2E-pole con-
version coefficient as derived by Green and Rose, while
B(ar’) is the magnetic (electric) 2Z-pole coefficient
which results from the surface current model. The other
quantities in Egs. (1) and (2) are

© a,(—L)
Z_p=2 ——R@+2n;1),
n=0 go(—
2 a.(—L)
2 = nZZO ao(—L)’

3= S ABa(— L—1)SG+21; 1)
= ©
+e(—L—1)T(3+2n; 1)},
S1= 3 (Bu(L)SG+20; 1)+2,(L) T (34205 1)},
n=0

20=3 { Bn(L)-i-(z_{;:—i)%én(L) };
with

Rop= [ () / fuonw(s),
- —ay

[ dxéL_lL(x)(%)b, (*)
S -

[emoriw () |
and

(I’)\L(x)C(],LJ[, M, “MM[)
= (_1)1+L—)\+Mx2fdﬂ JN'TL)\M*(Q); (5)
with the reduced tensor T,.* defined” in terms of the

"M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley and Sons, Inc., New York, 1957), p. 106.
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spherical vectors &,, as
TJL,M:Z". C(JIL,M —mm)YLM“"‘Em. (6)

In Egs. (1), (2), (3), and (4) the quantities p_1, ¢_z,
Y_Ly TLy T—L_1, @ny Dn, €n, and U, are independent of the
nuclear wave function, and are computed in reference 5
for electron wave functions calculated for a uniform
nuclear charge distribution. In Eq. (5), Jx is the matrix
element of the nuclear current between the initial state
with angular momentum J; and the final nuclear state
with angular momentum J;; the M; and M, are the
respective z-components of angular momentum for the
initial and final nuclear state.

The magnitude of the nuclear structure effect depends
on the size of the quantities R in the magnetic transi-
tions or S and 7 in the electric transitions. Since the
coefficients p_y, are small, in fact less than 0.01 for Z less
than 100 and energy less than 2.5 Mev, the ratios, R,
must be considerably greater than unity if the results
for the magnetic case are to be observable. An analogous
situation prevails for electric transitions.

As pointed out by Church and Weneser, the most
obvious situation in which a large value for R might be
expected is one in which the y-ray matrix element,
which is proportional to S ®.X(x)xdx, is reduced. In
regions where the shell model gives a good first order
approximation to the wave function for low-energy
processes, the region to which the present work is con-
fined, such a situation is to be found. In certain nuclei,
transitions are observed experimentally which should
not occur because of an orbital angular momentum
selection rule, if the shell model wave functions are the
correct ones for the states involved.® One explanation
for this is that the shell model wave functions are
altered by configuration mixing, so that there is a finite
transition probability, but one which is considerably
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smaller than an ordinary single-particle transition
probability. Although the transition probability depends
critically upon the wave functions, Arima ef al.® have
been quite successful in predicting y-ray lifetimes for
many J-forbidden M1 transitions. Since the matrix
elements needed for the calculation of the internal con-
version coefficients are physically very similar, these
wave functions should be quite good for use in the
present work. Moreover, such wave functions have also
been successfully used to predict magnetic and quad-
rupole moments, which also involve similar matrix
elements.

Odd-even nuclei are considered, in which the shell
model description of the transition is that the odd
proton or neutron orbit is altered by a unit change in
occupation number. There are two possibilities. The
first of these, called “like-core” in reference 6, are
transitions in which one particle in the initial odd orbit
undergoes a transition to the orbit which is odd in the
final state, thereby decreasing the number of particles
in the initial odd orbit by one. The second type of
transitions, the ‘“unlike-core” transitions, are those in
which a particle in an orbit which is even in the initial
configuration undergoes a transition to the orbit which
is odd in the initial configuration, thereby increasing the
number of particles in the initial odd configuration by
one.

Calling 7 the angular momentum of the initial state
and 7' that of the final state, with # and ' their re-
spective z-components, /; the orbital angular momentum
of one of the incomplete spin-orbit doublets in the core,
j1i=h+% and jy=5—% the angular momentum of
particles in the lower and higher energy levels, re-
spectively, of the doublet, the wave functions can be

expressed as

W i(jm)=To(j171(0)j2"2(0) j7H1(5) 7' (0) 5 jm)+2 5 B, s i (5) 72" (52) (1) 57 (0) 5"+ (5); jm)

~+similar term for each incomplete doublet in the core,

W (5'm") =¥ (j171(0)22(0) 77 (0) 5" (") ; 5'm’)

+2 58,/ i (G052 (52) J() 57 () 579(0) 5 F'm )+ -,

for like-core transitions, and similar wave functions
(with p+1 and g+1 replaced by p—1 and ¢—1) for
unlike-core transitions. In Egs. (7a) and (7b), 7, and 7,
are the (even) occupation numbers of the ji and j,
orbits, respectively; the 8, and B,” are the mixture
coefficients in the initial and final states, obtained as in
reference 6 by perturbation theory:

1
Br=——o(jm), 2° vax¥ s (jm)),
AE ik
. (8)
B =——Wo (j'm"), 2 vix¥ ;' (j'm')).
AE ik

8E.g., see L. Spruch and A. Rotenberg, Phys. Rev. 103, 365
(1955), for references.

