
STABLE ORB I TS OF CHARGE D PARTI CLES

form of the Mathieu equation:

where
d'y/dts+ (b sc—os'$) y =0,

b =s= (eBp/2rruo) s.

From a table of characteristic values7 one reads that the
solutions of (30) remain bounded if (eBp/2nuo)s lies
in one of the intervals:

0 & (eBp/2rruo)s & 1.315,

3.56& (eBp/2rruo)'& '/. 43,

12.16& (eBp/2nuo)'& 18.51, etc

There are infinitely many such intervals, but only the
6rst one appears to be of interest

0.433
I
eBp/~ I. (33)

This condition ensures stability of the orbit, that is, a
7 Tables Relating to Mathieu Injunctions, by U. S. National

Bureau of Standards (Columbia University Press, New York,
1951).

bounded r(f) for any initial conditions, provided r(i) is
small enough to justify the linearization (30).

In a sense, the criterion derived by the method in
this section is complementary to the one obtained in
Sec. A. The condition on the frequency has been relaxed
and made precise (33), while it was necessary to impose
the somewhat indefinite condition (24).

An exact stability criterion is still lacking, but one
might speculate that it takes the form

f((eBp/rruo)', E, p„')&1,

where f is an increasing function of its arguments. A
number of solutions r(f) have been obtained by
numerical integration of (10). Although any such
calculations must remain inconclusive since one cannot
follow a solution for arbitrarily long times, it was
observed that the orbits remained bounded as long as
both (23) and (33) were satisfied, indicating that the
conditions of either method are far more stringent than
necessary.
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Landau's model of liquid He' as a Fermi liquid is studied with regard to its lowest temperature properties.
Primary stress is laid on the coefEcient of thermal expansion. The spectra used by Abrikosov and
Khalatnikov, the perfect-gas type and "bubble" type, are shown to give a positive coe%cient of thermal
expansion, in contradiction with experiment. An alternative simple spectrum is suggested which can give a
negative coefficient of thermal expansion, namely n+p'/2m~. In addition, the existence of a negative
coeKcient of thermal expansion is shown to imply a strong temperature dependence of the energy spectrum,
which may cause a sharp deviation of the heat capacity curve from the perfect-gas type, similar to the
deviations observed in liquid He'.

I. INTRODUCTION

~N 1956 Landau' proposed a model with "Fermi-type
& - spectrum" which is not necessarily temperature-
independent nor interaction-free as in the case of ideal
Fermi gas (hence the qualification "liquid" ), and
developed a general formalism of some properties of
the model. Based on this, Khalatnikov and Abrikosov'
discussed the thermodynamics of liquid He' assuming
two particular spectra, perfect-gas type and "bubble"
type, and concluded that the latter reproduces the

t Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

* On leave from Institute of Physics, College of General
Education, University of Tokyo, Komaba, Meguro-ku, Tokyo,
Japan.

' L. D. Landau, Zhur. Exptl. i Teoret. Phys. 50, 1058 (1956)
Ltranslation: Soviet Phys. JETP 5, 920 (1956)j.2I. M. Khalatnikov and A. A. Abrikosov, Zhur. Exptl. i
Teoret. Phys. 52, 915 (195'7) Ltranslation: Soviet Phys. JETP 5,
745 (1957)j.

temperature variation of the heat capacity, of the
entropy, and of the magnetic susceptibility. This
spectrum, however, gives a positive thermal expansion
coefIicient in contradiction to a recent experimental
result, ' as will be shown presently. It will be shown
that Landau's model itself is general enough not to
expose any defect in the "Fermi excitation region"
below about 0.2'K.

We wish here to develop some formulas which can be
derived on the basis of Landau s original idea, in as
general a way as possible. Only one point at which we
deviate from the idea is that we treat fermions with
classical spin, i.e., Ising spin. This restriction allows us
to develop unambiguous derivation of the formulas,

~ R. Dean Taylor and E. C. Kerr, Xamerlingh-Onnes Memorial
Cmsference ol Low Ternperatnre Physi-cs, 1958 /Physics 24
(September, 1958)j.
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and may be admitted since no one has given a satisfac- and the entropy
tory treatment that is appropriate to quantum spins.

