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The crystalline field splitting of the ground state spin triplet of divalent nickel in the fluosilicate,
NiSiFs-6 H:0, has been measured at room temperature as a function of hydrostatic pressure to 10 000
kg/cm? and uniaxial stress to 150 kg/cm?. The anisotropic compressibility and thermal expansion of this
trigonal crystal have also been determined. Combining these data with the known variation of the splitting
with temperature, its dependence on isothermal unit cell geometry and on temperature at constant unit
cell dimensions is calculated. The splitting is found to be independent of volume within experimental
error but proves to be quite sensitive to unit cell shape. The deduced explicit temperature dependence is
three times larger than that measured at atmospheric pressure. The magnitude and geometrical variation
of the crystalline field splitting may be qualitatively understood using a static, ionic model of the
(Ni-6H:0)** octahedral complex. A rather general analysis of the explicit temperature dependence in-
dicates, however, that low-frequency lattice vibrations play a dominant role in determining the observed
value of the splitting.

The resonance line widths are observed to increase monotonically and quite nonlinearly with increasing
pressure. This broadening is discussed in terms of isotropic and anisotropic exchange interactions. In
agreement with earlier conclusions of Ollom and Van Vleck it is inferred that the two mechanisms are of
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comparable importance in this paramagnetic salt.

INTRODUCTION

HE energy level separations of ions in the solid
state, which may be studied by absorption
spectroscopy, give detailed information concerning the
symmetry and strength of the local crystalline potential.
Since this potential depends directly on the relative
positions of the various electric charges it is a function
of the stress to which the crystal is subject and of the
lattice temperature.

This has been most clearly demonstrated in the case
of nuclear quadrupole resonance experiments performed
as a function of hydrostatic pressure and temperature
by Kushida, Benedek, and Bloembergen.! Using the
equation of state of the crystal the quadrupole resonance
frequency variations were analyzed to separate the
explicit effects of sample geometry and lattice vibra-
tions. These dependences of the crystalline field gradient
were then compared with appropriate theoretical
models. Shulman, Wyluda, and Anderson? have
investigated the effect of uniaxial stress on the nuclear
magnetic resonance of In'*% in InSh.

The temperature and hydrostatic pressure depend-
ences of the sharp-line optical absorption spectrum of
Eu** in europium zinc double nitrate single crystals
have been studied by Hellwege and Schrdck-Veitor.?
Unfortunately the detailed equation of state of this
complex crystal was not known so that the interpreta-
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tion was limited, though the explicit effect of lattice
vibrations as well as sample geometry was noted.

To our knowledge the only previous paramagnetic
resonance (PMR) experiment involving other than
thermal effects was performed by Van Wieringen®
who observed the pressure-induced wurzite-to-blende
polymorphic transition of ZnS containing Mn?* as an
impurity. Changes in the manganese spectrum after
successive compressions in a separate press could be
seen since this transition is metastable at room
temperature.

We have used the PMR technique to study the small
crystalline field splitting, D, of the ground state of
Ni*t in nickel fluosilicate as a function of hydrostatic
pressure to 10000 kg/cm? and uniaxial stress to 150
kg/cm? at room temperature.> These are apparently
the first electron spin resonance experiments performed
under such conditions.”

In order to relate the stress and temperature®?
dependences of the splitting to the geometry of the
lattice the highly anisotropic equation of state was
also measured. A thermodynamic analysis indicates
how D varies with isothermal unit cell volume and
shape and with the temperature explicitly, i.e., at
constant average geometry. It is interesting to note
that the temperature dependence of crystalline field
splittings in paramagnetic salts has been ascribed to

4J. S. Van Wieringen, Physica 19, 397 (1953).
( 5 V}/]) M. Walsh, Jr., and N. Bloembergen, Phys. Rev. 107, 904
1957).
S W. M. Walsh, Jr., Bull. Am. Phys. Soc. Ser. I, 3, 178 (1958).
7 The hydrostatic pressure dependence of the PMR spectra of
two dilute chromium salts is reported in the following paper.
8 R. P. Penrose and K. W. H. Stevens, Proc. Phys. Soc. (Lon-
don) A63,29 (1950).
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(unpublished).
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thermal expansion alone® whereas in nuclear quadru-
pole resonance only the explicit temperature depend-
ence was considered until pressure experiments were
used to distinguish between the two mechanisma.

A qualitative understanding of the magnitude of the
fluosilicate splitting and of its isothermal geometrical
dependence is obtained using a static, ionic model of
the (Ni-6H;0)** complex. However, a crude analysis
of the strong explicit temperature dependence of D
in terms of low-frequency lattice vibrations cannot,
apparently, be reconciled with the static model.

Line width measurements as a function of hydro-
static pressure show an increase of over 1009, while
interionic distances decrease by less than 29,. This
effect is attributed to increasing exchange interactions
between neighboring ions via intervening atomic
orbitals and is discussed in terms of isotropic and
anisotropic exchange mechanisms which have pre-
viously been proposed for this salt.}:12

I. THE CRYSTALLINE FIELD AND THE SPIN
HAMILTONIAN

The crystal structure of nickel fluosilicate, NiSiFg
-6H,0, is inferred from that of the isomorph, nickel
chlorostannate, NiSnCls-6H;0, which has been in-
vestigated in detail by Pauling.’® There is one molecule
per unit cell, the crystal being made up of (Ni-6H,0)*
(SnClg)?~ complexes arranged on a slightly distorted
bee lattice. The deformation corresponds to a com-
pression along a body diagonal whence the symmetry
is trigonal or rhombohedral. The individual complexes
form apparently regular octahedra with the metallic
ions as centers. The Ni-Ni distance in the fluosilicate
is 6.27A and the rhombohedral angle is 96°5’.14

It is evident that the Ni** ion is exposed to a pre-
dominantly cubic electric field with a weaker trigonal
component superposed. The free ion, having eight 3d
electrons, is in a 3F ground state. The spin, S=1, may
be considered to arise from two holes in the 3d shell
whose spins are aligned. The octahedral cubic electric
field due to the water molecules leaves an orbital
singlet several thousands of wave numbers below two
orbital triplets.!?® The ground state remains triply spin
degenerate in a purely cubic electric field as has recently
been experimentally verified by Low.'® The trigonal
crystalline field component and the spin-orbit inter-
action split the spin triplet into a doublet and a singlet,'
the doublet being lowest in the fluosilicate.!” The

1 Bagguley, Bleaney, Griffiths, Penrose, and Plumpton, Proc.
Phys. Soc. (London) 61, 551 (1948).

11§, F, Ollom and J. H. Van Vleck, Physica 17, 205 (1951).

