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The related problems of A beta decay and K, decay (via a A-antiproton loop) are studied. Dispersion
techniques are used to calculate the vector (axial vector) Fermi interaction coupling constant from the
known K. lifetime and reasonable values of the strong coupling constant for the scalar (pseudoscalar)
K case. Each weak coupling constant is then used to place a lower limit on the A beta-decay branching
ratio with the result that the limit with a pseudoscalar K is more than one order of magnitude smaller than
that with a scalar K meson. The present meager experimental information is essentially consistent with
either K parity, for the ohserved branching ratio is approximately equal to the lower limit predicted for

the scalar K case.

E report here on a study of the related problems
of A-hyperon beta decay and K, decay using
dispersion techniques developed recently by Goldberger
and Treiman for application to = decay.! The model
adopted is that of a K meson (say of negative charge)
dissociating into a A-antiproton pair, which then
annihilates into a muon and antineutrino via Fermi
interactions. Of course other intermediate states con-
tribute,? but the A-antiproton state is taken as repre-
sentative of the baryon pair contributions. We assume
that the weak-interaction Lagrangian contains only
direct Fermi couplings of the vector and axial-vector
type and, in addition, that it is symmetric in muon
and electron fields. The K decay rate depends on the
parity of the K meson relative to the A-antiproton pair;
moreover, from the structure of the weak vertex inter-
action, the K decay rate can be related to the A beta-
decay branching ratio.
The matrix element characterizing K decay can be
written

<.“:V I K> = <0 I ].)\ ’ K)"ZAI'Y)\(I ""75)1’1'6 (?K'_ Pp,_Py),

where

(1)

O] x| K)y=F(—mg?) (pxh, (2)

and F(—mg?) is the effective coupling constant for K
decay. With the weak link thus exhibited, we see that
only a vector-type current will contribute to scalar K
decay, while only an axial-vector-type current con-
tributes to pseudoscalar K decay.

For A beta decay, the corresponding matrix element is

(e, p| 0)=[(p| A7 [A)Fi(p| n*[A)]

3
Xﬂer(1+75)v»5(PA_P—Pe_PV): ( )
where
BIAY [N =tLomm—di(pa— p)—d"i(pa+ p)rJua,
P | A A =a,[atynys—bys(pa—ph @

—bys(patprJua,

1 M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958). )

2 For a discussion of the complication introduced by considering
two-baryon pair states for the pseudoscalar case, see the accom-
panying paper by B. Sakita [Phys. Rev. 114, 1650 (1959)7.

and the form factors are functions of momentum
transfer: &= (p,—p)% It is evident that the strong
interactions serve to introduce some effective scalar,
pseudoscalar, and derivative-type couplings into the .S
matrix element in addition to the ordinary vector and
axial-vector couplings found in the Lagrangian.? With
the assumption that the form factors are essentially
constant over the range of energy-momentum transfer
found in A — p+e+7 decay, the decay rate calculated
from the above by neglecting the electron mass is to
a good approximation

1
Wy = mml\m“a{ L2 42 (ma+m)cd' + (ma+m)2d'*]

us
+3[a*+0.67 (ms—m)ad’+0.25 (ma—m) 2’2 ]},  (5)
where
a=3%x(2x—35) (a*— 1)i+In|x+ (22— 1)#], ©

x=(mp2+m?)/2mym.

Of course, for A — p+4u+7 decay, the muon mass
cannot be neglected, and terms in & and d (which are
proportional to the lepton mass) will also occur.

As is well known, if one considers only the coupling
constants ¢ and @ and sets them equal to those appearing
in ordinary beta decay, the A beta-decay branching
ratio should be about 1.6%.* The latest experimental
evidence,® however, includes only 2 such events among
an estimated 1529 effective A decays obtained by the
Berkeley, Brookhaven, and Livermore groups.

We now turn to our model for K decay. Since the
dispersion calculation for the K decay rate is quite
similar to that for = decay, we shall omit details and for
simplicity illustrate the method by means of dispersion
diagrams. The adopted model can then be represented
by Fig. 1(a), where, as indicated by the omission of a

( 33‘\/.(. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
1958).
( ‘?. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
1958).
5F. S. Crawford et al., Phys. Rev. Letters 1, 377 (1958); P.
Nordin et al., Phys. Rev. Letters 1, 380 (1958).
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point interaction, we suppose that no subtraction is
required in the dispersion relation for F(£). For the
case where the K meson is scalar (pseudoscalar) with
respect to the A and proton, which by conventior are
taken to be even, the A-antiproton intermediate state
is a 3Py (1S)) state.

The strong vertex is also treated by dispersion
methods with only the A-antiproton intermediate state
considered, according to Fig. 1(b). The vertex function
is, therefore, expressed in terms of the strong-coupling
constant and the amplitude for elastic A-antiproton
scattering in the P, (1Sy) state for the scalar (pseudo-
scalar) case.

Finally we apply dispersion techniques to the weak
vertex which is related to A — p+p~+ decay. Of the
possible intermediate states, we consider the single K
state in addition to the A-antiproton pair state as in
Fig. 1(c). Subtractions are made in the dispersion
relations for ¢(§) and a(£). We assume that no sub-
tractions are needed for the other form factors, but the
systems of coupled integral equations are most easily
solved by combining the form factors in the same
manner in which they appear in the K decay amplitude;
in order to do this, subtractions must be made on d’
and &’. Note that the form factor for K decay appears
in the single K intermediate state. From this discrete
state only 4 and d receive contributions given by?®

Wy
gs5=m,d(£)=—GSF5(—mg?) ,
Emg?
(7
My
gpP=mb(§) = —GPF?(—mg?) .
+mi®

We now put all the pieces together and find for the
decay rate:
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Fic. 1. Dispersion diagrams of the models adopted for (a) K decay,
(b) the strong vertex, and (c) the weak vertex.

