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whereas the hole mobility tensor is not. The anisotropy
of the electron mobility tensor, however, is much less
than what would be expected from the anisotropy of
the eGective mass tensor on the approximation of
isotropic relaxation time, but about what would be
expected on the approximation of isotropic mean free
path.

For temperatures below 25'K, both resistivity and
Hall coeScients show a weak dependence on tempera-
ture. This behavior is not easily explicable in terms of
Blount and Cohen's model, which would lead to a
continued exponential temperature dependence below
25'K. The data suggests another overlap between the
conduction and valence bands. However, the
dependence of this overlap on concentration would
appear to be rather complicated. An alternative source
of the low-temperature behavior may possibly be the
fuzzing of the band edges CJ., VL, , and VII on alloying.
At this stage it is not possible to decide which, if either,
of the two alternatives is correct.

To summarize, the behavior of the resistivity as a
function of antimony concentration above 25'K can be
explained semiquantitatively in terms of the model
proposed by Blount and Cohen. In particular, behavior
resembling the semiconductivity predicted by Heine is
observed. However, the behavior below 25'K shows
that the model is incomplete and additional compli-
cations may occur in the band structure of the alloys
and possibly also of pure bismuth.
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Solutions of the Hartree-Pock self-consistent-field equations can be approximated by linear combination
of a set of basis functions: the equations then assume a matrix form, as shown by Roothaan. It is possible,
however, to obtain the required variational solution of the many-electron problem much more directly by
an iterative construction of the density matrix. This method, first developed by the author for expansion
in terms of orthogonal basis functions, is extended to the case of a nonorthogonal set.

INTRODUCTION

&~URING recent years two modifications of the
Hartree-Fock self-consistent-field (SCF) theory

have been developed. Numerical integration can be
avoided by determining the occupied orbitals as linear
combinations of an arbitrary (in principle complete)
set of basis functions' and the repeated solution of an
eigenvalue problem can be avoided by means of a
density matrix formulation, followed by direct iterative
construction of the density matrix. ' This note is
concerned with the extension of the iterative process to
the case in which the basis functions are nonorthogonal.

I.et us represent the e doubly occupied SCF orbitals
(A,B,C, ) in terms of ttt nonorthogonal basis functions
(a,b,c, . ), with overlap matrix S, by

(A BC. )=(abc )T (1)

where T is an mXrt matrix. The density matrices (and
hence the energy and the expectation values of all

I C. C. J. Roothaan, Revs. Modern Phys. 23, 6i (195'?}.' R. McWeeny, Proc. Roy. Soc. (London) A235, 496 (1956).

other dynamical quantities) are then determined by
the invariant R= TTt. The (spinless) one-particle
density matrix is P= 2R and if we assume a Hamiltonian

the energy is given by'

@=2tr Rf+tr RG, (2)

where, with a standard notation, the matrix elements
are

f ~=(alflb),
(3)(-".~=K-~-I 2(aslglbr) —(aslglrb) j.

The electron interaction matrix is R dependent,
G= G(R), and leads to a nonlinear problem. According
to the variation theorem, the best approximate SCF
function results when E of (2) is minimized subject to
preservation of orthonormality of the occupied orbitals
A,B, In the case of orthornormal basis functions,S=l, and the constraint is simply TtT=1 . An
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equivalent condition in terms of R (also necessary and
sufiicient) is R = R. With SQI the condition becomes
Tt ST= l„and the equivalent statement in terms of R is

This may also be written (using the fact that sSs= stSst
=Q)

bR= —yL —y2LSM,

0'= p, where p =S&RS&.
where

L= s+ st, M = s—st. (10)

E may be minimized, subject to the constraint (4), by
an extension of the iterative process already developed. ' The analysis of the original paper may now be taken

over immediately. The optimum value of A. is given by

THE MODIFIED ITERATIVE METHOD
where

X.„=—l/(2m —m'),

The extension to the nonorthogonal case depends on
the fact that any small change by, leading from one
idempotent matrix to another, may be expressed as an
infinite series in an arbitrary (nonsingular) matrix 4.
The proof runs along the lines of a, previous paper'
and will not be reproduced: up to second order, it
yields

where
S~= (t+ tt)+(ttt —tt t)+".,

t= (&—e)&e. (5)

The auxiliary condition (4) is therefore satisfied
automatically, for any variation 4, by putting

8R=S—lL(t+tt)+(ttt —ttt)+. . ]S—'*.

We then consider the systematic reduction of E, starting
from an initial R matrix and making successive changes,
hR, always choosing cL to give the most rapid reduction
(the method of "steepest descents"). Using the identity
tr RG(8R) = tr BRG(R), the first order change is found
to be

bE(g)
——2 trbRh,

where h= f+G is the matrix of the Hartree-Fock
Hamiltonian'; and for a change consistent with
orthogonality of the occupied orbitals, (6) gives

6E&i~=2 trfyS lhS &(I—y)+(I—y)S lhS 'ygcL.

The steepest descent occurs when 4 is taken to be a
negative multiple of the quantity in square brackets,
for this gives the trace its greatest negative value. It
then follows from (5) and (6) that, to second order,

bR = —X(s+ st)+V (sSst —stSs), (7)
where

s =S—'tS-&= (S-'—R)hR.

l=tr Lh, m=tr LSMh, m'=tr LG(L). (12)

If hR&"~ is the correction computed according to (9),
etc. , with R= R~~&, and we define R&~+'&= R~~i+bR&~&,

then the sequence R&'&, Roi, R"', , converges to the
required solution.

Finally, an initial matrix R, such that S&RS& is
accurately idempotent, may be constructed from a
trial approximation Rp as the limit of the sequence
Ro, Ri, R2, ~, where

Ri,+,——R„SRi,(31—2SRg). (»)
This result is again a simple generalization of that used
in the original work. The process is of second order and
usually converges rapidly. It is also useful for restoring
idempotency, which may suffer on account of small
cumulative errors, at any stage of the SCF process.

CONCLUSION

It appears that the use of nonorthogonal basis
orbitals requires little elaboration of the original
process, beyond the initial calculation of S '. There are
two alternative procedures:

(i) initial construction of an orthogonal m-dimen-
sional basis, followed by transformation of all integrals
to the new basis Lincluding a transformation of 2-
electron integrals, of dimension —,'m(m+1)];

(ii) construction of an orthogonal basis, followed by
repeated 1-electron transformations between both
bases during the interative process. '

Both alternatives are considerably more cumbersome
than the procedure developed in this note. The modified
interative method will shortly be programed for
electronic digital computation and used in the deter-
mination of approximate SCF functions, for atoms and
simple molecules.