12 Tshiguro, Kambe, and Usui, Physica 17, 310 (1951). .

13 L. Pauling, Z. Krist. 72, 482 (1930).

¥ R. W. G. Wyckoft, Crystal Structures (Interscience Publishers,
Inc., New York, 1951), Vol. III.

BH, A Bethe Ann. Physik 3, 133 (1929) S plzttmg of Terms
in Crystals (Consultants Bureau, ‘New York, 1

16 W. Low. Phys. Rev. 109, 247 (1958).

17 J. Becquerel and W. Opechowski, Physica 6, 1039 (1939).
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behavior of this ground spin triplet in a magnetic field
may be described by the spin Hamiltonian!®

e=B{gnH.S:+g(H.So+H,S) I+ D(S2—3). (1)

The 2 axis is the trigonal axis of the crystal, the orthogo-
nal £ and § axes being taken arbitrarily in the plane
perpendicular to the symmetry axis.

Previous PMR investigations of this salt®?!® show
gu2gi~2.30 and D= —0.52 cm™ at room temperature.
The splitting, D, decreases nonlinearly in magnitude
with decreasing temperature to a constant value of
—0.12 cm™ below 20°K. It is this strongly temperature-
dependent splitting which makes nickel fluosilicate
attractive for our purposes.

II. THE SPLITTING AND THE EQUATION OF STATE

In principle both the deviation of the g-value from
that of the free electron, Ag=g—2.0023, and the
crystalline field splitting, D, should be treated as
functions of the stress and temperature state of the
crystal. Since, however, Ag does not prove to be a
sensitive parameter in these. experiments it will be
sufficient to focus our attention on D. The detailed
relation between the splitting of the spin energy levels
and the local crystalline field will be considered in
Sec. V. At present it is only necessary to note that the
crystalline potential involves the position coordinates
of the contributing charges. These coordinates are
functions of time due to thermal vibrations whence
the observed value of D is a time average, {D); which
depends not only on the average value of the source
coordinates (purely geometrical dependence) but also
on the detailed character of the vibrations (explicit
temperature dependence).

The latter point may be easily seen if we consider
the particular case of an ionic lattice subject to purely
harmonic vibrations. Each ion’s contribution to the
various symmetry components of the electric potential
depends on various powers of the ion’s position co-
ordinates with respect to the point of observation. If,
for example, a distance is harmonically modulated, i.e.,
d(t)=do(1+4¢€ coswt), the time average value of 4 is
(@™=do"[1+n(nF1)e/4], n20. This does, in general,
affect the average value of the crystalline potential,
yet the average geometry of the lattice is not changed.

Formally we should treat D as a function of all those
coordinates, X;(i=1,- - -,8 for the fluosilicate structure
assuming water molecules may be considered to be
rigid bodies), required to specify the average geometry
of the unit cell and of the normal modes, &;(j=1,--,
3N —3 where N is the number of atoms in the crystal),
required to specify the thermal vibrations of the ions
about their average positions. The X; and &; are all
functions of temperature and of the stress applied to
the crystal.

18 B. Bleaney and K. W. H. Stevens, Repts. Progr. in Phys. 16,

108 (1953).
19 Holden, Kittel, and Yager, Phys. Rev. 75, 1443 (1949).



PARAMAGNETIC RESONANCE SPECTRUM

Unfortunately only the external dimensions of the
unit cell could be specified experimentally. Thus D will
be regarded as a function of the unit cell volume
X,=V=GI,l2 the unit cell “shape,” Xo=0=G"l;/l,
and the temperature, 7. The symbols, /;; and I, refer
to the crystal lengths parallel and perpendicular to the
trigonal axis, respectively; G and G’ are geometrical
scaling factors which will be eliminated through the
use of logarithmic derivatives.

- In order to evaluate (8D/d InV), », (8D/0 Ino)v,r,
and (8D/dT)v,, three independent PMR experiments
must be performed. We have measured D as a function
of (1) temperature at constant (atmospheric) pressure
(this merely confirms the earlier measurements), (2)
hydrostatic pressure, P, at constant (room) tempera-
ture, and (3) uniaxial compressive stress, U, directed
along the symmetry axis at constant (room) tempera-
ture. The relationships between the measured and
desired quantities are

@.-GH)..Go),
(), G (), @
().~ Gn) .G,
(), (),
(2).-G)..Gr),
() ()

It is evident that the derivatives (8 InV/dT)p, etc.,
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are required to complete the evaluation of the theoreti-
cally interesting quantities (8D/d InV), r, etc. This
corresponds to measuring the equation of state of the
crystal for the stress and temperature range covered
in the PMR experiments.

It should be noted that Eqgs. (2)-(4) mask the basic
complexity of D in that only the observed variables
are used: D=D(V,0,T), whereas D=D(V,0,X3- - - X5,
£1- - -£3v—3) from the analytical point of view. Thus the
derivatives of D with respect to volume, shape and
temperature obtainable from equations (2)-(4) really
involve the undertermined, internal coordinates of the
unit cell as well as the normal modes of vibration:

8 0X; s¥—3 9D /0¢;
( ) ( ) +z-(——) )
V,¢ 1“36X aT V.o V, o

=1t 9E;\9T
aD oD s 90D 09X,
G, 2w )
V/,r oV i=dX;\oV /.71
sN-3 9D f 9&;
L —~(5) . ©
=1 85_7 GV o, T

)..

-3 3D ¢ 9E;
yr—(2) .
=t 0gj\do /v, r

Unbracketed partial derivatives imply that all the
other independent variables are fixed.

()t

III. EXPERIMENTAL TECHNIQUES

The PMR spectrometer is indicated in Fig. 1.
Audio-frequency modulation of the magnetic field and
phase-sensitive detection were used, i.e., dx"/dH
versus H was recorded. Sensitivity on narrow lines was
~10YAH spins for unity signal-to-noise ratio at room
temperature. An AFC circuit locked the 2K25 klystron
to the sample cavity frequency. This frequency (8500~
9500 Mc/sec) was measured using a cavity wavemeter
calibrated against a frequency marker system. The
current-stabilized magnet was rotatable for alignment
with sample axes and the field was measured using a
Pound-Watkins nuclear resonance spectrometer and a
mineral oil sample.

The microwave coupling into the BeCu high pressure
bomb and the coaxial cavity have been described and
illustrated in a preliminary communication.® Hydro-
static pressures up to 10000 kg/cm? were generated
and measured by standard techniques.?’

Uniaxial compressive stress was applied parallel to
the symmetry axis of single crystal samples with the
arrangement shown in Fig. 2. Lead weights drove a

» P. W. Bridgman, The Physics of High Pressure (G. Bell and
Sons, London, 1952).
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F16. 2. Apparatus for the uniaxial stress experiment.