6 We use superscripts S and P to indicate that the choice
scalar K or pseudoscalar K has been made explicitly.
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167 \mg MK

Wg=
G2 J(—mg?) 2
—C? ) (8)
4 [14-(G¥/4aD)J (—mx?)
where
C=(ma—m)[c+ (ma+m)d’], (scalar K) %)

= (mat-m)La+ (ma—m)b'],

and J(—mxk?) is an integral involving the appropriate
elastic A-antiproton scattering phase shifts. As in =
decay, the hope is that the strong-coupling constant is
effectively large enough so that the decay rate is
essentially independent of these phase shifts.! The
coupling constants ¢ and & do not appear since they
have been expressed in terms of F(—mg?) itself. From
the experimental K,, lifetime and the K-A-nucleon
coupling constant, which is not yet well known, one
can then calculate the combination of coupling con-
stants appearing in K decay. Using w—1=2.1X10"8 sec
for the partial K, rate and the results of Matthews and
Salam7:

(pseudoscalar K)

(G*/4m)$=0.7, (G*/4w)’=2.6, (10)

which were derived assuming Gank=Gsnk, we find

¢+ (ma+m)d’=0.57g,  (scalar K)

11
a+ (my—m)b’'=0.093g, (pseudoscalar K) (1)

where g is the ordinary beta-decay vector coupling
constant. Note that we gain information about ¢ and d’
(a and ?’) only from the scalar (pseudoscalar) K case as
we observed earlier from Eq. (2).

If we now make use of our earlier assumption about
the symmetry of the weak interaction under interchange
of muon and electron, we can compare the above com-
binations of coupling constants with those appearing
in A beta decay.

1. We immediately see that the same combination of
¢ and d’ occurs in both decays, and so a lower limit can
be placed on the A beta-decay branching ratio:

wA — ptetp) 1
Q=——————>— (scalar K) (12)
w(A— N+m) 740
2. The same combination of ¢ and &’ does not occur
in the two decays, and so no limit can be placed on
for the pseudoscalar case. If we assume, however, that
b’ is small, then we find

©>1/9000. (pseudoscalar K) (13)

3. Finally if we assume both d’ and b’ are small and
[c] is equal to | e[, corresponding to the situation which

7P. T. Matthews and A. Salam, Phys. Rev. 110, 569 (1958).
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approximately exists in ordinary beta decay, then

Q2=1/180, (scalar K)

(14)
=1/6800. (pseudoscalar K)

Summarizing, on the basis of our model and the
assumptions made, we find that a pseudoscalar K
meson gives a A beta-decay branching ratio which is
considerably smaller than that for a scalar K meson.
In both cases, this branching ratio is proportional to

C. H. ALBRIGHT

the strong-coupling constant Ganyx- which still remains
to be determined accurately. Unfortunately, not enough
experimental information now exists to decide between
the two cases from the results of this paper alone.
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The partial lifetime of K — pu+» is calculated by dispersion techniques assuming that the K meson is
pseudoscalar and that the relevant Fermi interactions are of the V-4 type. The results are compared with
experiments and it is concluded that the renormalized axial vector coupling which is responsible for the
leptonic decay of hyperons is much smaller than the usual universal Fermi interaction.

HE partial lifetime of K*— u*+4» can be calcu-
lated by dispersion techniques, as Goldberger and
Treiman' have done for m — u-+». The relevant part
of the Fermi interaction for K decay and leptonic decay
of hyperons is

{atywys(1+vs)v+éivyys(1+vs)v} T A—{—c c.
F{av.(Iys)v+éy,(I+ys)v}J,Y +c c.,

where?

Tt =Jat vy sb+Fs* {Pivus2*+V2idy,rs2 ),

Tu¥ = pvb T {2+ V20, 27}
where fa7, fa4, JsV and fs* are the unrenormalized
coupling constants. We shall consider here only the case
of a pseudoscalar K meson, and shall neglect the mass

difference of baryons.?
The decay rate of K — u+» is given by

W= (1/4x) (mu/mx)*mg®
X[1— (mu/mg)*TF K2 (mg?), (1)
where Fx(mx?) is defined by

(2K0) Fy(mi®)=(0|J*| K). 2

We calculate Fx(mx?) by dispersion techniques, taking

1 M. L. Goldberger and S. B. Treiman, Phys Rev. 110, 1178
(1958).

2 We shall assume that the baryomc current in weak Fermi
interactions behaves as an isotopic spinor.

3 For a discussion of the scalar K meson see the accompanying
papér by C. H. Albright [Phys. Rev. 114, 1648 (1959)].

as the intermediate states (A,N) and (Z,N) in {=1
states. This is shown graphically in Fig. 1(a). The black
boxes represent exact matrix elements between real
states and the intermediate lines represent real states
whose energy is integrated over in the dispersion
relation. The K meson-baryon vertex part and lepton-
baryon vertex part are also treated by dispersion
techniques as shown by Fig. 1(b) and 1(c), plus those
diagrams obtained by replacing A by Z and vice versa.
" In Figs. 1(b) and 1(c), the first term on the right-
hand side corresponds to the subtraction term of the
dispersion formula.

The diagrams represent the coupled singular integral
equations. In order to solve them we.make the three
different kinds of approximations.

(1) No exchange scattering. This approximation cor-
responds to the omission of the last column of Figs.
1(b) and 1(c) and gives

AJa+3 Js
P ()= [ SagaJa+31sg= 'l 3)
27? 1+(1/4“7r2)<gA2JA+3g“2JS‘)

where J and Js are given by

) k2
]>\=f db———
o (B4M)
4B+ M?) G’fw Edk o }
o ) - )
' (A\=4,2) 4

Xexp{