(7a)

(7b)

These are evaluated for like-core and unlike-core transi-
tions needed in this present work in the Appendix.

The usual single-particle nuclear current operator,
with a convection and spin part, is used. This neglects
the finite proton size and, more importantly, the two-
and more-particle terms introduced by nuclear correla-
tions. The success of Arima et al. in calculating lifetimes
of excited states, magnetic moments, and quadrupole
moments of nuclei is an indication that these corrections
to the nuclear current operator might not be important
in low-energy processes. However, assuming a specific
form for exchange currents, the corrections could be
readily calculated by the methods described below. This
is not done in the present work.

Six types of matrix elements must be evaluated in
order to find the nuclear structure effects in the con-
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ersion coefficients:
v ILS=ffdQZ den‘I’o,*JS‘I’J‘TL)\*MﬁJ’
J
Ioc=ffdﬂden W' *JOU,- T ¥,
ILIS:ffdQZ den‘I/J'*JS‘I’O'TLx*MﬂJ'-
J

C= 1%YOy ;. T, *M,
L f f a2 g f AV IV - T8, Some of these matrix elements differ slightly for unlike-
core transitions, compared to like-core transitions. In

this section the general form for these matrix elements

I/¢= f f e f AV, ¥ ;' *J¥,- T\*MB is derived for any electric or magnetic multipole, with
7 either type of transition.

© By use of the fractional parentage coefficients,® the

I,S5= ffdgfdyn\l,oz*_] STy Ty *M, matrix element for I,¢ can be simplified. From Eq. (9),
for like-core transitions,

To= ffdQ T ¥ (j1m(0)4272(0)57(0) 5 (57) 5 5'm’ | T €] §1(0) j272(0) ;74 (5) 5 4(0) 5 jm) (10)

becomes, using RIIT (27),
= (J"q(O)J"J"]}J"“+‘J")(j”+‘(j){[j”(0)jj)[(17+1)(q+1)]%ffd9(j'm’| J¢| jm)-T\*¥

2j+1—-p)25'+1—9)7
[ 2j+1)(2j+1) ] ff (Fm| 1% jm) T

where the phases of the fractional parentage coefficients have been disregarded, since they cancel out of any final
result. Using Eq. (AS) from the Appendix for the single-particle matrix element, the final result for like-core
transitions is

C_[(2j+1—p) (2j’+1—q)]* hie
2+ @7+

143
(=)= C(GL)" s m— M )[——J CRL+) 27+ 1) W (i ; 3L)
2mct 47

dR; R;
X {Rﬂp[~ I+ D)W (1—1L1; M) (]| e®|i+1) (T—Z-)—H%W(l’l—- 1L N) (]| e™][1—1)
X X

dR; 1+1 dR;* Ry
X —+—RJ~)]— (— I)H[~ +D)W A +1L1; N (l’+1||<9‘”lll)( —l’—)
dx x dx x

dRy* I'+1
+(l’)%W(ll’—1L1;M')(l’~—1||(‘3<“[}l)( - +——R,-,*)]Tﬂ1ej(x)|. (11)
X X

The unlike-core transition matrix element corresponding to Eq. (11) can, in a similar manner, be written
100=(p0) [ [0 T34 G0 0) 2 (T3]
X(0); j'm’ | I j1m(0) 2" (0)[5 =1 (57) 71(0) 522 (5) 5 jm), (12)

( H
I,¢(unlike-core) = r9) 1,°(like-core). (13)

L@2j+1-p)(2j+1—9F

which can be related to Eq. (11) by

Using similar methods, the integral 7.,

[uf=2.s8 f f dQ T *M- (j171(0) 72(0) j' #+1() 52(0) ; §'m’| I€|

XLt (Gn) g2t (72) J(N) 57715 57 (0) 5 jm),  (14)
® G. Racah, Phys. Rev. 62, 438 (1942) (referred to as RII), and Phys. Rev. 63, 367 (1943) (referred to as RIII).
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is expressed as a single-particle matrix element by use of the fractional patrentage coefficients, as in the section
above, and by Clebsch-Gordan coefficients. With the use of Eq. (A4),
2j+1piran1p

- ] [ ] W (fohjrli; 3L)
27'4+1 4r

fe
= (=1 (ij’;m,—M)BL[n1(2j2+1-nz)]*[
mct

X {leTp[—" (l1+1)%W(l1l1+1L1 5 )\l1) (11”

R‘
—f) W (bl — 1L M) (]| @ 1 — 1)