2. GENERAL FORMALISM

Let us recall the formulation of Landau's Fermi-liquid
model in its classical spin version. Denote one-particle
states by the index i and the expectation value of the
number of occupying particles by e;. Then the total
number of the particles is given by

S=kP P —k P ln(1 —e-«"—
r&). (2.8)

eP(~~ r')—+1

Let us assume that e is spin-independent and the
number of "orbital" states with "energy" below e is
given by Ze. Then these expressions can be written in
integral forms (by partial integration)

and its variation by

N=P; n, .

AN=+; bn;

(2 1)

(2.2) and

00 Z
N=P '

g) 1+cosh+(e—{)g
(2.9)

As the expression for the entropy of the system we
shall use4

(e {)Z-
S=kP' ' de." „1+cosh+(e—{.)]

(2.10)

S=. —k P; {ts, inc~+ (1—ts;) ln(1 —I,)}. (2.3)

Hence the variation of the entropy to the second order
1n 5S 1S

I;
~S=—kg ~

]
ln

1—,)
1 1+- (be )'+ ~ . (2 4)
2 ts, (1—ts;)

As for the energy, we assume only the expression for
the variation

DE=+; e,bn, +-,' Q, Qg f,,&s,bN,+ . (2.5)

Here we can, of course, assume that f is symmetric in
its indices. However, e and f will be complicated
functionals of {e,}, the forms of which we shall leave
unspecified for the time being.

The equilibrium distribution at constant volume, V,
temperature, T (P—=1/kT), and chemical potential, {,
is given by the condition of vanishing first order
variation of (DE—Td S {hN). It gives—

BZ
N= 2Z+2

r) (1/Afi) 0

and

C) Z 2K 8 Z
+—2 + —+ .

, (2.11)
2 Q(1/P)s 3 ()esq Ps

This Z is a certain functional of {e,},which may be
specified by the quantum-mechanical analysis of the
system. This procedure, however, we agree to avoid in
the Fermi-liquid model. Then the question is: Is there
anything that can be derived from the formal model
above? We shall attempt in this paper to give a partial
answer to this question. The argument will necessarily
involve a full use of thermodynamics.

First let us notice that {n;}is an equilibrium distribu-
tion so that Z may be considered as a function of P, N,
and V as well as e. In fact we need only this dependence
in dealing with thermodynamic properties. Let us
write this in the form Z= Vs (1/P, n, e) where ts=N/V.
Putting P(e—{)=—a and expanding Z in powers of 1/P
to the second order, we get from (2.9) and (2.10)

ni
eP(&' r)+1

(2.6)

2x' 8Z I
5=k -+

3 BeP
(2.12)

N=Z (

l,,(((.' n+. 1j '- (2.7)

4 We are considering a statistical ensemble, for which the de6ned
probability depends on the set of occupation numbers of quasi-
particle states: p{n ) with n =0 or 1 (i.e., the density matrix
is diagonal in this representation) . This is an appropriate equi-
librium ensemble when the energy is diagonal in this representa-
tion. If the quasi-particle states can be grouped into such "coarse
cells" that the probability p depends only on the sum 2 n, '
taken in each cell, one obtains the expression (2.3) as the entropy
of the ensemble, where n; =average of n . The average energy
will, then, be a function of {n;) and hence we have the Qe6nition
(2 5)

Inserting this into (2.1) and (2.3), we obtain formal
expressions for the total average number

where we understand that Z and its derivatives are
taken at P= ~ and e={ . Thus, from (2.12), the entropy
is proportional to temperature in the lowest temperature
region. This is characteristic of the Fermi spectrum in
general.