0.25-in. diameter Dural piston into a 7TEie mode
rectangular brass cavity. The crystal was placed in a
cylindrical hole milled in the polystyrene cavity filler
piece. Microwave coupling via a coaxial cable with an
electric dipole termination was used. The cavity and
piston assembly was supported in the magnet by a
brass stand. Initially we planned to drive the piston
with the pressure generating press but this proved un-
necessary since the samples cracked with a loading
greater than ~150 kg/cm? so that only 20 kg of lead
weights were required to cover the useable range of
stress.

As indicated in the previous section, the resonance
experiments may be interpreted only if the crystal
dimensions are determined under the same experimental
conditions as is the crystalline field splitting. In
principle a complete x-ray investigation of the sample
as a function of stress and temperature would give the
required information about the internal (Xj---X3) as
well as the external (V,s) coordinates and even some
data on the lattice vibration spectrum. As a practical
compromise Type SR-4 A-7, Baldwin-Lima-Hamilton
Corporation resistance strain gauges were used to
measure percentage changes of external crystal dimen-
sions. Two gauges, R;; and R,, were cemented parallel
and perpendicular, respectively, to the trigonal axis
of a single crystal fluosilicate sample. A third control
gauge, R., was placed near the sample but was not
bonded to it. The requisite electrical leads were brought
through a multiterminal high pressure plug to a switch-
ing box and Wheatstone bridge. To determine linear
compressibilities the plug was inserted in a high
pressure bomb and the variations of (R;—R.),
(Ri—R.), and (R;;—R,) were measured as a function
of applied pressure. The corresponding sample dimen-
sion changes were easily computed using the gauge
factor, G=(6R/R)/(8l/1), provided with the gauges.
To measure thermal dependences the sample and plug
assembly was placed in a brass can which in turn was
placed in a temperature-regulated water bath covering
the 0° to S0°C range. Several attempts to measure the
deformation of the crystal subject to uniaxial compres-
sion gave inconsistent, unreproducible results. It was
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finally decided to estimate this part of the equation of
state on the basis of the linear hydrostatic compressi-
bilities as will be discussed in the next section.

The accuracy of this strain gauge technique is rather
poor due to the unknown perfection of the gauge-to-
crystal bond. Using Duco cement the fluosilicate
measurements are reproducible to within 59%,. It is
important to cure the bonds at 100°C or higher for
several days in order to remove all possible solvent
from the cement; otherwise hysteresis is observed
upon cycling pressure or temperature. It is probably
wisest to consider the measured dimension changes as
lower limits since bond slippage is certainly the major
source of error.

Large single crystals of nickel fluosilicate may easily
be grown from water solution by slow evaporation.
However, crystals grown at room temperature usually
contain pockets of the mother liquor and show a “shell”
structure indicative of periodic variations in the rate
of deposition on the seed probably due to temperature
fluctuations. Unsuccessful attempts were made to grow
better samples at a higher, regulated temperature
(~45°C) while slowly moving the seed crystal in the
mother liquor. Homogeneous, unstrained crystals were
finally obtained by evaporation of the solution in a
refrigerator at ~5°C using material obtained from the
City Chemical Corporation, New York City.

For the hydrostatic pressure PMR experiments
fluosilicate crystals were prepared in the form of tori
(0.25 in. 0.D.X0.10 in. I.D.X0.10 in. thickness) by
dissolving away the unwanted material. The trigonal
axis lay in the plane of the torus. The uniaxial stress
samples had to be carefully prepared as homogeneous
strain was desired. Disks (0.20 in. 0.D.X0.07 in.
thickness) with the trigonal axis perpendicular to the
plane of the disk were initially shaped by the dissolution
technique and the final few thousandths of an inch
were removed on a milling machine using a very sharp
tool. To ensure homogeneous deformation care was
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F16. 3. Temperature dependence of the crystalline
field splitting at atmospheric pressure,
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taken to have the faces of the disks parallel and the
sides accurately perpendicular to the faces. These
samples were coated with silicone grease before inserting
in the microwave cavity in order to permit free radial
expansion as the uniaxial loading increased. Despite
these precautions compressive stresses greater than
150 kg/cm? invariably resulted in fracture of the
samples.

IV. EXPERIMENTAL RESULTS
A. Paramagnetic Resonance

The temperature dependence of D measured by
Penrose and Stevens® and Meyer® is shown in Fig. 3.
We have checked the slope of this curve near room
temperature and find (D/0T)p=—19.5X10~* cm™1/°C
in good agreement with the earlier results.

The hydrostatic pressure experiments were performed
with the applied field along the trigonal axis of the
crystal. In this case the eigenvalues of the spin-
Hamiltonian, Eq. (1), diverge linearly and may be
accurately labeled by S.=1, 0 and —1: W.,=D/3
+gB8H, Wo=—2D/3. Two allowed magnetic dipole
transitions (AS,==1), observed at constant frequency,
occur at Hy=— (D+hv)/g8 and H:= (hv—D)/gB for
D < —hv as is the case at room temperature and pressure.
This situation is illustrated in Fig. 4.

When pressure is applied the resonance lines move
about in magnetic field as schematically indicated in
Fig. 5, where both the line centers and peak derivative
points are shown. The actual data are complicated by
a shift of the microwave cavity frequency to lower
frequencies as pressure is increased due to increased

ENERGY z
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Fic. 4. Energy level diagram and derivative of the absorption

spectrum of Ni** in the fluosilicate when the field is applied
parallel to the trigonal axis and D<—}h».
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F1G. 5. Pressure dependence of line centers and peak derivative
points corrected to constant microwave frequency (»=9000
Mc/sec). Broken lines indicate regions of excessive overlap of the
two resonances.

dielectric filling of the cavity. This shift amounts to
800 Mc over a range of 10 000 kg/cm? when a Teflon
cavity filler piece is used.® In Fig. 5 the data have been
corrected to a constant frequency of 9000 Mc for clarity.