R] 1
=)

+11%W(l1l1— 1L1 5 )\ll) (ll— 1” 8(")l|l1) (—;ﬁ+ (l1+1)—jl):|T:"Rj2 ] . (15)
X X

(——+(ll+1)_‘):| (— 1)*‘[ D)W (1015 N) (L1 e ™)

Following the same reasoning as in the section above, it is easy to see that, except for the alteration in the mixture
coefficients,

I 1,¢(unlike-core) =1 ;¢ (like-core). (16)

2741
i w
2j+1
It is important to recognize that the final results for 7.¢ and I;'¢ include only the value of J=L; i.e., the only
admixed configuration which contributes for any spin-orbit doublet in the core is the one in which the total angular
momentum of the two odd orbits of the doublet equals the order of the multipole. This holds for both electric and
magnetic multipole transitions. As a consequence, very few mixture coefficients are required to obtain the nuclear
structure alteration. This not only reduces the labor involved in carrying out the calculations, but makes the final
results for the alteration of the conversion coefficients more accurate and far less arbitrary than they would be if
more admixtures were involved. As will be shown in the next section, this often means that only one mixture is
important in giving the nuclear structure effect.
In a similar manner, using the single-particle matrix element from Eq. (A6), one finds that

2j4+1—p27+1—9 71 22+1
=[( JH1—p)(25 q)] (= )L s M)[
@7+1)25+1) 2mci 4

T

In a similar manner, one can show that

b
] 6[(2j+1) 2L+ 1) T

iR, R,
X [ (- 1)*1%,-/0“[— <1+1>4(;;—l;) (V][O (— 1) (25 D)W (U4 1L1 M)W (1151415 1)

dR; R;
XW (1415 3)W (js ¥ ; %L)+l%( - ’+(z+1)—~) @eP[I—1)T.(—1)*2s+1)W II—1L1; \s)
X X

F1fje®|)

+1>~)

X U =1]|e® DT, (—1)* s+ )W @' —1L1; \)W (11— 1; 1YW (157 ; 3)W (jLj's; %L)]O,,Rj}, (18)

W (15— 15 W (31513 39)W (jsi ' %L)]—- (— )i [ w+1(

X2 (=12 2s+ D)W (W 4-1L1; A)W (Us4-1; 1YW (R0 5 2)W (jlf's; L)—i—l’*

where the sum in each case is over the values of s which are allowed by the triangle relationships satisfied by the W
coefficients.® O, is the magnetic momentum operator, with values of the magnetic moment of the proton or neutron
in nuclear magnetons when operating on proton or neutron wave functions, respectively. It is easily seen that

pq
@2j+1-p)(2j+1—9)

1,8 (unlike-core) = [ ] I,5(like-core). - (19)
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Using Eq. (6), one finds for like-core transitions
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I:5=8 f f dQ T, * - (§17(0) 7272(0) 5/ 7H1(57) 72(0) 5 5'm’ | IS L1 () jom+1 (52) J(D) 7 +1(57) 52(0) ; jm)

— (= 1)MHing O L m,—M>[n1(2jz+1—nz>J%[

2j+1]% e 6[2>\+1]%
2741 2mei L 4n

‘dRjs  Rjs
X { (— I)XRhO“[ZS(—- 1)s(2s+1)[— (+1)¥] (—————lr—) @)W L4+ 1) W (2 +1L1; As)
dx x

dR; R;
XW (1shi+1; U)W (3152015 35)W (fas juls; %L)—Hx%(—-d—*“‘f" (ll‘H)“]“l) (tlle®[h—1)2(—1)*(25+1)
% *

XW (b= 1L1; N)W (sl — 15 U)W (3152015 35) W (Jasuls; %L)]_ (1) L[_ (h+1)

dRjy R; 1)
dx x

X (1] D) T (= 1)* (2s+ D)W (b4 1L1; \s)W (1shy+1; L)W 31y 3)W (Galajas; 3L)

le
)(zl—luemnzozx—1>s<zs+1>
X

XW(llll 1L1 )\S)W(llsll 1 111)W(%1]1[1, %S)W(]zlljl.i, %L)]O,.Rn} H (20)

and

I .5 (unlike-core) =1 ;5 (like-core),

1)

except for the change in the mixture coefficients, as before. Also, the equation analogous to Eq. (17) holds.

III. NUCLEAR STRUCTURE EFFECTS IN Ti203
INTERNAL CONVERSION COEFFICIENTS

Measurements of the internal conversion coefficients
of the 279-kev transition in TI*® indicate that there
might be a reduction’®? in the magnitude of these
coefficients beyond that calculated by Sliv with the
surface current model. The M1 transition is of the
I-forbidden type, according to the shell model. The shell
model description is a j=d;?(d;) excited state and a
j'=s3 ground state, giving an orbital angular momentum
change of two. Since the shell-model wave function
should be good as a first order approximation from
which a perturbation calculation can be made, the
method developed in the previous section should be
applicable.

