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Stable Orbits of Charged Particles in an Oscillating Electromagnetic Field*
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Orbits in a Geld of the cylindrical wave guide driven in the TED&-mode have been studied. The radial
components of the Lorentz force acting on the particle is never positive regardless of its charge; thus, it is
attracted toward the axis of the wave guide around which it moves in a complicated path. Sufhcient
conditions are given under which the orbits are stable, that is, remain bounded for all times.

I. INTRODUCTION

~CONSIDER the electromagnetic field in a circular~ wave guide, which is driven in the TED'-mode at
cutoG. The only two Geld components which do not
vanish are'

E„=—BpJi(cpr) cosa&t,

B,=BpJp(air) sin(et.

A charged particle placed in this field executes a very
complicated orbit, but it is not diKcult to see, qualita-
tively, that this particle experiences a force attracting
it towards the axis. The electric field will cause it to
oscillate out of phase compared to E but in phase with
8 and normal to B. The resulting VXB force is on
the average directed towards the axis of the wave guide
as long as the particle finds itself inside the locus of
maximum electric field amplitude (r(0.293)t). One
might expect from this that the particle can be confined
to a volume surrounding the axis. This would certainly
be true if the attracting force were time independent.
However, since the force is oscillating, it is conceivable
that energy is imparted to the particle on each cycle,
causing it to follow an ever-widening orbit until it
escapes. The question then arises under what conditions

the particle will be stably bound to the axis; that is,
under what conditions the coordinate r (f) of the particle
will remain bounded for all times. Sufhcient conditions
will be derived.

Since the conGning force mentioned above is in-

dependent of the sign of the charge, one can expect
that a neutral plasma consisting of ions and electrons
can be confined stably in a field of the type (1).Such a
confinement by "radiation pressure" has been con-
sidered by Knox' for a spherical geometry. The author
derived self-consistent solutions for the densities of
ions and electrons in equilibrium with the confining

electromagnetic field of a TMoi-mode. ' The plasma
conGnement by a TED&-mode can be treated in an

exactly analogous fashion. Boot et al.' give a similar

theory neglecting charge separation.
As long as the particle density is so small that it

does not appreciably modify the field, one can expect the
plasma to be stably confined since each particle is
stably bound. However, as the number of particles
increases, local fluctuations in density may so modify
the field as to reinforce the fluctuation. The conGnement
then becomes unstable. It has been shown' that in the
limit of a very dense, infinitely conducting plasma the
confinement by Tempt fields is unstable (the same is
true for the TMpi-mode). Therefore, as the plasma
density is gradually increased from zero, the confine-

ment is first stable, then becomes unstable. It seems

likely that this transition (stable to unstable confine-

ment) occurs when the ratio of the plasma frequency
to the applied frequency, (rre'/nuu')'*, becomes compar-
able to unity, because the field begins to be appreciably
modified as n) nto~'/e'.

The suspension of charged dust particles by oscillating
electric fields has recently been investigated both
experimentally and theoretically by Wuerker et al. '

II. ANALYSIS OF THE PARTICLE ORBITS

It is convenient to represent the field (1) by its
potentials. The scalar potential, P, is zero and, among
the components of the vector potential, only

A~= (Bp/cp) Ji(cpr) sin(ot

does not vanish. The relations curl A= B and r)A/r)t-
—gradP= E yield the field (1). The unrelativistic
motion of a particle having a mass m and a charge e

is governed by its Hamiltonian

1 1) eBp
H= P„'+—

~
P„— rJt(ppr) sin&pt

~ +P s . (3))2m r' E. co
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' Rationalized units; velocity of light= 1.
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The equations of motion become

r= p,/m,

p„eBp Ji(rco)
—singlet,

mf sue r
(5)

Thus the solution of (13) can be obtained by a quadra-
ture:

~(&) dr
t—tp=

~.(c»i pE (p„/—mr)' 2»p—(r) $&

s= p,/m,

cj 1 (p„eBp
p, = ——

~

——— J'i(rco) sincot
~)Br 2mkr co

If r(tp), r(tp), and j (tp) are chosen such that

(17)

and since II is independent of p and of z

pr =coils t,

p, =const.

(8)

Using (4), one obtains a differential equation which
contains only one unknown coordinate, r(t):

p 2 g
-

(eBp i Ji(cot)'
sin'~t

m, 'r' Br & mco) 2

then r(t) is periodic and the particle is trapped. The
period becomes

~
rmax drT-

[E (P,/m—r)' —2»P (r)]&
(18)

where r;„and r,„are the zeros of the denominator.
A lower bound for the period can be obtained by
replacing»P(r) by

p, eBp Ji(cor)
sincot . (10)

m two r

4= i'p (eBp/m )'(~r)'&0 (r).

The integral can be evaluated and one obtains

(19)

This equation (10) is exceedingly complicated due to
the explicit occurrence of the time, t, and due to the
singularity at r=o. The solutions of this equation shall
be investigated by two methods based on two different
approximations, each designed to remove one of the
difhculties mentioned.