The strong pressure dependence of the crystalline
field splitting, D, is shown in Fig. 6. Since D varies
over a range of more than 2/» and the absorption lines
are 1000 gauss or more from peak to peak it is necessary
to compute D in different ways at different pressures.
Below 1000 kg/cm? the two transitions (1-—0),
centered at H,, and (0—1), centered at H,, are
clearly resolved whence D and g may both be calculated.
When the magnitude of the splitting becomes approxi-
mately equal to the microwave quantum, as occurs for
pressures around 2650 kg/cm? only the higher field

D(cm™")
0'4 T T T T T T T T T

0.2}

~-06 L 1 1 1 1 ! 1 1 1
o 2 4 6, .8 10
PRESSURE (kg/cm®x10™°)

Fi1cG. 6. Pressure dependence of the crystalline field splitting.
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F16. 7. Pressure dependence of peak-to-peak line widths.

transition, centered at H,, is unambiguously defined.
The low field line, H,, which corresponds to the transi-

tion (1—0) at lower pressures now becomes mixed

with the (—1—0) transition. Thus when D=—#hv
we see one resonance line centered at zero field which
has twice the intensity of the high field resonance. For
higher pressure, i.e., D> —hv, the low field line again
becomes ill defined as the (1—0) transition is sup-
pressed and the (—1-—0) transition moves to higher
field values. Since g does not vary appreciably with
presssure the average value 2.30% is used to calculate
D from the values of H, in this pressure range where
D~ —hv. A check is provided when D= —h» as then
the apparent half-width, AH,/2, of the double intensity,
zero field line, H, passes through a minimum indicating
that the two transitions (1 —0) and (—1—0) are
exactly superposed. As the pressure is raised above
2650 kg/cm? the high field line, H,, continues to move
to lower field values whereas the low field line, Hj,
which is now the (—1— 0) transition, moves to higher
fields. Near 4000 kg/cm? the two resonance lines over-
lap to such an extent that no data may be taken. Near
6200 kg/cm? one composite line is observed whose
width, AH4,, passes through a minimum corresponding
to exact superposition of the (0—1) and (—1—0)
transitions, i.e., D=0. At still higher pressures the two
lines separate again, H; moving to higher fields and H,
to lower fields. Since the lines now have almost twice
their original widths it is only as D - kv near 9750
kg/cm? that H; becomes sufficiently resolved to permit
calculation of D, assuming g to be constant as before.
Again a consistency check is provided when D=/ as
then the half-width, AH,'/2, of the low field resonance
H; [now of double intensity since the (0— 1) and
(0— —1) transitions are superposed at zero field]
passes through a minimum. The resultant plot of D
versus pressure, Iig. 6, shows that these various deter-

21 Tn an earlier communication® a constant g-value of 2.344-0.02
was quoted. Additional data indicate that g=2.3040.04 is a
more trustworthy value. The pressure dependence of D is essenti-
ally unchanged by this small revision of g.
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minations are consistent. The slope of the straight line
is (0D/9P)r=0.834X10~* cm™/kg/cm?.

The various line width data (peak-to-peak derivative)
are plotted in Fig. 7. Only the minima of AHy', AHys,
and AH,' are meaningful as is evident from Fig. 5 and
the preceding description. The solid curve drawn in
Fig. 7is considered to adequately represent the available
data save for the initial values of AH; which are about
209, less than the values of AH, in this range. The
minimum in AH{, however, agrees very well with AH,
at the same pressure.

The uniaxial compression data were taken with the
magnetic field applied perpendicular to the crystal’s
symmetry axis due to practical geometrical considera-
tions. In this orientation the eigenvalues of the spin
Hamiltonian are not linear functions of H but are
given by Wy,=—D/64[D?/4+ (gBH)* ]}, We=D/3.
Only one transition is observable with #r~0.3 cm™! at
room temperature: Hs=/hv(1—D/hv)}/gB. Since the
cavity frequency changes by only 3 Mc/sec out of
9247 Mc/sec in the course of this experiment the
variation of H; directly measures the stress dependence
of D. Figure 8 shows the dependence of Hs on sample
loading, U, (mass/sample face area). The resultant
slope of D wersus U is (0D/oU)r=—1.66X10"*
cm~Y/kg/cm?.

Each point of Fig. 8 is the average of five slow
magnetic field sweeps through the line in both directions.
The resultant line center is defined to within 10 gauss
despite the peak-to-peak line width of 840 gauss in this
orientation. It is necessary to monitor the temperature
carefully in the course of this experiment as (0H3/97)p
~14 gauss/°C, which is quite appreciable when the
total shift is only 60 gauss and data are taken over
several hours.

4780 T T /
4760 E

47401 E

4720t -

LINE CENTER POSITION (gauss) vy =9247 Mc.

47 L L
°% 50 100 150

UNIAXIAL STRESS PARALLEL SYMMETRY AXIS (kg/cm?)

Fi1c. 8. Uniaxial compressive stress dependence of the resonance
line center with the magnetic field perpendicular to the trigonal
axis.
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TaBLE L. Results of paramagnetic resonance and strain measurements.

At T=25°C and P =1 kg/cm? D= —0.52 cm™ and g =2.30

Observed

Deduced

(a) Temperature dependence (0-25°C)

d Inlyy
(—-——) =0.50X10" (°C)!
P

T
9 Inly
( ) =—0.095X107* (°C)1
oT /p
oD
(—-—— =—19.5X10"* cm™1/°C
oT

(b) Hydrostatic pressure dependence (I'=25°C)

9 ].nlu
( =—0.90X107¢ (kg/cm?2)™1
P

a T
a3 hll_[
— =—2.2X10"¢ (kg/cm?)~1
P Jr
7

;)
()

(¢) Uniaxial stress dependence (T'=25°C)

=0.834X107* cm™1/ (kg/cm?)

aJ lnlu
=—2.0X10"¢ (kg/cm?)712
U Jr
9 1Inly
( ) =0.55X10"¢ (kg/cn?)12
au Jr
D
(——) =—1.66X10"* cm™/(kg/cm?)
U

(d) Explicit dependences on temperature, volume,
and shape evaluated at 7=25°C, P=1kg/cm?

9 InV
( ) =0.31X10"4 (°C)™*
oT /p

d lne
( ) =0.60X 10~ (°C)!
aT /r

o InV
<——-—) =—5.3X10"¢ (kg/cm?)™!
oP Jr

9 Ine
(———) =1.3X107¢ (kg/cm?)!
AP Jy

o InV
( ) =—0.90X10"¢ (kg/cm?)™!
oU /r

9 Ino
(—————) =—2.5X10"% (kg/cm?)"!
T

oD
(- = — (58=:5)X 10~ cm™1/°C
V,o

T
d1nD
( =—0.3%2
olnV/.r
dInD
=—125+10
dlne Jv,r

s Estimated values

It is believed that the strain produced in this experi-
ment was truly elastic as the value of D measured upon
removal of the maximum stress agreed with the initially
unstrained value within the experimental error. The
degree of homogeneity may be only crudely inferred
from the absence of any measurable line-broadening in
the course of the experiment. Fracture of samples for
U>150 kg/cm? is clear evidence that the strain must
be inhomogeneous though the low shear strength of
this material implies that the degree of inhomogeneity
may be quite small even at fracture.