Part A. M1 Transition

The shell-model wave functions for the initial and
final states in the 279-kev transition are, respectively,

W i(dy,m) =T o(2d5(d3)355*(0) ; dym),
W (s3,m") =Wy’ (2d5*(0)3s3; s3m).

The core contains three partially filled spin-orbit
doublets. The 1%;y, proton orbit is completely filled
with twelve particles, while the 1%g/; orbit is empty.
This is referred to as a “same-type’’ admixture, since the
10 A, H. Wapstra and G. O. Nijgh, Nuclear Phys. 1, 245 (1956).
11'F, K. McGowan and P. H. Stelson, Phys. Rev. 103, 1133

(1956).
2 G. O. Nijgh (private communication).

(22)

particle jumping in the core and the excited particle are
both protons. The two neutron orbits (‘“‘dissimilar-
type”) contributing are the 14;3» with twelve neutrons,
and the 3p;, with four neutrons.

The angular integral of the matrix element,

1
ffdﬂ JN'TL 1*M=—;(—1)M+1<I>11(x)
X

XC(]]-],’ m,_M:ml)7 (23)

follows immediately from the equations derived in Sec.

II, with L=x=1.
Using the results of Sec. II, one finds that
2dR38
)
dR3, Rip

— (1.10561—-0.781231’)(Zoc2 —x>— )R;,
dx x

dei Rl’i
)Ru
dx x

e 1
fbll (x) —-*-—e —[1 397(x2—(R2dR3s)+3x2
2mci A/

—x2

— (2.2528:—1.5928') (2x2

+(2.3358;—1.65185") (2902 y

dRyp
)th
X
+(3.2628;—2.30785)
dRin
><(2x2 —~x2—)R1h] (24)
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The quantities needed are the ratios

ROV ,1)= f <1>11(x)(£—)Ndx / f @ll(x)(}t-)dx. (25)

The harmonic oscillator functions'® are used to evaluate
these ratios. The radial parameter, », is determined by
requiring the nuclear wave functions to produce the
correct nuclear radius (see Appendix). Using the same
radial functions for both orbits of the spin-orbit
doublets, the integrals can be easily performed with the
use of the relationship:

dR,
f rNHR—dr
dr

1
=;V[lx(ll+1)—lz(lz-l—l)—N(N—l—l)]

M* AE
X erR2R1d7’+-'f;2— —V— ffN+2R2R1d7’, (26)
L

in which AE= E;— E; and M *=the effective mass of a
nuclear particle in the shell model.**

The six mixture coefficients needed are all derived for
the excited doublet coupled to angular momentum
unity. The mixture coefficients in the initial state for the
two dissimilar type admixtures, in terms of the two-
body singlet potential, V,, and triplet potential, V,,
using Egs. (B6) and (B8), are

8 (Ve V*’)I(s 3$2d3s)
= — S),
= anE,, PP
(27)
V=V, 3V2
Bo=—————1(1i142d3s).
AR, 4(13)F

From Egs. (B7) and (B8) in the Appendix, the similar
type admixture coefficient is found to be

—V. (15)
By= T(151h2d3s).
AE;, 2(11)}

(28)

In Eqgs. (27) and (28) the quantity 7(j1j273js) repre-
sents the integral 3/ R(j1)R(j2)R(j3)R(js)r*dr. The
parameters used in this work are taken the same as in
reference 6, i.e., AE;,=AE;;=2 Mev, AE;,=0.5 Mev,
Ve=— (250 Mev/A)(x?/v}), Vi=1.5V,. Also, it follows
from the Appendix that 8'=—V28. As was the case in
reference 6, every 3;is <0.1, consistent with perturba-
tion theory. For the electron matrix elements, the pure
shell-model contribution is more than 909 of the total.

131, Talmi, Helv. Phys. Acta 25, 185 (1952).
14 K. A. Brueckner, Phys. Rev. 97, 1353 (1955). M*/M is altered
to account for the finite nucleus in this work,
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The ratios are
R(3,1)=43.84/(vR?),
R(5,1)=659.2/(vR?)?,
R(7,1)=38840/(vR?)3.
The other quantities needed, as displayed by Egs. (1)
and (3) are a@./ao, y1, p—1, and ¢_;. Interpolating from
the appropriate tables in reference 5, one finds a1/,

=—'015, 02/0020.02, (p__1=0, y1=00076, and pP—1
=0.025. This gives

(29)

3,/=0.87 (30)

as the value of this function for the surface current
model of Sliv. Table I gives the values of Z_; and 8/8s,
the ratio of the M1 internal conversion coefficient to the
value calculated by Sliv, for the most likely values of the
nuclear parameter, » (see Appendix). The second and
third electron matrix elements contribute, respectively,
33 to 169, and 8 to 29, of the first one. Therefore these
terms are important, but the series seems to be rapidly
converging. The number of significant figures does not
give the absolute accuracy of the result in Table I, but
rather indicates the dependence on the nuclear radial
parameter. The experimental results of Nijgh ef al. give
a reduction of 0.644,” and those of McGowan and
Stelson give 0.65,* when compared to the point nucleus
calculation. Since Sliv’s correction factor is 0.77, this
reduction of sixteen percent beyond Sliv’s results is of
the order of magnitude of the reduction given in
Table I.

