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By the inclusion of an explicit dependence of the energy on the boundary of the system, the thermo-
dynamic description of inhomogeneous systems is made more complete. In particular, virtual processes
can then be defined that determine the measurable stresses everywhere in the system.

INTRODUCTION

N an earlier paper,! I developed an extension of the
thermodynamic methods of Gibbs so that inhomo-
geneous systems could be described. The treatment of
the boundary envelope in that paper seemed to me to
be somewhat unsatisfactory, and that point was
discussed briefly in the closing paragraphs. A possible
alternative description for the boundary was also
mentioned, but this was not developed at any length.
The purpose of the present paper is to show that that
generalization of the boundary is just what is needed
to complete the thermodynamic description of inhomo-
geneous systems. With this improvement it is possible
to define the measurable stress everywhere in the
system as well as on the boundaries.

DEVELOPMENT OF THE THEORY

The notation of the present paper is the same as
that of I. Following Eq. (41) of I, we shall let the
total energy be augmented by a boundary term. Then
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There are now some differences between the equilibrium
conditions in I and those which result from the present
treatment. These differences of course have to do only
with modified boundary terms that result from varia-
tions of &% and &vy; at the boundary. As already noted
in Egs. (20a) and (21a) of I, the boundary conditions
of the ‘“chemical equilibrium” equations are simply
modified to the form,

Zi ddi(wr—al//axrl"/li):o, (2)
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The only other equilibrium conditions which undergo
any modification are the boundary terms corresponding
to stress equilibrium. We shall follow this in some
detail. The inclusion of the generalized boundary
interactions enables us to place a more general con-
straint upon the boundary deformability, corresponding
to the necessity of exerting tangential as well as normal
tractions on the boundary. The general constraint is

1 Edward W. Hart, Phys. Rev. 113, 412 (1959), hereafter
referred toas I. -
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then, everywhere on a boundary,

0. 4)
For convenience in summing all the constraints given
by Eq. (4), we select the Lagrange multipliers in such
a form that we obtain a readily recognizable stress
tensor. Thus we write
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where P, is a tensor function of position on the

boundary. The general variational condition to be

satisfied is
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The portion of 8E which corresponds to the volumetric
energy contribution is that already given by Eq. (26)
of I. It remains to evaluate the portion which depends
on our newly introduced boundary contribution to E.
That portion depends on &z and &y; due to the strain
deformation, evaluated at the boundary in ils displaced

position. It is readily found that
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Combining the new boundary contribution with Eq.
(26), we obtain after some simplification

i) dw; v %
=3 dvéx]—[p&j— n— ]
i X5 ax; dx;  Odx0x;
dv
-2 dai[ Postwryitvhg— Vz—)5xj
i dx;
dv i)
+ moi+vw—n—+nAi+Bw)—5xj
axi axj
d i)
+ ( w;——l— m— —+Bvi—
X5 ax; dx; dx;
Jd 9
+Bn— ——)6ij
ax@‘ axj
v
—I—Z daﬁxJ nw,—l— vyi— na—)
X



28 EDWARD W. HART

This expression is further simplified by the use of the
boundary conditions given by Egs. (2) and (3), and by
rewriting the last term of the right-hand member.

Thus we obtain
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The substitution of Eq. (7) into Eq. (6) leads to the
equilibrium conditions:
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Although the quantity Pj; is defined by Eq. (9) only
at a boundary, it is convenient to consider that there
exists such a tensor defined by that equation through-
out the system. It can then be shown that P,; is the
measurable stress everywhere in the system. This results
from the following considerations:

In order to measure the stress somewhere inside the
system, it must be possible to introduce a boundary
element anywhere in the system in such a way that the
density distribution in the system is unaltered by the
presence of the boundary element. The stress is then
determined from the tractions on that boundary ele-
ment. We can, for example, introduce a closed cubical
boundary somewhere inside the system and remove
the matter which was in the region now occupied by
volume of the cube. If the boundary is tailored so that
its constants 4; and B now satisfy the conditions given
by Egs. (2) and (3) where the boundary is, then clearly
the rest of the system will be unperturbed by the
replacement that we have effected. The tractions on
the boundaries will then be deducible from the tensor
P;; as defined by Eq. (9) and we have thereby demon-
strated that P;; is the measurable stress everywhere in
the system.

We investigate next the equilibrium associated
with P, ij
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where the summation indices ¢ and & have been simply
interchanged in the term in which they occur. Carrying
out the last operations, we obtain directly that

a Aw; dv %
2 —Py= Z [Pau_"” —yi—+n ]7
i dx; X5 x; Ox; Ox0%;
and so, from Eq. (8),
0
2 —P;=0. (10)

i duy

This equation can be taken as the stress equilibrium
condition instead of Eq. (8).