On the basis of this proportionality, one can deduce
by thermodynamics that

( BS) S—+ (2»)
(BVj p~ N

js valid at lowest temperatures (tre= 1).This shows that
this difference is proportional to T . Inserting (2.12)
with BZ/Be evaluated at f={(O,e)= is into (2.1—3), we
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f1nd

~' 1 mc' 8's 8's
i(T;) t—(0,v)= - ——— +

3 P' n Be' BnBe

those derivatives of Z appearing above must have
some connection with f in (2.5). We shall work out+, (2.14) this relation in the next section.

=0
B(1/P)

(2.15)

where c is the "velocity of sound" at absolute zero and
m is the mass of a particle (not of a quasi-particle).
Comparing, then, this result with that deduced by
expanding (2.11) in powers of i i o, we finally get the
following two relations:

E—+
p' m(BP/Bp) r

=4P{(Ar,)2), (3.1)

3. FLUCTUATION

First we shall give the relations between macroscopic
quantities and the fluctuations which are expected on
the grand canonical ensemble without proof.

and

a28 Bs B's |'2mc'Bs ~ B's
+I

B(1/P)2 3 Be BnBe ( n Be $ Bg2
(2.16) .

and

x
+

p' m(BP/Bp) r
=4P{AV+A1V ), (3.2)

C« ——uP {(AZ—i.Sm) ), (3.3)

n= 2s(o,n,|o). (2.17)

For example, the first derivative is given by

These are, of course, valid at t =t o For a. n ideal gas,
BZ/Be is a constant times Ve& and is equal to 1V/2mc'
at t'=P OHence this second derivative also vanishes
as it should for this case.

As for the derivatives of s with respect to e, we can
utilize the relation

S E(Bvq
~

=7P (~X(~Z i-AX-)). (3.4)
m(BP/Bp)r v &BT),

Here x is the susceptibility, p is the magnetic moment
of one particle, and E+ and g are the numbers of
particles with spin up and spin down, respectively.
C« is the heat capacity at constant i and V and is
connected with C&-&, the heat capacity at constant X
and V, by the relation:

Bs 1 szc Bs

Bs 2 Q 86
(2.18)

(Bi/BT) ~~'
Crv=C~v+T

(m/N) (BP/B p) v
(3 5)

Finally we will mention some formulas which involve
the thermal expansion coeKcient. By virtue of the
thermodynamic relation

1 (BV) 1 (BV) ( BS) 1 ( BS)
I, (2.19)

V & BT)„V& BP) r (BV) p pc' 0BV) p

we can write for the thermal expansion coeKcient

1 (Bv) 2v'0 1

v (BTi, 3 Pmc'

so that the diGerence is of the order T'. It is to be noted
that the expression on the right-hand side of (2.21)
appears in (3.4).

Inserting the equilibrium expression (2.6) into the
coefficients in (2.4) and (2.5), we get for the relative
probability of the fluctuation the following:

1 p (Bn)'
s p(kz Ths rkN) —exp—

— —
2E' n;(1—n,)

+PPP j;,Bn,Bn, ~, (3.6)')
1 Bs mc~ B~s 82s

X
Q 86 s 86 Bs86

(Bn;Bn;)=(j~ (1+Py)-'~i)
X [n;(1—n~)]&[n, (1—n, )]&. (3.7)

1t Bv)
i (T,v) i (O,v) =-,'Tmc' —-~

v & BT), mc'.

S +. . . (2 21) Here

(3.8)y, ,—=[n, (1—n, )]&j,,[n, (1—n, )]&,

+ . (2.20) where we understand that the coe%cients are evaluated
with (2.6). For this ensemble the average value of the
product &s;be, can be shown to be

Also the thermodynamic formula (2.13) can be re-
written in the following form

The various functional forms of Z should have been and (j~ (1+PP) '~i) is the (j,i) element of the inverse
caused by the interaction, which on the other hand is matrix to the symmetric matrix (1+PP). Using (3.7)
reflected on the second-order term in (2.5). Hence we can express the right-hand sides of (3.1) to (3.4)
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more concretely. The results are

and
X[n;(1—n;)]&(p;—l)[n;(1—n~)]&, (3.11)

S A'(Bv q
i

=hl ZZ(~l«+~~)- I')
m(Bp/Bp)r w (BT)„'i

X I:n'(1 —n') 7'*(ps—i)LnJ(1 —n~)]'*.