Two checks on the accuracy of this calculation are the
magnetic moment of the ground state and the lifetime
of the transition. The magnetic moment as calculated in
reference 6 was within about ten percent of the experi-
mental value. A more sensitive test is the lifetime. An
equation for the reduced matrix element which is
equivalent to that given by Arima ef al., but more con-
venient in using the results given above, is

274+14\¢? (24 +1—ns) L PP
e
3 B (27.+1) 2441

X (gs_gl)iﬂi,

where the sum is over all the partly filled doublets and
(gs—g1)=4.585 or —3.826 for admixed protons or
neutrons, respectively. For the 279-kev level in T1*® the
experimental value for the reduced matrix element is
given by Mex,2=4.4X1071/7, where 7 is the experi-
mental mean life.

The results of this paper give 9=0.52, in agreement
with the results of Arima ef al. The experimental values
vary, and are made even more uncertain by the un-
certainty in the E2 to M1 ratio, but the magnitude of
NMexp is two to three times smaller than the calculated
value, -a result discussed in reference 6, where the
calculation for this lifetime gave one of the poorest
results of the cases treated. This probably reflects the
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choice of the wave functions used, and could indicate
that the conversion coefficient is reduced more than the
amount indicated in Table I. However, a recent calcula-
tion!® predicts a twenty percent admixture of collective
excitations to the wave functions of T1#%. This would
not alter the magnetic moment very much, but could
alter both the gamma lifetime and the probability for
electron emission. For this reason it is not certain how
the reduction given in Table I would be affected, al-
though the magnitude of the E2 lifetime, which is about
four times the single-particle value, is correctly given
only when the collective contributions are included.

Part B. E2 Transition

The wave functions needed for the calculation of the
E2 matrix elements are identical to those in part 4,
except that the excited spin-orbit doublets in the
admixed configurations in both the initial and final
states are coupled to angular momentum two (2),
instead of one (1). To evaluate the possible alteration
in the E2 internal conversion coefficient, one needs the
two angular integrals

fdﬂ Jn-T,, 1*M=—1;(— DMC(525 ; m,— M ,m')P2(x),
) (31)
f 40 Ty o g == (= YC(J25 s = M )
Proceeding in precisely the same way as in Part 4 of
this section, one can show that
1 e
(4m) 2mcei
dR;,
X—+2.684R;3;R24—3.75

dx

dRsa
D2 (w) =

{ 0.894x2R;; —0.894%%R54

dx

R2d dRSs
+ %2Ry g+ 3xR;3: R, d]
dx dx

n ( 53'+6 )

‘/_2_ 3

dR1n
X [10.3362( )R1h+15.4xR1h2]}
dx

Bll dRap
- (—-+61)[4.592x“’( )R3p+6.889xR3p2]

V2 dx

(ﬁzlw )
\/? 2

dRy;
X[4,076x2( )R1i+6.114xR1i2] }: (32)

X

X [szas

16T, Silverberg (private communication).
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TaBLE 1. Ratio of M1 internal conversion coefficient to that of
Sliv for the 279-kev transition in TI?%, for the most likely values
of the nuclear parameter.

vR? P B/Bs
7 4.76 0.81
8 4.28 0.83
9 3.89 0.85
10 3.57 0.87
11 3.30 0.88
12 3.07 0.89
13 2.87 0.9
14 2.69 0.91
and
1 e dR3q
&2 (x)=—— ———! —4.155x2R34 —1.793x?Rz4
(4m)* 2mei dx
dRSs
X——+8.311xR24R3;
dx

Bs dR1n
V2 dx

61’ dRsp
)]
/] dx

( : )
ﬁ
dR]i

dx

In Eqgs. (32) and (33) the 8 and 8’ correspond to the
same admixtures as in Part 4, except the J=2, instead
of 1. The equations given in the Appendix, with the
values of the parameters used in Part 4 of this section,
give for the mixture coefficients

By’
(-+32) —0.0154,
)
B4’
(—+33) = —0.06231,
V2

By
(—+B1) =—0.00679.
V2

From Egs. (32), (33), and (34), one can determine the
ratios needed in Eq. (2). Interpolating from reference 5
to find the other quantities needed for Eq. (2), one can
find the conversion coefficients. The results are given in
Table II. Once more the number of significant figures in
the table does not represent the accuracy of the calcula-
tion, but rather indicates the dependence on the radial
parameter. From this it is seen that for no reasonable
value of the nuclear radial parameter does there arise an

