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Hyper6ne Splitting Effects in the Capture of Polarized q- Mesons
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We investigate the eRect of the hyper6ne splitting of p-mesic atom ground states on the neutron asym-
metry from muon capture in hydrogen, in deuterium, and in complex nuclei with spin which are treated by
a one-particle model. It is shown that this can provide more information on the capture interaction than
the neutron asymmetry from spinless nuclei. Muon polarizations and gyromagnetic ratios in the hyper6ne
states are also discussed.

I. INTRODUCTION

A S PrimakoG has pointed out, ' p-mesic atoms of
nuclei with spin exist in two incoherent hyperfine

states. This creates a difference in the lifetimes of the
two states, and an estimate of such an eR'ect has been
published. ' Here we deal with those aspects of the
hyperflne splitting which concern polarized muons.
All such effects will be rather small, however, as the
practically 100% polarized p mesons from pion decay
suGer an appreciable loss of polarization while cascading
down to the lowest Bohr orbit of the mesic atom. ' ' The
hyperfine interaction in nuclei with spin depolarizes the
muons further while partly polarizing the nucleons.
This will be discussed in the following section, *as well
as the gyromagnetic ratios in the hyper6ne states. The
last section treats the neutron asymmetries from muon
capture, which difI'er even after averaging over the
hyperhne states from those in the capture by spinless
nuclei, due to the induced nuclear polarization. We
study muon capture in hydrogen, deuterium, and in
odd A, odd Z nuclei which are described, as in reference
2, by the Schmidt model' of a spinless core and
"outside" proton. These neutron asymmetries depend
on Fermi and Gamow-Teller interference terms, unlike
the asymmetries from capture in spinless nuclei. '

II. POLARIZATIONS AND MAGNETIC MOMENTS
IN HYPERFINE STATES

Negative muons are strongly depolarized while
cascading down to the E-shell of the mesic atom. This
is caused by the spin-orbit coupling, the interaction of
the muon spin with the shell electronmagnetic moments,
and —for nuclei with spin —the hyperfine interaction of

i H. Primakoff (unpublished).
'Bernstein, Lee, Yang, and Primakoff, Phys. Rev. 111, 313

(1958).
'Ignatenko, Egorov, Khalupa, and Chultem, Zhur. Eksptl. i

Teoret. Fiz. USSR 35, 1131 (1958) LTranslation: Soviet Phys.
JETP 8, 792 (1959)].

4 M. E. Rose, Proceedings of the Gatlinburg Conference on Weak
Inleracteons, 1958 LBull. Am. Phys. Soc. Ser. II, 4, 80 (1959)j.* Note added in proof.—Professor V. L. Telegdi kindly pointed
out to us that he has investigated these muon depolarizations
caused by the hyperfine interaction: International Conference on
Mesons and Recently Discovered Particles, Padua-Venice, 1957.
Communicazioni, Padova-Venezia, 22-28 Settembre 1957. Pa-
dova, 1958.

5 See, e.g. , J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley Bz Sons, Inc. , ¹wYork, 1952).

6 H. Cberall, Nuovo cimento 6, 533 (1957).

muon and nuclear spin. The measurements for spinless
nuclei indicate a remaining polarization of 14 to 20%
depending on the target material. In nuclei with spin,
the hyper6ne coupling will further depolarize the muon.
This is certainly the case in the ground state, whose
width is Dv 10'—10' sec ' as determined by the muon
lifetime; the hyperfine splitting'

+vhf= dpi'(rle/me) Z ~6)(10 Z, (1)
(using DvH=1. 42&&10' sec ', the hyperfine splitting in
hydrogen'), then assures existence of the mesic atom
in two incoherent hyperfine states. For excited states,
the widths are in general too large' to make this happen.