Now the same type of argument that is used in
usual elasticity theory to insure the rotational equili-
brium of each element of volume leads to the conclusion
that P;; is a symmetric tensor. This leads us to the
further conclusions that

WY j= WiV, (1 1)
and
v v
=4 (12)
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and so the vectors w; and 9»/dx; are parallel to v,.
This is not a very surprising conclusion considering
the implicit assumption of isotropy in the postulated
form of the energy density. It is of course possible to
describe ab initio systems possessing a lower degree of
symmetry, but such extensions will not be pursued in
this paper.

DISCUSSION

Thus, with the modifications presented above, it
becomes possible to describe thermodynamically the
equilibrium configurations of a wide range of systems.
The range of validity of the surface approximation can
be evaluated in detail for any particular case by means
of the self-consistent phenomenology set forth here.

In the introduction to reference 1 it was mentioned
that this method should be useful in treating the
phenomena associated with critical point fluctuations.
I should like to enlarge slightly upon that idea although
the problem is not yet solved. The point here is that
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the correlation of density fluctuations over macroscopic
intervals should depend on the same properties that
determine the character of equilibrium macroscopic
inhomogeneities. The reason for this is that the “states”
which contribute most prominently to the density
fluctuations over large regions must be representable
as possible thermodynamic states. It now becomes
possible to determine the configuration and free energy

of those ‘“states” by the methods of this paper, and so
to formulate this problem without resort to microscopic
statistical mechanics by use of thermodynamic fluctua-
tion theory.
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The use of the Langevin equation {dv/di+gv= (¢/m)[Eee’*t+ (v/c)XH]} to describe the electrical
conductivity of a non-Maxwellian plasma (a weakly ionized gas in which the average electron collision
frequency is temperature dependent) may be in error unless it is understood that the dissipative term, g,
is complex. In the limiting cases of either high or low pressures the imaginary part of g is negligible. The
real and imaginary parts of g are evaluated for these limiting cases, for four different gases; air, helium,
Maxwellian gas, and water. The real part of g is shown to be the average collision frequency multiplied by a
numerical factor, the size of which depends on the nature of the gas and the pressure limit.

I INTRODUCTION

HE conventional description of the ac conductivity

of a weakly ionized gas (e.g., Mitra!) is based

upon the assumption that the average drift velocity of
electrons in the gas obeys the Langevin equation?:

av q._
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‘with the steady state solution
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where v is the average drift velocity, g is a dissipative
term which represents the effect of collisions between
electrons and molecules of the gas and the symbols g,
m, and E, have their usual meaning.

The usual approach has been to equate g with »,
the average collision frequency of the electrons. This
particular method is, in general, incorrect for real
gases. Indeed, it is only for a Maxwellian plasma®-5
that g is identically equal to ».

1S. K. Mitra, The Upper Atmosphere (The Asiatic Society,
Calcutta, 1952), second edition, pp. 623-629.

2W. P. Allis, Handbuch der Physik (Springer-Verlag, Berlin,
1956), Vol. 21, p. 392.

3T, Kihara, Revs. Modern Phys. 24, 49 (1952).

48S. Altshuler (unpublished).

& Reference 2, p. 413.

A Maxwellian plasma is a weakly ionized® gas for
which the cross section for momentum transfer, Q(V),
for electron impact on the neutral molecule varies
inversely as V, the relative velocity between the
electron and the molecule.”

Now, most real plasmas are non-Maxwellian. For
example, the cross section, Q, for air® or nitrogen? is
proportional to V, the cross section for helium!® appears
to be constant, and the cross section for water, and
other molecules possessing permanent electric dipole
moments,!! varies inversely as V2.

It is not to be expected that g is simply related to »
for these plasmas except under certain limiting circum-
stances. We proceed to find what form g must take for
the above mentioned plasmas.

II. THE FORM OF g FOR A NON-MAXWELLIAN PLASMA

The average drift velocity for electrons in a gas in
the presence of a weak, alternating electric field, may
be determined using the relationships presented by
Allis® and Margenau.?

The drift velocity, so determined, is represented, in
form, by

v=(g/m)Eoe*(B—iD), )

¢ By “weakly ionized,” we mean the only important interactions
are those occurring between electrons and neutral particles.

7 Or equivalently, the collision frequency independent of energy.

8 Crompton, Huxley, and Sutton, Proc. Roy. Soc. (London)
A218, 507 (1953).

9 Phelps, Fundingsland, and Brown, Phys. Rev. 84, 559 (1951).

0T, Gould and S. C. Brown, Phys. Rev. 95, 897 (1954).

11§ Altshuler, Phys. Rev. 107, 114 (1957).

12 H. Margenau, Phys. Rev. 69, 508 (1946).