(34)
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TasLE II. Ratio of E2 internal conversion coefficient to that of
Sliv for the 279-kev transition in TI?% for the most likely values
of the nuclear parameter.

vR? poa 2 /o
7 0.793 0.310 0.9995
8 0.702 0.277 0.9998
9 0.631 0.251 1.0001

10 0.569 0.227 1.0002

11 0.524 0.211 1.0004

12 0.483 0.195 1.0006

13 0.442 0.178 1.0007

14 0.418 0.170 1.0008

experimentally determinable alteration of the internal
conversion coefficient. This is a reasonable result, since
the shell model contribution is the important one in this
case, and therefore it does not seem likely that the ratios
of matrix elements should be much affected by the
admixed configurations. This result depends, of course,
upon the shell model wave function being a good ap-
proximation from which to start perturbation theory.
These results are in disagreement with Nijgh et al.,?
who find a reduction of 119, beyond Sliv, but in agree-
ment with the results of McGowan et al.,'' who obtain
the 0.65 M1 reduction with no E2 reduction, which is
essentially the result of Sliv.

IV. CONCLUSIONS

General formulas are derived for the nuclear matrix
elements involved in determining the nuclear structure
effect in internal conversion coefficients, using shell
model wave functions with configuration interaction.
By using the results of Green and Rose, one can apply
these matrix elements to find the alteration in the
K-shell conversion coefficients for any magnetic or
electric 2%-pole transitions of interest at this time,
Moreover, these matrix elements are unaffected by the
atomic consideration, and could be used to determine
the conversion coefficient alteration in other atomic
shells, if the Green-Rose work should be extended.

From a study of the general formulas, and of the
special results in Sec. III, it is seen that the internal
conversion coefficient is not altered greatly by purely
nuclear structure considerations unless the gamma-
transition is hindered by a selection rule in this region
where the shell model gives a good zero-order approxi-
mation for wave functions to determine low-energy
matrix elements. The success in predicting magnetic
moments, quadrupole moments, and lifetimes indicates
that the configuration-mixed wave functions should be
quite good in estimating the matrix elements needed in
the present work, for the region of nuclei studied here.

The largest contribution from the admixed configura-
tions comes from any similar type spin-orbits which
may be included; i.e., for proton transitions, the con-
figuration interaction contribution due to an unfilled
spin-orbit proton doublet is more important than the
contributions from such unfilled neutron doublets in the

KISSLINGER

core. This means that in some cases the sign of the ma-
trix elements, and to some extent the magnitude of the
alteration of the internal conversion coefficient, can be
determined by a single admixture.
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APPENDIX A. ANGULAR INTEGRAL WITH THE
SINGLE-PARTICLE MATRIX ELEMENT

Let
M=M°+MS5, (A1)

where the matrix element is broken into a convection
and spin current part,

M= ffdﬂ(fﬂnfl IN| jims) - T (@),

s [ [aaGms 3l i) Turr@), (42)

MS:ffdQ(jfmfl I5[jim) - Toa*¥ (@),

where JC and J 8 are the convection and spin parts of the
current, respectively. Using the single-particle current
operator, the convection part is

e
Mo= f f AT @) 9 )

X{Zn[pn6(x—'xn)'l'a(x_xn)pn]}
Xrali(x1 - - 24)d%1- - -dPxa, (A3)

where 7, is isotopic spin operator for the #th nucleon.
The single-particle wave function is a product of a
radial function and a spherical harmonic:

¢im(®)=Rp(x)Y(@)=R: 2.
XC(lsj;m—7,m) V1™ ™" (A4)
Using the gradient formula!® to express the gradient of

16 See reference 7, p. 124.
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the wave function in terms of tensors, and carrying out the angular integral by the use of RII (29) and Eq. (19)
of Biedenharn ef al.,'” one gets the result

eh 2\

+198
Mom ez @i 0w

(=t am R L5 =,

2mcer

dRj;(x) Rji(x)
X ’ij*(x)rlp[— (lri‘l)%W(lflrl—l Ll, )\li)(l;HG(”[ll,—!-l)( d ll )
X

X

HIAW (L= 1 L1 N (]| e j1,— 1)( +@+1) )]
dx x
dRis*(x)  Rif*(x)
—(— 1)‘1‘[— A0 (A1 L1 N (l,+1[[e<*>||li)( y Iy )-}—l;*W(l.-lf—l L1;)y)
x x
dR;j*(x) Rj*(x)
X (l,+1||e<*>||l,~)( 41— )]rlpRh(x) ] (AS)
x x
The evaluation of M g is done in an analogous manner. From Eq. (A2),
eh
3= [ [[d0096:06) X0 0) Wrrr b )6, () X urr ot ) ) 1 T, (AG
mct

where u¥ and u? are the magnetic moments in nuclear magnetons of a neutron and proton, respectively. Once more
the gradient formulas are used to express V¢,* and V¢,* in terms of the reduced tensors. Using the spherical
representation for the ¢ vectors, one finds by the usual methods that