B. Linear Strain Measurements

Using the strain gauge technique described in Sec. I1I
it is relatively easy to measure linear strains parallel
and perpendicular to the trigonal axis as a function of
hydrostatic pressure or temperature changes. Thermal
strain data were taken in the range 0° to 50°C at
atmospheric pressure. Hydrostatic compressibilities
were measured from 1 to 1500 kg/cm? at room tempera-
ture. The numerical results are given in Table I. A
high degree of anisotropy is found, particularly in the
thermal distortion of the crystal: upon heating it
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expands along the trigonal axis and contracts perpendicu-
lar to it.

As mentioned earlier we were unable to obtain
trustworthy experimental values for the strains pro-
duced by uniaxial compression. In order to proceed
with the thermodynamic analysis of the PMR data an
“educated guess” was based on elasticity considerations.
Using the condensed notation 1=uxx, 2=yy, 3=zz
4=yz, S5=zx, and 6=xy, the elastic constant matrix
for a trigonal crystal without a plane of reflection
symmetry perpendicular to the threefold (z) axis is
given by?

I S11 S12 S13 S14 — 325 0
S12 S11 $13 —S14 S25 0
Si= S13 S13 533 0 0 0 . (8)
S14 —Sua 0 S44 0 §25
— 325 S25 0 0 S44 S14

0 0 0 s25  su 3(sun—s1)

When hydrostatic pressure, P, is applied, the stress
components are X;=X,=X;3;=—P, X4=X;=X¢=0.
The resultant nonvanishing strains are x;=xs=— (511
+s12+513)P and x3= — (s33+2513) P. Normalizing to
unit pressure we have

9 Inl,,
( ) = — (s33+2s13), 9
oP /»

d Inll
) = — (511+512+313)- (10)
T

aP

When uniaxial compressive stress, U, is applied along
the trigonal axis X3=—U, X1=X,=X,=X;=X=0,
assuming the sample is free to expand in the xy plane.
The strains are x1=xs= —s13U and x3= —s33U or

i) Inl“
= —3833, (11)
oUu /r
alnlj_
= —3513. (12)
ou /r

Experimentally we have evaluated (9) and (10):
(s3342513)=0.90X10~%(kg/cm?)~ and (sy+s10-+513)
=2.2X10-%(kg/cm?)". These are insufficient to deter-
mine s;3 and s33 but allow reasonable estimates to be
made: s;3>~—0.55X108(kg/cm?)~! and s533~~2.0X10~¢
(kg/cm?).

The various deduced values of the geometrical and
explicit temperature derivatives of the crystalline field
splitting based on Egs. (2), (3), and (4) are given in
Table I. Of the two geometrical parameters the unit
cell shape is by far the most important: (8 InD/d Ino)y, 7
= —1254-10, whereas the volume dependence is zero
within experimental error: (d InD/d InV), r=—0.342.

2W. A. Wooster, A Texthook on Crystal Physics (Cambridge
University Press, Cambridge, 1938).
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The most striking conclusion is that D depends even
more strongly on temperature after geometrical
corrections are made: (dD/97T)y,,=— (58+5)X10~*
cm™/°C as opposed to (dD/9T)p=—19.5X10~*
cm™!/°C. The factor of 3 difference is due to the
shape-dependent contribution to the variation of D
caused by temperature change at constant pressure.
It is £ as large as the explicit temperature dependence
and of opposite sign.

V. DISCUSSION OF RESULTS
A. Isothermal Geometrical Effects

As indicated in Egs. (6) and (7), the measured
derivatives of D with respect to volume and shape of
the unit cell, (0D/8V),,r and (dD/ds)v, r, depend not
only on V and ¢ but also on the internal degrees of
freedom and the geometrical dependence of the lattice
vibrations. Though the latter point is not a priori
negligible (the strong explicit temperature dependence
of D would, in fact, lead to the opposite conclusion) it
must be ignored due to insufficient data.?

The six internal coordinates, Xj---Xs, are the
“volumes” and ‘“‘shapes” of the (Ni-6Hy0)*t and
(SiF¢)*~ octahedra and their azimuthal orientations
relative to the unit rhombohedron. For simplicity an
idealized, ionic model of the (Ni-6H»0)** complex
alone will be used as a basis for discussing the experi-
mental results.

The positions of the six water molecules relative to
the Ni** ion may be defined by the radial distance, d,
and the polar angle, «, made by the radius vectors with
the trigonal axis as sketched in Fig. 9. The electrostatic
potential, ®(r), seen by the nickel ions is considered to
be produced by the electric dipole moments, u; of
chese water molecules. Assuming that the d-orbitals of
the ion do not overlap with the nearest-neighbor
oxygen atoms the potential,

6 p(r—d;)-d,/d;

‘b(r)=}:—-—-———-—( )-dy , (13)
=1 [r—d;]?

may be expanded in spherical harmonics, ¥,”(0,¢).
Only terms with #=2 or 4 need be retained when
operating on d orbitals'® and only terms with m=0, 43
are allowed due to the threefold rotational symmetry
of the structure. The reduced expansion is usually
written in the form

' (1)=Q[(10)} (V= V) — (V0 ]+aV 2+ bV S,
(14)

where the terms in ¢ and & drop out in purely cubic
symmetry.
The perturbation of the ®F ground state of Ni?+ by
the potential (14) plus the spin-orbit interaction,
% In principle, at least, measurements of D as a function of

geometry over a wide range of temperature would permit evalua-
tion of such a dependence (see reference 1 for examples).
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F16. 9. Idealized model of an ion surrounded by six electric
dipoles forming an octahedron “stretched” along the trigonal
axis (a<54°44").

AL-S, has been treated in detail by Becquerel and
Opechowski'” and extended by Penrose and Stevens.®
It is assumed that the cubic crystalline field is the
dominant perturbation, i.e., 0>>a,b,A. In the process
of evaluating matrix elements the parameters Q, @, and
b are averaged over the radial part, f(r), of the 3d
wave function and new parameters Q, @, and b are

defined :
_ e /7 %<7A>Av
0--=(-) e, (150)
14\ » 7
LI 8 (15b)
14(57)% #?
4
PR L. (15¢)
14(x)} #

where (r*)n={(f|7"|f). Evaluating these parameters for
the potential due to the six water dipoles arranged as
shown in Fig. 9 we find

_ 5 ('
Q=—-ep sin®a cosa, (16a)
V2 db
9 <7'2>Av
a=——eu (1—3 cos?a), (16b)
35 at
o5 (O
b=—eu (35 cos*e— 30 cos’a+3

28 df

+7V2 sin®a cosar).  (16¢)
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Since the trigonal distortion of the water octahedron is
small it is convenient to expand these expressions to
first order in (a—ao) where ap=>54°44" is the polar
angle for the regular configuration

_ 5 (a—ao)
Q~—eu: [1 ], 17a
9 gt V2 (172)
18V2  (r)
any ———eu (@—ayg), (17b)
4t
_15V2 (M
b~——eu a—ag). (17¢)
14 ds