A. Method of the Average Potential

It is not possible to speak of a potential energy of
the particle in the Geld (1), since the system is not
conservative. However, if the oscillations of the
right-hand side of (10) are suKciently rapid, one can,
as a 6rst approximation, take only its time average
into account. Thus one is led to an approximate
equation

P» —4(r),
m2r Br

where

f(r) = pi (eBp/mco)'Jip(cor). (12)

The potential f(r) has a minimum at r=0 and a
maximum at r = 1.84/co, followed by alternating
minima and maxima as r increases. Only the "potential
well" r&1.84/co shall be considered here. The energy
integral of (11) becomes

8 (eB p ) Jip(cor p)
cos(2cot)

ar Em)

p»» eBp Ji(corp)
+—' sin(cot) . (21)

m 5$G) rp

It was assumed at the beginning of this section that
the right-hand side of (10) is a rapidly oscillating
function. More explicitly, it shall be required that

(mco/eBp)'))1. (22)

A glance at (20) shows that rp(t) is changing much more
slowly than ri(t), so that one may set

T& (K2/»r) (m/eBp). (2o)

With this result one is in a position to determine the
condition under which (11) is a good approximation
to the original Eq. (10). Substituting r(t) =rp(t)+ri(t)
into (10), where rp(t) is a solution of (11), one obtains
an equation for the perturbation ri(t):

3p„' dV(rp) '
r', (t)+ + ri(t)

m'rp4 d'rp

K= r'P+~
~
+2/(r)

(p» i'
im.) t=tp

r'p+ p '/m'r'+ 2»p(r) =E
where, according to (5),

po eBp
r j+ rJi(rco) sincot

m mM t=tp~

(13)

(15)

ri(t) =a cos(2cot)+b sin(cot),

3p.' dV(r)
(23)&0,

m' r' dr'

and determine a and b from (21) as if rp were constant.
One finds immediately that cori(t)((1 due to (22).
To exclude exponentially growing solutions of (21),
the coeKcient of ri(t) in that equation must always be
positive:
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where r is the larger of the two solutions of

E (p„—/mr)' —2$(r) =0.

Hence ri(t) is indeed small, provided (22) and (23) are
satisfied. It is not difficult to see that values of E and
p„which satisfy (23) also satisfy (17), which ensures
that ro(t) is always bounded.

Thus, two conditions (22) and (23) have been found
to ensure bounded orbits of the particle. %bile condi-
tion (23) is definite, condition (22) lacks precision.
One wonders just how much larger than unity the
quantity duo/eBO must be to justify the approximation.
No exact answer has been found so far; however, a
different approximation discussed in the next section
will shed more light on the question. It will lead to a
precise condition for mo/eBO which is much less

stringent than (22). But unfortunately a second

condition of the type "much smaller than" has to be
imposed also.

B. Reduction to a Mathieu Equation

A different method for exploring (10) is open if one is

content to know the behavior of only those solutions

r(t) which are small,

be written in Cartesian coordinates:

x=r cosy y=r sing

B s B
x= ——g (r, t) =———P(r, t),

Bg r Br

B $ B
4'(r ")= 4'(» ").

By r Br

These equations are free of any singularity at r=0
and can therefore be readily linearized. This yields two
completely decoupled equations for x and y, both of
the Mathieu type:

(x,iJ}=——', (eBo/m)'(1 —cos2(ut) {x,y), (30)

where the term involving p„has been omitted. To show
that this term is really negligible, it is best to write
Eq. (10) in the limit of err«1,

r'= p~2//m' r' (eBO/2m)'r —sin'a&t, (31)

where the term in question (involving p„ linearly) has
been dropped provisionally. Let r(t) be a solution of
(31) and to a time at which r(to) =r~ is a maximum so
that r'(to) =0, r(to) &0. Now consider the "comparison
equation":

(24)L~r(t) $'&&1. d2p p
2 (eB )2

I p p(to) =r~, p'(t, ) =0. (32)
dt2 m'p' & 2m)Linearization of (10) fails because of the centrifugal

term which is singular at r=0. A way out of this

difhculty is suggested by comparison of the equations
of motion (4) through (10) with those of a particle
under the inQuence of a time-dependent scalar potential,
mP(r, t):

Since d'p/dt'&r' &0, the value r~ is also a maximum of p:

p«~.
However, as a consequence of (32),

p' =—(p„'/m'p') —(eBo/2m) 'p'+ const,r'= p„'/m2r' —Dip(r, t)/Br,

j=p„/mr', (26) so that one obtains for the maximum and minimum of p

If one identi6es

z pz m. (27)
Hence

pw =I2p, /eB I.

I p./m I
~'&

I
eBo/2m I (~r~)'«I eB,/2m I

(eBal 2 JP(~r) pz, eBO Ji(ur)
r, t) =

I I sin%et —— sina&t, (28)(m) 2 mm r

one finds that the equations of motion (6), (8), (9),
and (10) are reproduced, but Eq. (5) for the angle is
replaced by (26) expressing conservation of the angular
momentum. Thus, the orbit defined by (25), (26), and

(27), while quite diferent from the original one, agrees
with it insofar as the dependence of r on t is concerned.
Since the question of stability depends on r(t) only one
can make use of the simpler orbit defined by the
scalar potential in g (r, t).

