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the correlation of density Auctuations over macroscopic
intervals should depend on the same properties that
determine the character of equilibrium macroscopic
inhomogeneities. The reason for this is that the "states"
which contribute most prominently to the density
fluctuations over large regions must be representable
as possible thermodynamic states. It now becomes
possible to determine the configuration and free energy

of those "states" by the methods of this paper, and so
to formulate this problem without resort to microscopic
statistical mechanics by use of thermodynamic Quctua-
tion theory.
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The use of the Langevin equation (dv/dt+gv=(q/nt)r Epe'"'+(v/c)XH)) to describe the electrical
conductivity of a non-Maxwellian plasma (a weakly ionized gas in which the average electron collision
frequency is temperature dependent) may be in error unless it is understood that the dissipative term, g,
is complex. In the limiting cases of either high or low pressures the imaginary part of g is negligible. The
real and imaginary parts of g are evaluated for these limiting cases, for four different gases; air, helium,
Maxwellian gas, and water. The real part of g is shown to be the average collision frequency multiplied by a
numerical factor, the size of which depends on the nature of the gas and the pressure limit.

I. INTRODUCTION

HE conventional description of the ac conductivity
of a weakly ionized gas (e.g., Mitra') is based

upon the assumption that the average drift velocity of
electrons in the gas obeys the Langevin equation:

lv g—+gv= —Epe
dt st

with the steady state solution

1 (q)v=
I lope~'

i~+g E m)

where v is the average drift velocity, g is a dissipative
term which represents the effect of collisions between
electrons and molecules of the gas and the symbols q,
m, and Eo have their usual meaning.

The usual approach has been to equate g with v,

the average collision frequency of the electrons. This
particular method is, in general, incorrect for real
gases. Indeed, it is only for a Maxwellian plasma' '
that g is identically equal to v.

'S. K. Mitra, The Upper Atmosphere (The Asiatic Society,
Calcutta, 1952), second edition, pp. 623-629.

s W. P. Allis, Handbttch der Physsh (Springer-verlag, Berlin,
1956), Vol. 21, p. 392.' T. Kihara, Revs. Modern Phys. 24, 49 (1952).

4 S. Altshuler (unpublished).
5 Reference 2, p. 413.

A Maxwellian plasma is a weakly ionized' gas for
which the cross section for momentum transfer, Q(V),
for electron impact on the neutral molecule varies
inversely as t/", the relative velocity between the
electron and the molecule. '

Now, most real plasmas are non-Maxwellian. For
example, the cross section, Q, for air' or nitrogen' is
proportional to V, the cross section for helium" appears
to be constant, and the cross section for water, and
other molecules possessing permanent electric dipole
moments, "varies inversely as V'.

It is not to be expected that g is simply related to v

for these plasmas except under certain limiting circum-
stances. We proceed to find what form g must take for
the above mentioned plasmas.

II. THE FORM OF g FOR A NON-MAXWELLIAN PLASMA

The average drift velocity for electrons in a gas in
the presence of a weak, alternating electric 6eld, may
be determined using the relationships presented by
Allis' and Margenau. "

The drift velocity, so determined, is represented, in
form, by

v = (q/srt) Epe~'(8 —iD), (3)
6 By "weakly ionized, "we mean the only important interactions

are those occurring between electrons and neutral particles.
7 Or equivalently, the collision frequency independent of energy.
p Crompton, Huxley, and Sutton, Proc. Roy. Soc. (London)

A218, 507 (1953).
P Phelps, Fundingsland, and Brown, Phys. Rev. 84, 559 (1951)."L.Gould and S. C, Brown, Phys. Rev. 95, 897 (1954)."S. Altshuler, Phys. Rev. 107, 114 (1957).
"H. Margenau, Phys. Rev. 69, 508 (1946).
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TABLE I. Evaluation of g, and g; for the low- and high-pressure cases.