The expressions for the spin-Hamiltonian parameters

taken to first order in @ and b from the papers of
Becquerel and Opechowski!” and Penrose and Stevens®

are _
4N 3a—b
g"=g°[1*1‘55 R )]’ (18)
AN a—2b
gi:g"[l'ﬁ " )] 19)
e aw ,
= et . (20)

Due to lack of resolution we were unable to measure
the anisotropic part of the deviation of the g-tensor
from the free electron value, go=2.0023, but may at
least specify the isotropic part:

4Ngo (21)
Ag=g—go=——7=0.30. 21
" 150

The free-ion value of the spin-orbit coupling constant
for Ni2* is A=335 cm! 2 which implies @ ~600 cm.
However, direct optical measurements of the cubic
field splittings of Ni?* in MgO'® and other data'®
indicate that X is closer to —250 cm™ in ionic crystals.?
The cubic electric field parameter, @, is, therefore,
likely to be ~430 cm™.

To calculate @, @, and b numerical values of (r?)s
and (r*)p are required. Using the Hartree-Fock radial
3d wave function computed for Cut by Hartree and
Hartree?® these numbers have been estimated to be

(PIW0.36X 1018 cm?,
{r*)w>20.38 1032 cm*.

Since the ionic radius of Cut is 0.97 A and that of Ni?t
is only 0.70 A these values of (%) and (*)s are too

24 0. Laporte, Z. Physik 47, 761 (1928).
% The cubic field parameter Dg used by Low!® and others is
3Q/2 in our notation which is that of Becquerel and Opechowski.}
26 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).
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large, as is the ratio (*)a/{*)n. The numerical value
of the water molecule electric dipole moment is found
to be

u=4.0X10718 esu,

by a calculation similar to that described by Polder?
in connection with the energy levels of Cu*" in
CuSO4-5H,0. Using these values of () and u and
taking a=a9 and d=2 A" Eq. (17a) yields .

Q=320 cm™.

The 309, discrepancy between our estimate and the
probable experimental value does not seem unreasonable
since we have neglected the contributions to ¢ from
the rest of the lattice. We have also ignored the possible
effects of lattice vibrations on @ as Ag does not appear
to be appreciably temperature dependent.®

Combining Egs. (17), (20), and (21) the expression
for the crystalline field splitting may be written

V2 (5 <74>Av_§ (M

D="—en(ag( >
60 Ve s @

)(a—ao). (22)

Substituting the appropriate numerical values Eq. (22)
yields
D= —50.4(a—ag) cm™.

The room temperature value, D=—0.52 cm™, implies
(e—a0)=0.6° which is considerably less than the
deviation from cubic symmetry to.be expected if the
polar angle, a, characteristic of the water octahedron,
were to be identical with the polar angle, 8, made by a
rhombohedral axis with the trigonal axis. The rhombo-
hedral angle of nickel fluosilicate is '~96°, which leads
to 8~~59° or (B—ao)~4°. It is, however, probable that
the water octahedron is indeed more regular than is
the over-all unit cell.® It is even possible that the
water octahedron is exactly regular and that the
trigonal component of the crystalline field results
entirely from the distorted cube of (SiFg)*~ groups
which are the next-nearest neighbors of the nickel ion.
Unfortunately the calculation becomes very unwieldy
if the model is extended to include the entire unit cell.
It should also be noted that lattice vibrations do affect
D strongly so that the static model cannot be expected
to give more than the correct order of magnitude at
best.

Despite the apparent limitations it is interesting to
estimate the sensitivity of the splitting to volume and
shape changes of the simple octahedral model. The
volume dependence is not precisely determined since
@ and b both contribute significantly to D, yet vary as
d—* and d-S, respectively. (The term in b is usually
neglected in calculations of this sort!7-2%% for a variety
of reasons which do not appear to be valid.) Since,

27D, Polder, Physica 9, 709 (1942).
281, J. F. Broer, Physica 9, 547 (1942).
2 P, R. Weiss, Phys. Rev. 73, 470 (1948).
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however, G~—4b Egs. (17) and (20) imply that

dInD 8
(o). %
d ll'lD o, T 3
The observed value, (8 InD/d InV)4,7p= —0.324=2, is not
excessively inconsistent with 4-8/3 if we consider that
the water octahedron may be less compressible than
the unit cell whose deformation is observed.

It might at first appear surprising that the magnitude
of D should be expected to increase as volume increases
since this weakens the trigonal electric field component.
However, the cubic field strength, @, also decreases,
thus making the electronic charge cloud more polariza-
ble. It is the latter effect which should dominate.

The shape parameter, ¢, may be expressed in terms
of the polar angle, a, normalized to unity for e=a, and
expanded to first order in (a—ayp):

(23)

o~1——(a—ag).

Combining Egs. (22) and (23) the logarithmic shape
derivative may be written

dlnD ¢

= . (24)
dlnec o—1

Volume is not conserved as « alone is varied but, since
the volume dependence of the splitting is weak, the
distinction between dInD/d Ins and (9 InD/d Ino)y, 1
may be ignored. Experimentally we found (9 InD/
9 Ino)y, 7= —12524-10 which implies (a—ao)=0.2° using
Eqgs. (23) and (24). This appears to be in reasonable
agreement with the value (@—ao)=0.6° inferred from
the magnitude of D. Unfortunately the agreement is
probably illusory as we measure external shape changes
of the unit cell whereas our model deals only with
internal changes which are not likely to be as large
since (@a—ay) is evidently much smaller than (8—g8,).
It is now quite clear that experiments of this type are
difficult to interpret quantitatively unless the crystal
structure is sufficiently simple that measurements of
compressibility, etc., specify the positions of all atoms
in the unit cell as a function of the experimental
environment.