The hyperfine coupling divers from the other de-
polarizing mechanisms insofar as a muon spin Rip will

induce a nuclear spin Rip; thus what is lost in muon
polarization may be gained in nuclear polarization.
This is well known from the Overhauser eGect"; we
shall illustrate it for the ground state of the mesic
hydrogen atom as follows. A muon with spin up, o.„,
can combine with an unpolarized proton to form the
states n„n~, rr„P„Of the. se, the first one is an eigenstate
of the total angular momentum, both spins remain
constant in time. The second state is mixed from eigen-
states of zero and one total angular momentum, thus
muon and proton spins precess around each other and
the proton depolarizes. The average over both states
results in 50% proton (and also muon) polarization.

If the muon arrives in the E-shell with 100% polari-
zation in the s-direction, the populations of the hyper-
fine states characterized by F=J+rs, Ms (J=nuclear
spin) are

J+Ms+-,' J—Mp+-,'N+(Mp)=, N (Ms)=, (2)
(21+1)' (21+1)'

normalized in such a way that

Np ——Q N+(MF) =
My 27+1

N =P N (M&)=
2I+1

7 N. F. Ramsey, Nuclear Moments (John Wiley 8z Sons, Inc. ,
New York, 1953},p. 10.

s D. Halliday, Itztroductory Nuclear Physics (John Wiley R Sons,
Inc. , New York, 1955), second edition, p. 379.' G. R. Burbidge and A. H. de Horde, Phys. Rev. 89, 189 (1953).

"A. W. Overhauser, Phys. Rev. 92, 411 (1953).
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and Ã++E =1. The subscripts + refer to F=J+-,'.
The muon polarizations are after averaging over the
substates using (2):

1 2J+3 12J 1
(s o„)+=-, (s rr„) =-

3 2J+1 3 2J+1

(s is a unit vector in the z-direction); finally the muon
polarization averaged over both hyperfine states is

'21
(s ' &s)s =~~'+(s ' &s)++~'l'-(s ' re) =—1+

3 (2J+1)'

This is ~ for J= ~, as mentioned above; it is 3 for J))1,
as we can see from a simple classical argument: only
the component of e„along F, as the time average of ir„,
can be observed, a,nd all directions of J are possible for
an unpolarized nucleus. Thus for J~~, (s tr„)s

=(cos' |))=s. Only between —', and s of the muon
polarization is preserved in the ground state due to the
hyperfine coupling, but possibly more if the hyperfine
states are taken separately.

In the foregoing, we assumed no appreciable relaxa-
tion between the two hyperfine states (which would
upset the distribution of population (3), valid at the
moment of arrival of the muon in the E-shell). In
general, nuclear relaxation times are indeed long com-
pared to the muon lifetime. For hydrogen and deu-
terium however, transitions to the lowest hyperfine
levels should be induced rapidly by collisions of
molecules. "Our treatment of muon capture by hydro-
gen and deuterium in the following section, using (3),
has therefore to be accepted elm grano saIis, remem-
bering that in practice all the population may be con-
centrated in the lowest hyperfine level (except possibly
for very rarefied gaseous targets).

The magnetic moments of the two hyperfine states
are

2J—11
P~=Pp+P V) P = . i Ps

2J+1 0

J+1
u~ I, (6)

or written in i:erms of gyromagnetic ratios y=p/Ii:

1 1 ( J+1
v+= , (~.+~~), v-—=—,( ~.— ~~ I, (7)

J+-,' J+-', l J

"S. S. Gershtein, Zhur. Eksptl. i Teoret. Fix. U.S.S.R. 34, 463
and 993 (1958) [translations: Soviet Phys. JETP 7, 318 and 685
(1958)j.' Garwin, Lederman, and Q'einrich, Phys. - Rev. 105, 1415
(1957).

where p,„, p, ~- are the magnetic moments of muon and
nucleus. The gyromagnetic ratio of a free muon is

p„=2@„.If the mesic atom is exposed to a magnetic
field H J s, as in the experiment of Garwin et ul. ," the
two states will precess with diGerent frequencies
co+=p+B. This could be checked by observing the

emission asymmetries of the mu-decay electrons, which
also precess with these frequencies.