Gas species gs
p/cd g j.

gr

Form of average
collision frequencya

Q/V constant, air,
nitrogen

Q constant, helium

QV constant,
Maxwellian gas

Qt/' constant, 820,
NH3., molecules
with permanent
electric dipole
moments

(5/3) v (1+4.22v'/ar')

—;v(1—0.22v'/co')

-', v (1—0.18v'/cu')

(10/9) (v'/~)
X (1+5v'/co')

0.18(v'/ca)
X (1+2 14v'/~')

0

vL1+4.57(a/v) &j

(3s-v/8) (1+0.28''/v')

2coL1 —2.29(co/v)'* v= (3Q/V)pKT/m
+4.57 (a /v) &1

0.18@)(1—7 5&us/v2) v=2pQ(2KT/sm)t

u=pQV

0.079 (v'/(a) (3s v/16) (1+030~s/vs) 0.11co (1—7.1co~/vs) v = 2QVsp (m/2s KT) &

X (1+0.60v'/(u')

a v is rigorously defined as follows: v =t pQ(V) Vfd7-, where p is the neutral particle density, Q(V) is the cross section with its correct functional
dependence on V, f is the normalized velocity distribution function (assumed Maxwell-Boltzmann) and integration is over al lof velocity space.

where 8 and D are rather complicated functions of v,

the average collision frequency, and or the wave angular
frequency. Moreover, (me'/m)(B —iD) is the complex
conductivity of the gas, where e is the electron particle
density.

The solution (3) for v, is incompatible with Eqs. (1)
and (2) unless g is taken as complex or unless B=co/
(oP+gs) and D=g/(to'+gs). The latter is true only for
a M axwellian gas. Thus, to insure compatibility,
g=g„+ig, , where

g„=B/(B'+ D'-),

g'= D/(B'+D') —~.

The functional forms of 8 and D have been evaluated
for the various gases discussed in Part I and are
assembled in the Appendix. They lead, in general
(except for the Maxwellian plasma), to non-negligible
values of g;.

Now, no simpli6cation results from the use of the
Langevin equation to describe non-Maxwellian plasmas
unless g is real. Therefore, in order to retain this
intuitively satisfactory form we must look for conditions
under which g; may be neglected. This quest is motivated
also by the fact of the existence of a tremendous
amount of analysis, already in the literature, based
upon the arbitrary substitution of v for g (e.g., the
Appleton-Hartree formula). Therefore, under conditions
where g; is negligible, such analysis may be rectified by
the formal substitution of g„ for i, wherever v appears.

III. LIMITING FORMS OF g, AND g; FOR
LOW AND HIGH PRESSURES

An inspection of the asymptotic forms of 8 and D,
listed in the Appendix, reveals that g; may be neglected
under the following limiting conditions.

v/co((1, the low-pressure case;

v/a&))1, the high-pressure case.

The limiting forms of g, and g, for these two cases have
been evaluated the second order in v/co and are presented
in Table I.

It is to be observed that g„ in the low-pressure limit
is a simple multiple of v/3, and g, is of the order v'/oP

with respect to co. Therefore, it is reasonable to ignore

g; in Eq. (2) for v/a&(1. On the other hand, g, in the
high-pressure limit, especially for air, may be of the
same order as co and cannot be dropped unless co itself
can be neglected.

Note that according to the last column of the table,
g„ is temperature dependent.

where f fuff is the mobility tensor and is given by

L+R i(E—L) 0
g

(I—&) L+& 0

0 2P

Here I' is just the B—iD that appears in Eq. (3).
I. is obtained by formally replacing co, where ever it
occurs in B sD, by co+to&. R—is obtained similarly by
replacing co by to—to&. co& is —qfH f/mc, the angular
cyclotron frequency.

Since we have demonstrated the equivalence between
the two forms, B sD and 1/$i(a&+—g~)+g„j, we may
rewrite I', I., and E in the following fashion:

I'—
g„+i (co+g,)

g„+i (co+tos+g, )

(&o in g, and g; replaced by en+co&) (9)

IV. CONDUCTIVITY WITH A STATIC
MAGNETIC FIELD

With a static magnetic field, H, the average drift
velocity becomes'
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R= )

gz 2 (cP cPb+gf)

(&v in g„and g; replaced by &p
—~&). (10)

where
QV2P(P/ )'-p( —PV')

p2Q2V2+~2

The values of g, and g, may be obtained from Table I
for the low- or high-pressure limits with the following
understanding: In Table I, co is to be formally replaced
by cp+co& when dealing with (9) and cp is to be replaced
by cp —&p& when dealing with (10).Thus, should cp=1~&1
we may require the high-pressure value of g„ for (8)
while simultaneously requiring the low-pressure value
of g„ for (9)."