B. The Explicit Temperature Dependence

One of the more interesting experimental conclusions
is that the temperature dependence of the crystalline
field splitting is not solely due to thermally induced
changes of the average unit cell geometry. The measured
explicit temperature dependence, (8D/31")v,o, as shown
in Eq. (5), arises from vibrations of the sources of the
crystalline field and, perhaps, to changes in the average
internal geometry of the unit cell which we must
ignore due to lack of relevant information.
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The ionic model of the (Ni-6H;0)** octahedron
could be extended to include dynamic effects by
calculating the normal modes of the system as has
been done by Van Vleck in treating the Jahn-Teller
problem® and spin-lattice relaxation.® A somewhat
less detailed approach has been used in analyzing the
temperature variations of nuclear quadrupole resonance
frequencies.®3! Tt essentially consists in expanding
the time dependence of the variable of interest in terms
of the (usually unknown) normal modes of vibration of
lattice, £;=¢° cos2wyit. Thus the crystalline field
splitting is written as

D(1) =D0(1+Z Ai&-l*z; Bigigit---).  (25)

The parameter, Do, is the splitting in the absence of al
vibrations, i.e., Dy is the splitting predicted by a truly
static model. The coupling constants, 4; and By;, as
well as the £° and »; depend on sample geometry in
principle. If it may be assumed that the important
vibration frequencies, »;, are greater than the observa-
tion frequency, vo,s~10% cps, then the observed value
of D will be a simple time average of (25):

Bii 'i02
DobszDO(l_*'Z 2 ) (26)

The assumption, »>vqs, appears to be reasonable as
the line width of the undiluted nickel fluosilicate is
not markedly temperature-dependent® and the most
important modes are likely to be vibrations within the
(Ni-6H,0)*" groups. Experimental data on such
complexes in solution indicate characteristic frequencies
vi~108 cps.

The lattice temperature is explicitly introduced by

equating the energy of a normal mode to that of a
Planck oscillator of the same frequency:

1
0, )2 — o E—
2(7!‘21 Vw) hv"(2+ehu5/k1‘_1)’
which leads to

(27)

Biq: 1
()] oo
Vi ehvl‘/kT__ 1

This dependence on T qualitatively resembles that
shown in Fig. 3. These data were taken at atmospheric
pressure, however, and include not only the explicit
temperature effect but also the temperature-dependent
geometrical effects. The distinction is an important
one in this case as (D/dT)y,,~3(dD/oT)p.

% J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939).

3 J. H. Van Vleck, Phys. Rev. 57, 426 (1940).

3 H. Bayer, Z. Physik 130, 227 (1951).

3 T. Kushida, J. Sci. Hiroshima University, A19, 327 (1955).

3 Preliminary experiments indicate anomalously large, tem-
perature dependent line widths in the dilute (Ni,Zn) fluosilicate,
however, so that the possibility of lower frequency vibrations
(vi~wobs) cannot be ruled out.

35 R. Lafont, Compt. rend. 244, 1481 (1957).
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Since the D wersus T at constant pressure curve is
fairly linear near room temperature, (28) may be
approximated on the assumption that Av,<kT or
»;<10® cps at room temperature:

1 1
H— a1 (29)
e—1 «
Equation (28), taken only to the linear term in T,
becomes

D~D,(1+BT), (30)
where
i (31)
B=— . 31
472 i V¢2
To evaluate B we use the logarithmic derivative
79 InD B
( ~ . (32)
aT /Jv,, 14BT

The experimental value (9 InD/8T)=(112410)X 10~
(°C)~! implies Bo~—47X10~* (°C)™, Dy=~1.2 cm™.

The positive sign of Dy is most surprising as the static
model predicted Dy<0 for the “squashed” cubic con-
figuration which is known to exist in the fluosilicate.
Equation (30) implies that D is observed to be negative
only because the lattice vibration contribution to D is
opposite in sign and larger in magnitude than the
static geometrical contribution.

In view of this dilemma a closer examination of the
temperature law (28) is desirable. The method has
been successfully used to explain the relatively weak
temperature dependences observed in nuclear quadru-
pole resonance. It is usually found that the coupling
constants, Bj;;, which have the dimensions (mass
Xdistance?)™!, may be directly related to the inverse
of the moments of inertia of a few torsional vibration
modes involving atoms neighboring the observed
nuclei.! We may analogously consider the moment of
inertia, 7, of a water molecule performing a torsional
oscillation relative to the Ni?* ion:

I=Mny0d*~1.2X107% gm cm?.

While the infrared experiments indicate vibration
frequencies »;~10% cps in solution the linear behavior
of D versus T at room temperature implies »<<10® cps.
If #» modes of frequency »;~10' cps are effective and
By=I" then Eq. (31) yields B~3X10~% whereas
the experimental number is ~5X1073. The required
number of modes, #~16, is not unreasonable since
there are twelve degrees of torsional freedom available
within the octahedron.

The relatively low vibration frequency also brings
to mind the characteristic relaxation time, 7, of water
molecules in the liquid (7~10~" sec).?® The extreme

36 Collie, Hasted, and Ritson, Proc. Phys. Soc. (London) 60,
145 (1948).
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dielectric loss of hydrated crystals at microwave
frequencies may indicate that “reorientation” of water
molecules also occurs to some extent in the solid state.
However, we were unable to find any evidence for
motional narrowing®” of the proton nuclear magnetic
resonance in nickel fluosilicate at room temperature.

Another possible mode of effective, low-frequency vi-
brations might be hindered rotation of the (Ni-6H,0)**
complex as a whole within the unit rhombohedron.
Such a highly correlated motion seems unlikely but
might be potent as the relative orientations of the cubic
crystalline field components due to the octahedron and
the rhombohedron would be modulated. In general a
superposition of two or more cubic fields gives rise to
a cubic and an axial component lying along the axis of
relative rotation. In the trigonal fluosilicate the net
axial field due to this mechanism would be along the
trigonal axis.

Many other conjectures as to the origin of the strong
explicit temperature dependence of D may be made
but a mechanism particular to this specific salt appears
to be required in that the rapid variation is not a general
property of hydrated, paramagnetic crystals.®® It seems
likely that x-ray analysis of the highly anisotropic
thermal expansion would provide a starting point for
such a detailed study.

C. Line Width Variation

The rapid, nonlinear increase of the peak-to-peak
line width, AH, with hydrostatic pressure is shown in
Fig. 7. Since magnetic dipole-dipole broadening
depends on interspin distance to the inverse third
power a linear increase of AH of about 5%, to 10 000
kg/cm? would be expected due to volume reduction.
It is not surprising, however, that this mechanism
proves inadequate as previous investigations have
shown exchange interactions to outweigh the dipolar
mechanism in this salt.

While analyzing the low temperature magnetic
susceptibility and specific heat measurements of Benzie
and Cook,* Ollom and Van Vleck! were led to suggest
that both isotropic and anisotropic or pseudo-dipolar
exchange mechanisms®# are present. The magnetic
specific heat is attributed to (1) magnetic dipole inter-
actions which may be computed knowing the interspin
distance and the g-value; (2) the crystalline field
splitting determined from PMR measurements; (3)
isotropic exchange which may be determined from the
susceptibility and magneto-optical rotation data®; and
(4) anistropic exchange. When the first three contribu-

37 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

38 K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304
(1955).

#® R, J. Benzie and A. W. Cooke, Proc. Phys. Soc. (London)
A63, 213 (1950).