III. HYPERFINE EFFECTS IN NEUTRON
ASYMMETRY FROM MUON CAPTURE

Due to parity violation, neutrons from capture of
the muon by a proton in the nucleus may show an
angular distribution asymmetric around the muon spin
direction. '" " As far as capture in hydrogen, deu-
terium, and other nuclei with spin is concerned, the
calculations have ignored the presence of the hyperfine
splitting. In the following, we shall investigate this
eBect.

Neutron asymmetries can be measured with the
muon spin kept fixed, which will give a result corre-
sponding to an average over both hyperfine states.
Alternatively, a precession experiment" may be used
which permits a determination of the asymmetries from
the two states separately„ this will be of interest too,
as the separate asymmetries are quite diR'erent from
each other and from their average.

To work out the theoretical values, we use the non-
relativistic form of the Hermitian conjugate of I ee and
Yang's Hamiltonian, 's divided by V2 and with e

replaced by p, an effective pseudoscalar coupling'7 is
included in first nonrelativistic approximation, ' as-
sumed to be caused by virtual pion eGects. A further
hypothetical effect of virtual pions, which was postu-
lated by Gell-Mann" to explain the absence of renor-
malization in vector interactions, will not be considered
here.

Further notations to be used are

G pC +sC vGp'=Cs'+Cv',

Ga=Cr+C~, GG'=Cr'+C~',

Gp= Cpv/2M, Gp' ——Cp'v/2M,

with v the average momentum of the emitted neutrino,
and M the nucleon mass.

%e shall introduce the density matrix of a muon-
proton system for the situation that the muon is in
the ground state of a mesic atom consisting of two
incoherent hyperfine levels, and the proton having no
polarization at the moment of arrival of the muon in
the E-shell. Written down generally for any of the

"Shapiro, Dolinsky, and Blokhintsev, Nuclear Phys. 4, 273
(1957);L. Wolfenstein, Nuovo cimento 7, 706 (1958).

'4 E. I. Dolinsky and L. D. Blokhintsev, Zhur. Kksptl. i Teoret.
Fiz. U.S.S.R. 34, 759 (1958) (translation: Soviet Phys. JETP 7,
521 (1958)g; B. L. IoA'e, Zhur. Eksptl. i Teoret Fiz. U.S.S.R. 33,
308 (1957) Ltranslation: Soviet Phys. JETP 6, 240 (1958)g."H. 'Uberall and L. Wolfenstein, Nuovo cimento 10, 136 (1958)."T.D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956), Kq.
(A.1)."L.%olfenstein, Nuova cimento 8, 882 (1958); M. L. Gold-
berger and S. B.Treiman, Phys. Rev. 111,354 (1958).

"The minus sign given to the pseudoscalar interaction term
in Eq. (2) of reference 15 should be changed to plus. Furthermore,
the last two figures in column D of Table I in the same piper
should read —0.560, —1.000 {instead of —0.628, —1.124), and
the last 6gure in column Do should read —1 (instead of —-';-)."M. Gell-Mann, Phys. Rev. 111,362 (1958).
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1~ a, a=-', (app+3agg —2 Re agp),

b=
& (2 Re apg —2agg

—-', Re app+ ', Re agp-), (10)

s o —+ s pc, c= ,'( bp-p+—bgg+2 Re bgp))

s o„~s pd, d= —,'(—2 Rebpg 2bgg+—2Rebpp),

3EFp' lFp + b)

where

ai„=GiG *+G('G„", bi„, Gi'G„,*+——G)G '";

v is a unit vector in the direction of the neutrino
momentum. Terms quadratic in C& have been dropped.
%e introduce a quantity I+ for the two hyperfine states,
which is proportional to the capture probability, and
so defined that I++I coincides with Io given by
Wolfenstein. " The angular distribution is written as
1—A+s p, or as 1—As p after averaging over both
states (p being the momentum of the emitted neutron,
and p a unit vector in its direction). We then obtain:

I~= -,'(app+2 Re apg+agg -', app —-', agp)—,

I = ,'(app 6Re ap—g+9a—gg+2 Re app —6 Re agp),

Io= ', (app+3agg 2-Re a„), — (11)

(8/3)I+A+ —oo (bpp+2 Re bpg——+bgg
—2 Re bpp 2Re bgp), —

(12)=0,
2IoA = o(bpp+—2 Re bpg+bgg

—2 Re bpp 2Re bgp). —

The singlet state asymmetries 3 are zero because of
the vanishing muon polarization. Table I gives I+, Io

TABLE I. Capture probabilities and neutron asymmetries from
the diferent hyperfine states in hydrogen, for various coupling
types; A+=asymmetry from triplet state, A =asymmetry from
singlet state, ii =asymmetry averaged over both hyperfine states,
A p =asymmetry without hyperfine interaction.

Coupling

G
F+G
Ii —G

P—(GWP)

I+ I Ip A+

—,'G' -';03 G'
,'G-' (~/'4) G 3G2

CP 4G~

0 4G' . 4G'
0 2(2 —x)G' 2(2 —x)G'

A A

0
0 0
0 0-

l

0
0

'x1

hyperfine states or their incoherent mixture, we find

'»'-[1+ 'o&o. o.)o. o.
+(s o„)s (o„+(o„o,)o,)], (9)

where E is the probability of the state under con-
sideration, [Eq. (3)], and (s o„), [Eqs. (4), (5)], and
(o„o„)are expectation values of polarization and spin
correlation, respectively.

Considering the capture in hydrogen, we use

( . .)+=1, ( . .)-= —3, (s. .)+=l, (s .)-=0,
assuming an initial 100 jg polarization of the muon.
The transition probability is then obtained from p by
the substitution

and the asymmetries A+ (triplet), A, A (average) and
Ao (without hyperfine effect) for right-handed two-
component neutrinos (for left-handed two-component
neutrinos, all asymmetries reverse sign) and couplings
pure or mixed with equal weights; we call Gp/Gg=x,
= %0.475 for CJ ——9G.' Owing to the E&', G interference
terms present, we now get a difference in the asym-
metries for F+G and F—G (in contrast to Ao); but
for I'—G, there is no capture in the triplet state, so
that A =0, a result which is not changed by the effective
pseudoscalar interaction (at least if terms quadratic in
Cp are neglected). This is again in contrast to Ao.

For capture in deuterium, we neglect again relaxa-
tions of the hyperfine states and initial nuclear polari-
zation. The notation of reference 15 is used throughout.
The density matrices are explicitly:

p+= oI o(3+on'o~)+oo~' (on+o~)
+(1/18) [5( .+ -+ .)+ .(. -)

+o„(o„o„)+o„(o,.o )]),
=o( i'o-(3+o. o-) oo. (o—.+o.)

+ (1/18)s [—(o„+o„2o„)+—o„(o„o„)
+o-(o. o.)—2o.(op o-)])

and with their help, we find the following capture
probabilities and asymmetries:

I+= o[app+2 Re apg+agg —
o Re arp
—

o Re agp]I«,

3[appI « 4Re a» gI'«—+agg(4I«+3I„)
+ ', Re appI„--', Re agp(4I«+3—I„)], (12)

Io= appI«+ agg(2I«+I„.) -', Re agp(2I«+I„—),

',I+A+= (5/9)[—bpp+2 Re bpg+bgg
—2 Re bpp 2Re bgp]I„',—

3I A = ', [bppI„' 4Re-bpgI„'—
+br r (4It t' 9I„')+4Re bEpI—t t'

—2 Re bgp(4I„' —3I„')], (13)

IoA= (1/27)[11bppI«'+16 Re bpgI«'

+bgg(14I«' 9I„')+16Re bppI—«'

+2 Re bgp(14I„' —3I„')].