Here 0., is one of the Pauli matrices corresponding to
the Z component of the spin. In addition to these,
from the condition that (AE P»)=0, w—e obtain
the relation

2'2 (~leli)(il (1+Pe) 'lp)=0, (3 13)

which means that p cannot be quite arbitrarily chosen.
Let us assume that P has the form

(1+~*)p+—(1 ~*)A (3 14)

with the understanding that p and f operate only on
"orbital" states. o is one of the Pauli matrices, which
is given by

=~((») )=~ 2 2 (~ I
(1+v)-'I')

m(Bp/Bp)z

X[n;(1—n;)]'[n;(—n;)]*', (39)
x =—P Z Z (il~.(1+PC) '~*l&)
P & 7

X [n, (1—n')]*[n;(1—n;)]'*, (3.10)

c«=hpp p p (~ I
(1+pal)-'Ip)(. ,-l)

in agreement with (2.12), and

ill (Bp ) 2m h (BZ)
v (BTi„3 P LBp&p

( BZ)
I (t pl Qlfp)

B6) p

1 ( BZ) 1 (B'Z/BpP)p
x —

I

Z ( Bp i p 2 (BZ/Bp)p

(BZ) B
+

I I

—(p I Q I l p) (3 2o)
(Bp) p BE

Here we wrote for the average of the element of
p(1+2Ppp) ' taken over the states with energy p and
c' respectively,

Ln. (1—n.)]'I n" (1—n")]'*(p
I Q I

p'),

and similarly for the average of the element iP(1+2P|P) ',

[n, (1—n, )]**[n,(1—n, )]*(piE
I
p').

From the relation (2.21), we can see that

1 (2 ') 1 (B'Z/Bp')p
f(,T)-i(,0) =—

I

2 0 3 J P' 2(BZ/Bp)p

( BZ/B)pp[(B!Bp)(pIQIf p)5o
(3.21)

1 2(BZ/Bp—)p(l pIQIl p)

(0 iq

&1 Oj

Or, expressed in another way, we assume that

(3.15) At the lowest temperatures, Q and I' can be evaluated
in terms of h and g, expanding formally (1+2Ppp) ',
for example, in powers of y. The results are

2 (BZ/B p) ph srph t'r p

( IQI")=h„-
1+2(BZ/Bp) phr pr p

f= (1+a,)h+ (1——o,)g, (3.14')
(3.22)

where, of course, h and g are connected with p and f,
respectively, through relations similar to (3.8). There-
fore, for parallel and antiparallel spin pairs, f takes
the value h+g and h —g, respectively. This form makes
it possible to write down the inverse matrix as follows:

and a similar expression for I' in terms of g instead of h.
Here h„ is the average of the element of h taken over
the states with energy e and e', respectively. In terms
of these, we can rewrite (3.1'1), (3.18), and (3.20)
as follows:(1+44) '=1—P(1+~*)p (1+2Pe) '

—P(1—*)f(1+24) ' (3 16)
(3.23)mc'= S +h

p
+g)

2(BZ/Bp) p

(3.24)

1 (B'Z/Bp') p (BZq (Bh,rp)
+I I I

—,
I

. (323)
2 (BZ/Bp)p ( Bp ) p ( Bp ) rp

Inserting this and restricting ourselves to the lowest 2 (BZ/Bp) p

temperature expressions, we get the following formulas
from (3.9) to (3.12)

cV ( BZ) ( BZ)
I (t o

I Q I &p), (3 17')
imc' E Bp) p & Bp i p

(BZ~ (BZ~ 1 (Bv ) 2m'(h) 1 1 (BZ)

2~'(BZ) h
(3.19)

3 LB6)pP
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Here h and g represent hpptp and g&p&0, respectively.
The results (3.23) and (3.24) are essentially those which
were given by Landau, except that we derived these
here without referring to the momentum of the "quasi-
particle, "which method is considered better in view of
the next step where various types of spectra will be
compared. The formula (3.25) is new and will be
discussed with primary emphasis in this report.