The equations of motion for the potential 4 can now

Thus the last term of (10) and the last term of (28)
are indeed negligible if (&or)'«1. The angular momentum
p„still plays a role in the centrifugal term of (31) which
is equivalent to (30).

One might have tried to analyze the stability by
resolving the equations of the actlu/ motion into
Cartesian coordinates. Thereby one would certainly
avoid the difFiculty of the singular centrifugal force
and the equations could be linearized. It turns out,
however, that the linearized equations of the actual
motion are coupled and contain the first derivatives of
x and y as well as the second. Equations (30) are far
simpler, and while they do not describe the actual
motion, the r(t) dependence is the same.

A simple transformation brings (30) into a standard
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form of the Mathieu equation:

where
d'y/dts+ (b sc—os'$) y =0,

b =s= (eBp/2rruo) s.

From a table of characteristic values7 one reads that the
solutions of (30) remain bounded if (eBp/2nuo)s lies
in one of the intervals:

0 & (eBp/2rruo)s & 1.315,

3.56& (eBp/2rruo)'& '/. 43,

12.16& (eBp/2nuo)'& 18.51, etc

There are infinitely many such intervals, but only the
6rst one appears to be of interest

0.433
I
eBp/~ I. (33)

This condition ensures stability of the orbit, that is, a
7 Tables Relating to Mathieu Injunctions, by U. S. National

Bureau of Standards (Columbia University Press, New York,
1951).

bounded r(f) for any initial conditions, provided r(i) is
small enough to justify the linearization (30).

In a sense, the criterion derived by the method in
this section is complementary to the one obtained in
Sec. A. The condition on the frequency has been relaxed
and made precise (33), while it was necessary to impose
the somewhat indefinite condition (24).

An exact stability criterion is still lacking, but one
might speculate that it takes the form

f((eBp/rruo)', E, p„')&1,

where f is an increasing function of its arguments. A
number of solutions r(f) have been obtained by
numerical integration of (10). Although any such
calculations must remain inconclusive since one cannot
follow a solution for arbitrarily long times, it was
observed that the orbits remained bounded as long as
both (23) and (33) were satisfied, indicating that the
conditions of either method are far more stringent than
necessary.
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Landau's model of liquid He' as a Fermi liquid is studied with regard to its lowest temperature properties.
Primary stress is laid on the coefEcient of thermal expansion. The spectra used by Abrikosov and
Khalatnikov, the perfect-gas type and "bubble" type, are shown to give a positive coe%cient of thermal
expansion, in contradiction with experiment. An alternative simple spectrum is suggested which can give a
negative coefficient of thermal expansion, namely n+p'/2m~. In addition, the existence of a negative
coeKcient of thermal expansion is shown to imply a strong temperature dependence of the energy spectrum,
which may cause a sharp deviation of the heat capacity curve from the perfect-gas type, similar to the
deviations observed in liquid He'.

I. INTRODUCTION

~N 1956 Landau' proposed a model with "Fermi-type
& - spectrum" which is not necessarily temperature-
independent nor interaction-free as in the case of ideal
Fermi gas (hence the qualification "liquid" ), and
developed a general formalism of some properties of
the model. Based on this, Khalatnikov and Abrikosov'
discussed the thermodynamics of liquid He' assuming
two particular spectra, perfect-gas type and "bubble"
type, and concluded that the latter reproduces the

t Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

* On leave from Institute of Physics, College of General
Education, University of Tokyo, Komaba, Meguro-ku, Tokyo,
Japan.

' L. D. Landau, Zhur. Exptl. i Teoret. Phys. 50, 1058 (1956)
Ltranslation: Soviet Phys. JETP 5, 920 (1956)j.2I. M. Khalatnikov and A. A. Abrikosov, Zhur. Exptl. i
Teoret. Phys. 52, 915 (195'7) Ltranslation: Soviet Phys. JETP 5,
745 (1957)j.

temperature variation of the heat capacity, of the
entropy, and of the magnetic susceptibility. This
spectrum, however, gives a positive thermal expansion
coefIicient in contradiction to a recent experimental
result, ' as will be shown presently. It will be shown
that Landau's model itself is general enough not to
expose any defect in the "Fermi excitation region"
below about 0.2'K.

We wish here to develop some formulas which can be
derived on the basis of Landau s original idea, in as
general a way as possible. Only one point at which we
deviate from the idea is that we treat fermions with
classical spin, i.e., Ising spin. This restriction allows us
to develop unambiguous derivation of the formulas,

~ R. Dean Taylor and E. C. Kerr, Xamerlingh-Onnes Memorial
Cmsference ol Low Ternperatnre Physi-cs, 1958 /Physics 24
(September, 1958)j.