In reference 15) Ijj and Ijj were evaluated as functions
of the neutron energy, taking into account interactions
between the final two neutrons. Their indices j=s or t

correspond. to singlet or triplet states of the outgoing
neutrons. Some general features of the results may be
discussed:

(1) For pure Fermi couplings (no spin Rip), only
final triplet states occur. The I+, I have the Fermi
shape (Fig. 1, reference 15) with weights -', O', -', G'. The
d of Eq. (10), factor of the proton polarization, vanishes
for pure Fermi interactions, thus the asymmetries 3+,
A and 3 are the Fermi curve (Fig. 2, reference 15)
multiplied by just the muon polarizations (s o„), which
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are 5/9, 1/9, and 11/27, respectively. (Right-handed
two-component neutrinos will be assumed. always. )

(2) For initial quartet states, F=J+~, only final
triplet states occur. Thus, I+ and 3+ have the Fermi
shape independent:ly of coupling type (except for
F G, F—(G—+P), where I+ 0). ——

(3) The exclusion principle enhances final singlet
compared to triplet states. This is the case mostly for
neutrons of 1 to 3 Mev, "and if in Eqs. (12) and (13),
we set I~~(&I.„.we obta, in A =A= aI„'/I~~'= —

~ in
this energy range, for all except pure Fermi couplings,
in good agreement with the calculated values. For
energies above ~6 i4lev, however, the results are better
estimated by setting
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FIG. 2. Asymmetry parameter A for both hyper6ne states (A~)
and its average (Al tts neutron energy E, for F+G and P G—
coupling using two-component theorywith right-handed neutrinos.
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FIG. 1.Neutron spectra for both hyper6ne states (&) and their
sum (0) for P+G and F—G coupling, normalized by using the
Fermi coupling constant of P decay, G=1.41)(10 "erg cm'.

Of most immediate interest will be, however, to
point out the new features brought in by the hyperfine
splitting effect, as compared to the treatment" where
the hyperfine interaction was left out. The first result
is again a difference between F+G and F Gcouplings, —
illustrated by Figs. 1 and 2. In the former case, I+
has the Fermi shape and is smaller than I; 3+ is also
given by the Fermi curve Lfactor (5/9)), and A, A
are approximately —25% for E 2 Mev, and —

20%%uo,

+20%, respectively for E&6 Afev. In the F Gcase, —
I+——0 (even if an effective pseudoscalar coupling is
added), and A =A is —

25%%uo for E 2 Mev, zero for
E&6 Mev. The average spectrum Io is the same for
both cases and for the situation without hyperfine
interaction.

Another striking new result is that an effective pseu-
doscalar interaction added to P—G does not appreciably

0'p' EJp +=
J(J+1) L(L+1)+—

(15)J(J+1) L(L+1)+—

This vanishes when averaged over the hyperhne states;

change the asymmetry in Fig. 2, contrary to the old
results (reference 15, Fig. 3) where the pseudoscalar
was very important, especially in the 1 to 3 3Iev region.
Ke note in this connection that A and A are still

—25% here, in spite of the small muon polarization

(9 for the doublet state!). The proton polarization

(—2/9 for A ) adds on to that of the muon, and the
relative largeness of the asymmetry is therefore due
predominantly to the proton polarization. The unim-
portance of the pseudoscalar in this energy region is
then clear by observing that the coeKcient of the proton
polariza, tion, d of Eq. (10),has no GF interference term,
only an FP one which is unimportant here.

Last, we shall consider muon absorption in odd A,
odd Z nuclei, using the same model as in reference 2,
namely a spinless core and an odd outside proton which
is responsible for all the nuclear spin. Capture by a
core proton will then result in a neutron asymmetry
similar to that in a zero-spin nucleus, 6 and capture by
the odd proton will resemble more the capture in
hydrogen discussed above. For an odd 3, even Z
nucleus, this model would give the same asymmetry as
for a spinless nucleus. To utilize the density matrix (9)
for the capture by the odd proton, we first calculate
the muon-proton spin correlation with the proton in a
state of nonzero orbital angular momentum. If F=J~-,',
J= nuclear spin= I,+~, L= odd proton orbital angular
momentum, we find
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4 J(J+1) L(L—+1)+-',

(2J+1)2
(16)

therefore, a certain proton polarization remains even
after averaging.