Now referring to Sec. 2 we can find relations which
connect the various derivatives of Z with f. Insert
(3.23) into (2.18), one then obtains

BZ X B2'

Be e B6
(3.26)

and hence

X B( Bs)= ———
] S,r,—[

B B6 i Bc) e=ro

(3.27)

Bsl X&B

B(1/P)' 3 &Bei I 4 Bc ) rp

(3.28)

According to (3.26) and (3.27), we can consider that

BZ(0,e, e) 1V BZ(0,e,e)= ——h.yp

e B6
(3.29)

Comparing (3.25) and (3.23) with (2.20) we also obtain

B's 1V ( B's Bh Bs)=—ir
BgB. n&B, .& B.Be)

negative and large enough to reverse the sign of the
total expression. It is apparently expected that this
derivative is negative for the following reasons: h is
positive, according to the fact that the sound velocity
is greater than the value of the first term in (3.23)
with the value of the state density derived from the
heat capacity according to (3.19); and the value of
h„must decrease as the diGerence of the energies of
the two states involved increases. But (3.25) tells us
that this derivative must be large enough to make the
whole expression negative.

Now, as mentioned in relation to (3.21), this deriva-
tive gives Z, a temperature dependence according to
(3.28). It seems obvious that Khalatnikov and
Abrikosov have neglected this extra temperature
dependence in their calculation, because they calculated
the heat capacity with Z, which is derived from (4.2)
treating po and m* as constant. Hence, from the
manner of their calculation, there will result only a
positive thermal expansion coe%cient.

Then the question is: is there any possibility remain-
ing for the spectra, when revised in such a way that m*
and po are not constants any more, but depends on p
and e, to give a negative thermal expansion coefBcientP
The following discussions are based on Eq. (2.20)
which is valid also in the case of quantum spins insofar
as we can assume e to be spin-independent.

For the perfect-gas type (4.1), we get according to
(2.18) the following relation which is valid at P -+ ~:

e Bm* 2 mc'
(4.3)

m Be 3 6p

is valid in the neighborhood of fo All the. se formulas
show clearly that these derivatives vanish in the case
of an ideal gas.

4. DISCUSSION

where 6p is given by

e 4m

(2m*so) &.

2 3h3
(4.4)

From the recent experimental evidence' it can be
expected that the thermal expansion coeS.cient of
liquid helium-3 at lowest temperatures is negative.
Referring to Eqs. (2.20) and (3.25), we shall discuss
this point. The density of states at the Fermi surface
at absolute zero is of course positive, i.e., (BZ/Be)0
On the other hand, (B'Z/Bc')o can be positive or
negative according to the spectrum. For example,
both the perfect-gas type,

c=p'/2m*, (4.1)

and the "bubble" type, which was used in the calcula-
tion of Khalatnikov and Abrikosov,

e = (p—po)'/2m*, (4.2)

give positive values for (B'Z/Be' ), but only to the extent
that the sum of the first and second terms in (3.25)
comes out to be positive. Therefore, if the spectrum
(4.2), for example, should give the correct description,
as suggested in Khalatnikov and Abrikosov's paper,
the last term involving the derivative of h must be

Or, put in another way, we are assuming according to
(3.29) that

Sh-p= —~
m* Be

(4.5)