In the low-pressure limit, 11p11 with the representations
(8), (9), and (10) becomes identical with the mobility
tensor derived from the I angevin equation with
magnetic field:

and P=m/2ET and p is the neutral particle density.
It is assumed that the electrons have a Maxwellian
velocity distribution.

8 and D may be evaluated for each one of the gases
discussed in the text and are herewith presented.

l. Air or
¹ (Q/V constant)

cpB = —,'X(1—4(m/2) &X'([2—C((2X/x) ')] cosX

+[~~—S((2X/vr) i)] sinX} }, (A-3)

AD=-'X'(1 —2(~/2) &Xl([-', —S((2X/7r) I)] cosX
—P, —C((2X/m) i)] sinX}}, (A-4)

dv/dh+g, v = (q/rN) Epe'"'+ (q/m) v XH. (11)
where

Note that the results are identical with those of Allis"
but with the important exception that g„replaces v.

CONCLUSION

We have pointed out how the considerable analysis
based upon the cavalier usage of the Langevin equation
may be rectihed under certain conditions by the formal
substitution of g„ for v. It is certainly the case that for
those investigations where v played an insignificant
role, the substitution of g„ for v will not alter the results.
However, in matters relating to say, attenuation of
electromagnetic waves in the ionosphere, where the
attention (in db) varies as v or the determination of
collision frequencies by electromagnetic interaction
with plasmas, the results of analysis may be off by
almost a factor of two unless proper precaution is
maintained.

We have offered here some simple rules for the use
of the Langevin equation to describe several ordinary
plasmas. Application of these rules allow the retention
of the conventional conductivity theory and the
prediction and analysis of attenuation and collision
frequency in plasmas in an unequivocal way.

&P't I 3 pQ
=4xl~

I
pQV' exp( —PV')dV=-

2v' (~) &, 2PV

C(N) = cos(-', ms')ds
JP

S(N) = sin(~ms')ds
40

the Fresnel integrals

(pD =-'X'[1—(7r) ~Xi cos (X+-,'x)]. (A-6)

X&1
5 7

1— +.
2X 4X'

(A-7)

The asymptotic forms for uB and ~D are:

X(1 (X= 2Pcp/v)

arB = Pp X[1—2 (m) ~X*'cos(X—~~or)+4X'] (A-5)

APPENDIX. CONDUCTIVITY (ne'/m) (B—iD) FOR
SEVERAL WEAKLY IONIZED GASES

For the case of weak fields and electrons undergoing
only elastic collisions, the following forms of 8 and D
are to be inserted into Eq. (3):

AD= 1—
4X'

2. He (Q, constant)

(A-8)

4'
AV'dV,

0

(A-1) 4X~
a)B= [1 X X'ex' ( X)—]— —

3 7r

(A-9)

4m' p co
D= V'f gd V, —

3 &p pQV
(A-2)

"The computations of g; and g„are based on the assumption of
an isothermal plasma. In the case of finite electric fields and
co= co&, the electron energy may rise considerably above that of
the background gas.

'4 Reference 2, p. 394, Eq. (12.6), (12.7).

&AD= X[(-',—X)n.l+m-X'ex (1—~ (gX))], (A-10
3+m.

where

X=4pp'/~v', v=2pQ/(~P) l,
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and

—Z, (—X)=
"x

oo ~
—g

Ch (the exponential integral),

4. H20, NH3 (QV' Constant)

MB = Xi(1—X—X'exF (—X))
3 7r

(A-17)

Z

Q(s) = — exp( —t2)dt (the error integral).

The asymptotic forms for ~B and coD are:

X«1 (X=ko'/~v')

X-:(1—X),

a)D= 1—-,'X+-', X'—43vr~Xlex(1 —y(QX)), (A-18)

where
X=m v'/ku', v = 2QV'p(P/m) '*

The asymptotic forms for coB and coD are:

X«1 (X=~v'/4o')

~B= -', (X/m) &(1—X),
AD= 1—-X.3

(oD=-;X(-', —X). (A 12) X))1 (X=~v'/4co')

81]3y
078 =

3/m QX E X)

5
coD= 1

2X

(A-13)

(A-14)

8 1 t' 3q
CO~

I
1

3+m gX ( X)

(aD= 1—
2X)
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