Adding the odd-proton and the core contributions
together, we 6nd the following expressions for the
relative capture probabilities (defined such as to coin-
cide with the hydrogen results for L=O, Z= 1):

J+1 1 J(J+1)—L(L+1)+-,'
I+— a+- b,

2J+1 Z' J+1
J 1 J(J+1) L(L+1—)+

8—— b,
2J+1 Z'

I()=c)

and for the asymmetries:

however, the last term in the density matrix averages to

((s «.&(«..«.&)0=&+(s «.&+(«..«.) i-

+E (s.«„& («„«„)

be t 0.20 to 0.25 if the odd proton can be treated as
free, somewhat larger if the odd proton is also appre-
ciably influenced by the exclusion principle. The func-
tion e(E) is defined for capture in nuclei by

1+A s i= 1—eA s.p,

and represents a "smearing-out" of the neutrino asym-
metry as rejected by the neutron asymmetry, this
being caused by the proton motion in the nucleus. It is
estimated from the Fermi gas model' as 0.7 «& e «&1.0,
going up for the more energetic neutrons which repro-
duce the neutrino asymmetry more exactly.

Formulas (17) express the hyperfine effect on the
lifetime as discussed by Bernstein et al. ,

' and (18) the
e6ect on the neutron asymmetry. They show essentially
a mixing of the asymmetries caused by polarized muons
only (determined by c/a), and by polarized protons
only (determined by d/b), with "weights" Z' and 1.
The interesting fact is again a distinction between the
cases I'+G and P G; the asym—metrics vanish for the
latter interaction type, whereas for the former case,
c=0 (and b =0), so that the asymmetry is essentially
determined by (d/aZ'), =1/Z' for right-handed two-
component neutrinos.

2J+1
I+A+J

e 2J+3 1 J(J+1) L(L+1)+-=I'- c+—
3 2J+1 Z' J+1

e 2J —1' 1 J(J+1) L(L+1)+—4=P — — c—— d, (18)
3 2J+1 Z' J

2

(2J+1)'
IoA =P„1+—"3

4 J(J+1)—L,(L+1)+-',
X c+—

Z' 2+ (2J+1)'

Here, P„ is the muon polarization at the moment of
arrival in the E shell, Z'= (Z—1)$+1, and we intro-
duced two quantities (, e, which are functions of the
energy E of the emitted neutrons: g(E) is the ratio of
muon capture probability by a core proton to the
capture probability by the outside proton, the diRerence
being caused by a difference in phase space and mainly

by the exclusion principle. It can be estimated by
treating the problem with a Fermi gas model, ' or from
PrimakoR's formula for muon capture, "and is found to

'0 H. PrimakoA, Revs. Modern Phys. (to be published); quoted,
e.g., by J. C. Sens, Phys. Rev. 113, 679 (2959), Kq. (5), or by
Astbury, Kemp, Lipman, Muirhead, Voss, Zangger, and Kirk,
Proc. Phys. Soc. (London) 72, 494 (2958), Eq. (2).

IV. DISCUSSION

We pointed out the existence of the hyperhne
splitting eRect on the neutron asymmetry, as it had
been left out of consideration in all earlier papers on
this subject. An obstacle for any experimental veri-
fication is unfortunately presented by the small re-
maining polarization P„of the muon as it reaches the
K-shell. Our discussion of muon capture in hydrogen
and deuterium wants only to show the intrinsic size of
the .eRect rather than to suggest an experiment, for

which the small capture rate would at present be pro-
hibitive. The place where measurements could be
attempted are light nuclei (because of the factor Z' '

of d), with an aim to see the d-term. This can be done

in two ways. First, one might compare the asymmetry
A o from a spinless nucleus with 2 from a nucleus which

diRers from the former one by possessing an additional

proton. An example would be 0" and F", the latter
nucleus having J=

& and lying almost exactly on the
I.=J—

~ Schmidt line. One should first check the
reduction of muon polarization in the fluorine (expected