A1 eh
M= (—1>M+%~ff[ ] XOXBL (2 1) QLA PCGeL s my— M, )
4 2mct
dRj; Rj;
X l (— l)ijf*OerZs(“ 1)“’(25+1)[— I+ 1)5](d—-—lz ) (l/”G()‘)Hl;—i-l)W(lfli-i-l L1;Xs)
. " X

dRj; Rj;
XW (Usli1; WYW (317 de; 3)W (asjs; 3L)+12 T~ 1>s(23+1)(—d—’+ <l¢+1)¥—) @lle®|z—1)
X X

lZRj f*

+(— 1)1—L+t.-+z,l:_ I+ 1)4( y
x

ij*
—lf—) UML) (— 1) (2 OW (L1 LT As)
X

%

dR;
XW(Usl+1; UW G155 39)W (Gdigss; %L)‘Hf*( p ’
X

ij*
) )<zf—1ne<»nza
X

XE (=1 Qs+ D)W GLidls; 39W (G idijss; LW (Ld,—1 L1; X)W (11sl,— 15 llf)]OuRfi}y (A7)

where O,=p,7P+4punV. Note a factor of (—1)"4+lr—7i—is is needed if the spin wave functions are uncoupled by
C(317; mem,;) [also in (AS)].

APPENDIX B. MIXTURE COEFFICIENTS

From first-order perturbation theory, the mixture coefficients are obtained by Eq. (8), where ;5 is the nucleon-
nucleon interaction potential. In this work we follow the procedure used in reference 6. The two-body interaction

17 Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249 (1952).
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potential is of the §-function type with a singlet and triplet contribution; i.e.,

Ir; Iy
vikz[:Vs(l—ai-o-k)/4+Vg(3+ci-ok)/4:|6(n—rk)6(cos —1)/1’27’;;. (Bl)

Ytk

The two parameters V, and V, are determined from experiment. As is stated in reference 6, the two-body potential
can more conveniently be written as a scalar product of two tensors:

vie= 2 (= 1)V o (riry) (640t 757), (B2)

zkr
where Vo= (V,+3V)/4 and V1= (V,—V,)/4 and
[mzk;r=zb Cb,m——bzkro'bxem—bk, (BS)

where @,*=[4w/(2k+1) ¥V *(Q), and ;7 is unity for x=0 and the Pauli spin operator for x=1 in the spherical
representation. Also, in Eq. (B2),

i)k=[(2k+1)/2]6(h—7’])/7’ﬂ’1 (B4)
Part A. Like-Core Mixtures in the Initial State. Dissimilar Type M1
—AEB= (j1"(0)72"2(0) 7 *(0) 771 (1) ; jm |2 vir| [71™ (F0) fo"+* (52) (1) 5 41 (57) 57(0) 5 jm). (B3)

Using the methods of reference 6 and a theorem due to de-Shalit,!® one obtains
3V (1) (272 +1—n9) (2j+1=) (25 +1=¢) (25:— 1) (2j—1)
saEL (2721 25+1) 27+ j 12

]3(]'1;'2]';"). (B6)

Part B. Like-Core Mixture in the Initial State. Similar Type M1

For similar type transition the results differ from Part 4 in that the Pauli principle must be applied to the matrix
elements. The result is

_B(=V)[m 2t 1—m) (2j+1-) (2] +1-9) 2ji— 1) (2j—1)
16AE L (27:4+1) (2541) 25+ 1) jj

Part C. Unlike-Core Mixture Coefficients M1
Whether the transition is of similar or dissimilar type, or the mixture is in the initial or final state, the theory
follows in precisely the same manner. The angular momenta are uncoupled by fractional parentage coefficients and
Clebsch-Gordan coefficients. Since all of the matrix elements of the unlike-core type have the relationship to those of
the same kind but of the like-core type as Eq. (12) is related to Eq. (10), it turns out that in every case

]zzwan'). (B7)

3
B(unlike-core) =[ - #e - ] B(like-core). (B8)
(2j+1-p)25'+1—9)

Part D. Mixtures in the Final State M1

As an example of mixing in the final state, from which one can draw general conclusions, the like-core, similar-
type transitions have a matrix element

—AEg = (ji(0)7272(0) 7 1 (5) 77 (0) 5 jm|vir| L (51) jo21 (52) 1(1) 5 4(0) 71(5) 5 5'm'), (B9)

which is to be compared with Eq. (BS). They are identical if the following pairs are interchanged: (p,q), (4,5’), and
(¢,1). In doing this, one should keep in mind that there are two possible cases. One may have j= j'+1, corresponding
to I=0I'+2; or one may have j= j'—1, corresponding to /=10'—2. In general, the mixture parameters for the two
cases are different, so the coefficient corresponding to j= j'—1 must be used (after the three pairs mentioned above
are switched) instead of j=j'+1, or vice versa. However, in the M1 case, the final results are the same in every
case. The result is

B'=—[(25+1)/(25+1) 1. (B10)
18 A de-Shalit, Phys. Rev. 91, 1479 (1953).
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Part E. E2 Mixture Coefficients

303

For each case, the E2 coefficient is obtained by techniques similar to those in the corresponding M1 case, although

the calculations are all somewhat more tedious for the E2. The results are given below.