# J, H, Van Vleck, Phys. Rev. 52, 1178 (1937).

4 One could also consider dipole-quadrupole and quadrupole-
qudrupole interactions as Ni** has S=1.

2 J Becquerel and J. Van den Handel, Physica 6, 1034 (1939).
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tions are evaluated as indicated above and subtracted
from the total magnetic specific heat the residual
contribution, presumably due to anisotropic exchange,
is found to be comparable to that due to isotropic
exchange. Though this relative magnitude is quite
implausible from the theoretical viewpoint® it is
qualitatively confirmed by the following considerations.

Ishiguro, Kambe, and Usui? and Ollom* have
approximately analyzed the second moments of the
resonance curves published by Holden, Kittel, and
Yager,” assuming only isotropic exchange and normal
magnetic dipole interactions to be effective. The
deduced values of the exchange constant are roughly
509, larger than those calculated from the susceptibility
and magneto-optical rotation experiments. If the
anisotropic exchange mechanism were to be included,
this descrepancy should be considerably reduced.

Our line width versus pressure data also indicate that
isotropic exchange cannot be the dominant source of
line width. If this were the case we should observe
pronounced exchange narrowing® at 6200 kg/cm?
where the splitting goes to zero since exchange would
then occur between equivalent nickel spins. A careful
search in this pressure region revealed no line width as
narrow as those observed at lower pressures. This is
compatible with the presence of comparable amounts
of isotropic and anisotropic exchange since as D goes
to zero the isotropic mechanism will tend to narrow
the lines whereas the broadening due to anisotropic
exchange will be enhanced as the precession frequencies
of all spins become equal.* The monotonic pressure
dependence of AH implies that neither of these effects
clearly dominates, which agrees with the original
conclusions of Ollom and Van Vleck.

The very nonlinear character of the pressure depend-
ence is reasonable in that both exchange interactions
may be expected to vary almost exponentially with
interionic distance. Since the nickel ions are well
separated in the fluosilicate lattice the exchange path
must involve intervening orbitals.®> This appears to be
consistent with the reduced spin-orbit coupling parame-
ter of Ni?t in the solid state which results if the magnetic
electrons spend an appreciable part of the time on the
nominally diamagnetic ions due to partially covalent
bonding.#6:47

CONCLUSIONS

By combining the results of paramagnetic resonance
and crystal strain measurements as a function of
hydrostatic pressure, uniaxial stress and temperature,
it has been possible to determine the geometrical and
explicit thermal dependences of the crystalline field
splitting in nickel fluosilicate. There is some ambiguity
in the interpretation due to the possibility of non-

4 J, F. Ollom, thesis, Harvard University, 1952 (unpublished).
4 J, H. Van Vleck, Phys. Rev. 74, 1168 (1948).

45 P. W. Anderson, Phys. Rev. 79, 350 (1950).

46 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 (1953).
477, Owen, Proc. Roy. Soc. A227, 183 (1955).
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homogeneous deformation within the unit cell which
cannot be measured by the strain gauge technique.
While the analysis based on a rigid ionic model of the
(Ni-6H0)** complex gives rough agreement between
the magnitude and isothermal geometrical dependence
of the splitting this static model should not be taken
too seriously since the explicit temperature dependence
indicates that the splitting is primarily determined by
thermal vibrations. The magnitude of the explicit
temperature dependence is consistent with torsional
vibrations of the nearest-neighbor water molecules at
a frequency close to 10 cps. Since the elastic and
thermal properties of this material are markedly
anisotropic a more detailed analysis based on a dynamic
model of the entire unit cell appears to be required if
the splitting variations are to be understood in detail.

The monotonic, nonlinear variation of the PMR line
widths with hydrostatic pressure provides qualitative
evidence for the presence of appreciable indirect ex-
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change coupling between the nickel spins in the fluo-
silicate. It appears that both isotropic and anisotropic
exchange mechanisms make comparable contributions
to the line widths. Though theoretically implausible
this is consistent with earlier conclusions drawn from a
variety of experimental data.
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The pressure dependences of the spin-Hamiltonian parameters
of trivalent chromjum in ammonium aluminum alum and po-
tassium cobalticyanide have been measured up to 10 000 kg/cm?
near room temperature. In the case of the alum, runs have been
made at 0, 24 and 50°C. The g-value remains unchanged while
the crystalline field splitting, 8, increases by ~30%, (9é/0P)r
decreasing with rising temperature and pressure.

Using an empirically determined equation of state the crystalline
field splitting variations are converted to isothermal volume and
explicit temperature dependences. These are discussed in terms
of static and dynamic crystalline fields but are not satisfactorily

I. INTRODUCTION

N order to distinguish between geometrical and
explicit thermal contributions to the average
crystalline electric field seen by paramagnetic ions it is
necessary to measure the spin-Hamiltonian parameters
over an appreciable range of stress and temperature.
These results must then be combined with the equation
of state of the particular crystal. In the preceding paper

* Supported by a Joint Services contract.

1 Based on part of a thesis presented to the Department of
Physics, Harvard University, May, 1958, in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

T General Electric Company Predoctoral Fellow (1956-1958).

§ Note added in proof.—In the original abstract of this paper
[Phys. Rev. Letters 2, 519 (1959)] the thermal expansion coeffi-
cient of ammonium aluminum alum was reported to be negative.
This anomalous result is incorrect. The author is indebted to Dr.
G. Burns of the IBM Research Center for bringing this error to
his attention and for providing a reference to the thermal expan-
sion of several alums.

explained. This failure is attributed to inhomogeneous internal
deformation of the unit cell as a function of stress and temperature.

A room temperature run on the covalent chromicyanide shows
the g-value as well as the principal splitting parameter, D, to be
nonmonotonic functions of pressure. The rhombic splitting
parameter, E, increases quadratically with pressure. Since no
attempt was made to determine the crystalline equation of state
the resonance data are only qualitatively discussed. It is difficult
to reconcile the results with the equivalent crystalline field model
of the chromicyanide complex.

we have reported the results of such an analysis of the
crystalline field splitting of the paramagnetic resonance
(PMR) spectrum of divalent nickel in the concentrated
fluosilicate. Due to the trigonal symmetry of that crystal
it was necessary to determine the effect of both volume
and shape changes of the unit cell. In an effort to reduce
the complexity of the problem we have examined the
PMR spectrum of trivalent chromium in the cubic
crystal, ammonium chromium alum diluted with
diamagnetic ammonium aluminum alum, as a function
of hydrostatic pressure and temperature.

In both the fluosilicate and the alum the magnetic
ion is considered to form a primarily ionic complex
with the six nearest-neighbor water molecules. It was,
therefore, thought to be of interest to examine the
covalent complex [Cr(CN)¢}~ in potassium chromi-
cyanide diluted with diamagnetic potassium cobalti-
cyanide.