2 of that in oxygen) by measuring the decay electron

asymmetries, then compare the neutron asymmetries.
For f'+G coupling, e.g. , Ao should be zero, but
A/-,'P„e 30%. The second way is to compare A+ and

in the same nucleus, using a precession experiment.
If we take, e.g. , 8" with J=~, L=J—2, the muon

polarization ratio (3:1) in the +, —states could be
checked using the decay electrons, then the A+, A

compared. These should show opposite signs if F+G
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coupling applies, and for the 8" case would be of the
order A~/E„e 22%, A /P„e —12%.

The actual coupling, even if all weak interactions are
universal, will be neither j"—G nor J&+G, but the Fermi
and Gamow-Teller couplings are expected to be dif-
ferent owing to pion renormalization e6ects, similarly
as in P decay. Moreover, relativistic effects can cause
appreciable deviations from the nonrelativistic for-

mulas, especially in complex nuclei, and of course the
applicability of the Schmidt model may be questioned.
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A model of a linear harmonic oscillator in the general theory of relativity is examined. It is based on a
classical model of a point mass vibrating harmonically about the center of an ideal liquid sphere. The motion
is no longer harmonic. However, to a first approximation, it is still harmonic, but the period of vibration
depends both on the amplitude and on the curvature of the space. Both quantities tend to slow down the
motion. In the limiting case of Rat space, the classical frequency is again restored.

I. INTRODUCTION

I 'HERE is no unique way to define a harmonic
oscillator in the general theory of relativity. The

definition depends upon the physical properties of the
classical oscillator we wish to preserve in the general
theory. One possibility is to define a suitable potential
energy which in the limiting case of fiat space becomes
identical with the usual harmonic potential. In any
case, the equations of motion must become identical
with the classical equations in the limiting case. Our
approach is based upon the following observation. It is
well known that, in Newtonian mechanics, a small mass
vibrating under gravity about the center of a sphere
composed of an idea, l liquid will execute a simple
harmonic motion. We are thus led to investigate how a
mass point will move in the same medium if the curva-
ture of the space is taken into account.

d'x' dx' dx'
-+r&, ' =0

ds ds ds

In our case, Eqs. (4) reduce to

r»'= C'/(2g~),

ro"= —r/g&,

roe'= —r sin'1t/g&,

r„'=1/r,

rooo= —sin1t cosP,

r, &o= 1/r,

roe' = cot&t'.

(Primes indicate derivative with respect to r.)
The equations of motion of a point mass are

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

(3i)

II. THE EQUATIONS OF MOTION

In a stationary system of spherical symmetry, the
world line-element can be written in the form'

ds'= godt' —g&dr' —r'(dP+sin'Pd&t&')

where go and gi are functions of r only. We shall put:

d'r (dt's
' (dr~ '—+roo'I

I
+r»'I

ds' (ds) &ds J

d'l dt dr—+2roP——=0, (5a)
ds' ds ds

xo=t, xo=P,

x]= r? x3= p.

The nonvanishing Christoffel-symbols are

roi'= go'/(2go),

roo'= go'/(2g&),

(3a)

'Hans Bauer, Anz. Akad. Kiss. Kien, Math. -naturw. Kl.
Sjtst&or, Abt, IIa, 12?, 10 (1918l.

fd&'t ' (do l '
+r„I —I+r., I

—
I

=o, (5b)
&ds ) Kds i

dQ dr dP pdy~ '
+2r '——+r: 'I —

I
=o, (5c)

ds' ds ds k ds &l

dr doo dP doo
+2r„e——+2r„'——=O. (5d)

ds' ds ds ds ds