(1) Initial State Admixture, Dissimilar

j= 1
R%ES {[<2j+1—p><2j'+1—q>]% H 1122 1—15) ]
16 AE (pq)% (2j2+1)(2j+1)(2j'+1)
XI(j:j jj’)[ Ch =) ]g(sv +2j2V7)
S G- D) G DG G—nd T
=1
V51 {[<2j+1—p>(2j'+1—q>3% J[ w12t 1— o) ]%
16 AE (pg)t (2721 (25+1)(25'+1)
2j1—1)(2j+3) i
XI(j1727 ')[ ] [—3V0-|—2( +1)71V1].
PR G D) Gk DG G42) DA
(2) Final State Admixture, Dissimilar
j= g1
PRGES l[<21+1—p><2j'+1—q>3%:[ 112 ot 1—12) ]
16 AE (p0)* 270+ 1) 25+ 1) 27+1)
@j—1)(25+1) i
XI(j1727 ')[ ] (—3Vo+2771V, ,
PR G G D G- D G D) 7V
j=—1:
V51 i[<2j+1—p)<2j'+1—q)3% }[ a2t 1— ) ]%
16 AE (pg)? (27,+1) (25+1)(25/+1)
@j— 1) (25+1) ;
XI (41727 ’)[ ] [3V +25:(G+DV].
T D G G- Gl BV RN
(3) Initial Stdte Admixture, Similar
=
_l/_5 i{[(2]'+1—17) (2j’+1—q)]%}[ 11(2j2+1—ns) ];
32 AE (pg)? (252+1) (254+1) (25+1)
@h—1)(2j~1) ;
XI('1'2“'[ ](3"2“ (Vs),
M| GG iG=n Gl O
j=j'—1:
GRS {[(2j+1-p>(2j'+1—q>]% ][ 11 (2ot 1—n2) ]é
32 AE (p) 2t DI+ D 27 +1)
21— 1) (27+3) :
Xl('x'z”'[ ] 3+2(j+1) 7. ](=Vy).
P G D G DiGrn G PR DRET)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)
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(4) Final State Admixiure, Similar

j=g+1:
,_YEL{C<2]'+1—p><2j'+1-q)]%$[ m(@jrt1=m) ]
32 AE ($9)? (272+1)(2j4+1) (25'+1)
(25— 1)(2j+1) %
X1(417277") ] 3+2550)(—V,), (B17
o [jl(j1—1><jl+1>j<j—1><j+1) SR, B
j=i—1:
AR {E(zj+1—p)<2f+1—q>3% I[ m(2jrk1-ms) ]%
32 AE (pg)} (271 (25+1) (2574 1)
(25— 1)(2j+1) '
X1 (j1 ‘2"’)[ ][3—2('+1 Ve (B18)
T =) Gt DG+ (742) JHDA]

In Egs. (B11) through (B18), the curly bracket indicates that the upper quantity, [ (2j4+1—p)(25'+1—¢) ]}, is
used for like-core transitions, while the lower quantity, (p¢)?}, is used for unlike-core transitions.

APPENDIX C. NUCLEAR RADIAL PARAMETER

In choosing the nuclear radial parameter, », the con-
dition is that the normalized nuclear wave functions
give the proper expectation value for the square of the
radius; i.e., that the mean square radius for these wave
functions is the same as the value for a uniform density.
This condition is

f AV W =3R?. (1)

This condition is not unique, however, for it is difficult
to determine which orbits should be used. It is not
correct to use all of the orbits, as can be seen either by
examining the nuclear surface generated by this method,

or recognizing that the independent particle approxima-
tion certainly does not imply that the nucleons deep
within the core act as the same nuclear particles near the
surface. Therefore various assumptions were made, and
the nuclear parameter was calculated; as a result, the
range of nuclear parameters obtained should give a good
limit to the proper value of the nuclear parameter. The
calculations were made for Pb®8,

(a) Using the 3s protons in the last orbit, »R2=9.2.

(b) Using all of the protons in the last orbit, »R2
=9.78. -

(c) Using the neutron last p orbit, »R*=10.8.

(d) Using the neutron last g orbit, »R?=12.5.

(e) Using all the neutron orbits in the last neutron
shell, yR?2=11.4.