1 t'Bv q )4s-q &

vi BT)„(3] h'e& '
T

2m*
(4.6)

which is definitely positive.
As for the "bubble" type spectrum (4.2), we get,

corresponding to (4.3),
e Bm*

1
m* Be

po2 1 '~2 mc' 1 po'+-
2m* 6p 3 Ep tp m*

pP mc' 1 e Bp02
(4.'7)

2m* cp- 6p m* Be

in the neighborhood of the Fermi surface. When we
use (4.3) or (4.5), we get for the thermal, expansion
coefficient from (2.20) or (3.25)
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where ep is given by

e 4m

(6pp'(2m*op)l+2(2m*op) i).
2 3h'

This gives for the thermal expansion coeScient

(a„' 8~ happ' ( 2m*pp'
l

1+
p (BT)„3 mc'(h'n&/2m*)&' PpP )

4naPp Pp'mc' mc' 2m*me' 4
X — + +2 -+

-ppae 2m pp pp pp 3-

(4.8)

expression for the thermal expansion coeKcient in this
case can be expressed in either of the following forms:

1f»'
Tl I

m*' 1—
&3h'e] mc' ae

(4m2)&m*2 n am*
=m'k'Tl —

l
— . (4.14)

(3hPn) mc'3 m* ae

This shows that this spectrum can give a negative
thermal expansion coeKcient if we assume that

aa/an) mc'/e,

According to Khalatnikov and Abrikosov, pp'&)m*pp,

so that the factor in the square brackets in (4.9),
which determines the sign of the thermal expansion,
can be approximated by

4napp 2m*pp"
+(16m-)'mc'

ppan (h'e)'

e=D+p'/2m*, (4.10)

in which ~ and m* are supposed to depend on P and n.
For'this, the relation corresponding to (4.3) is given, by

]in-'& pn~& a' mc' 2—41 I
m*l —

I
— =- (4»)

E3hP) (2l ae n 3

and the Fermi energy by

e 4x
[2m*(pp —~)jl.

2 3h'
(4.12)

Correspondingly, we are assuming an "interaction"
which has

BA e Bm*
Xh-p=e —(p—6)

BQ m* Be
(4.13)

~ an expression valid in the neighborhood of 6p. The

which we may reasonably expect to be positive. But
even when we do not suppose this, the condition that
the thermal expansion coefficient should be negative
requires that

napp
&32,

pp ae

if we put in Khalatnikov and Abrikosov's values of the
parameters. This dependence is highly unreasonable.
Thus we can conclude that both the perfect-gas and
the "bubble" spectra give positive thermal expansion
in contradiction to experiment.

Let us, then, try another type of spectrum. One of
the simplest spectra will be

or, equivalently,
am*/an)-', m*/e. (4.16)

As for the heat capacity or the entropy in this case,
we must take into account the temperature dependence
of vs* and h. This problem is beyond the scope of the
present development of the formalism. However,
according to (3.28) and (4.13) we have

a's 2n'(as' 1 am*

a(1/P)' 3 (ap) m* an, (4.17)
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which indicates some of the character of this dependence.
Thus we can see that there may be a strong deviation
of the temperature dependence of the heat capacity or
of the entropy from that of the perfect gas in spite of
the same dependence of the spectrum upon the momen-
tum. Thus it may be possible that the sharp change of
the specific heat to a fairly constant value, which
occurs at about 0.25'K, might be closely connected
with the negative thermal expansion.

Further analysis along this line will be quite compli-
cated and we would like to reserve it for a later work.
Further, it should also be noted that the expressions for
the deviation of entropy and energy to the second order
may also be insufficient.

As far as the expressions for the properties at lowest
temperatures are concerned, the unknown parameters
are five in number, so that the data on sound velocity,
susceptibility, speci6c heat, and thermal expansion
coeKcient are insufhcient to check Landau's idea.
This, then, is the point we wished to make when we
stated that Landau's model is general enough not to
expose any defect in the "Fermi excitation region. "


