
a ~ ~ I ~ i

Q4 joorssal of eeperimeotal and theoretical physics established by E I.. Nichols its 1899

SECOND SERIES, VOL. 1 14, No. 6 JUNE 15, 1959

Possible Superfiuidity of a System of Strongly Interacting Fermions*)

L. N. COOPER, t R. L. MILLS, AND A. M. SESSLER
The Ohio State University, Columbus, Ohio

(Received January 30, 1959)

The possible superfluidity of a system of strongly interacting fermions is investigated on the assumption
that an adequate description of the system in its "normal" state is given by independent fermions in a
momentum-dependent potential. On the basis of this assumption we have investigated whether a correlated
wave function of the form used by Bardeen, Cooper, and Schrieffer minimizes the ground-state energy.
The nonzero terms in the expectation value of the Hamiltonian contain the modi6ed kinetic energy and
the full two-body potential between the fermion pairs. An integral equation is obtained in conhguration
space for the correlation function between pairs. This integral equation is meaningful even for potentials
with hard cores, and a nonzero solution implies the existence of a superQuid state. A variational method is
devised which provides a criterion for super6uidity and a lower bound for the transition temperature into
the superfiuid state. We 6nd that a repulsive hard core does not in principle forbid the existence of a super-
fiuid state, but whereas in the absence of a hard core an attractive two-body potential always leads to a
superfiuid state at su%ciently low temperatures, in the presence of a repulsive core there appears to be a
critical strength of attraction needed to form a superQuid state. When the variational principle is applied to
liquid He' or to nuclear matter, it is found for a wide class of trial functions that the system does not become
a superfiuid.

I. INTRODUCTION

HE fact that a system of fermions can become a
superQuid is demonstrated by the observed be-

havior of the electron gas in many metals at low tem-
peratures. It seems natural then to inquire whether or
not other systems of fermions might display similar
properties, and what the criterion for such behavior
would be. This question is of particular interest because
of recent conjectures' that nuclear matter might be
superQuid in the sense that for an infinite medium there
would be an energy gap between the ground state and
the lowest single particle excitations. It has been further
conjectured that this might show up for a finite nucleus
as the explanation for the abnormally large single-
particle excitation energy of even-even nuclei, Whether
or not He', the other well-known Fermi Quid, has a
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superQuid phase at low temperatures has been a matter
of concern since the discovery of the X transition in He4
and I.ondon's conjecture' that Bose statistics are crucial
to the formation of the superQuid phase.

We have attempted to treat this question by taking
over to an arbitrary system of fermions what appears
to have worked very well for the electron gas. There
the introduction of pair correlations into the wave
function and the approximation that only pairs of given
total spin and total momentum are strongly correlated
was sufhcient to account for the observed properties of
the super conducting phase. In making this same
assumption for an arbitrary system of fermions we have
had to assume that in some sense the "normal" Quid
could be described in an uncorrelated approximation.
The situation in this regard, for a fermion system such
as the nucleus, is much less clear than the corresponding
situation in a metal where the lattice plays such a
dominant role.

This basic conjecture of our procedure, the descrip-
tion of the normal Quid as a Fermi gas in a momentum-
dependent potential, is discussed in Sec. II. In the third
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section we derive an integral equation for the pair
correlation function which is well defined for arbitrary
potentials, and in the fourth, a criterion for super-
Quidity is presented. It is shown that a hard repulsive
core does not prevent, in principle, the formation of a
superQuid phase. In Sec. V the method is then applied
to He' as well as nuclear matter, and it is seen that for
a wide class of trial functions the systems are rather
far from going into a superQuid state, even at the
absolute zero. However, we are unable to exhibit an
upper bound to the transition temperature and thus
have not proven rigorously (within the assumptions of
this paper) the nonsuperQuidity of these systems.

II. FOR3YlULATION

The Hamiltonian for the Ã-body system of fermions
is written as

I/=Q T;+P n(r; —r;),

where T,= —O'V, 2/2m and e(r, —r,) is an arbitrary
two-body potential.

Our basic conjecture concerns the normal Quid: we
assume that an adequate description of the system in
its normal state is obtained by treating it as a Fermi
gas in a momentum-dependent potential. Because the
potential between two He' atoms (nucleons) is strongly
repulsive at distances less than about 2.5 A (0.4&(10 "
cm), one might argue that the normal Quid should be
very diferent from an ideal Fermi gas, the wave func-
tion for the system containing strong correlations
between atoms. However, the success of the nuclear
shell model and the apparent linear behavior' of the
low-temperature specific heat of He' seem to indicate
that to a certain approximation these correlations may
be ignored and the fermions regarded as moving freely
in the medium with a modi6ed momentum-energy
relation. Recent theoretical work of Brueckner4 and
others seems to support this point of view quite
strongly.

Our consideration of the system at low temperatures
then is based entirely on this conjecture about the
nature of the normal Quid. Beginning with this we ask:
Will a system such as the one described above enter
into correlated states at some very low temperature,
similar to the states assumed by electrons in a metal)
Again, as in the electron case, we consider only the net
energy gain due to two-body correlations, and then
approximate the two-body correlation wave function by
assuming only pairs with given total momentum and
total spin are strongly correlated. ' (Correlations in
which all pairs have the same nonzero total momentum
correspond to current carrying states. Pair correlations

'Brewer, Sreedhar, Kramers, and Daunt, Phys. Rev. 110, 282
(1958).

'K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958).

t'Sardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).
Hereafter, called BCS,

for pairs with triplet spin are also possible but we con-
sider primarily a ground state with strong singlet spin,
zero total momentum correlations. )

In the notation of second quantization the Hamil-
tonian can be written

A2k'-

JI= Q —c~(k,a)c(k,o)+-',-; P ct(k, ,
o.,)ct(k.,

o. )
k o' 2m

&& (1,2
~

8
~
3,4)c(k4,04)c(kg, o.g), (2)

where c(k,o) and ct(k,g) are the annihilation and
creation operators for a particle (atom or nucleon) with
momentum hk and spin direction 0. Since we expect
correlations between pairs of particles with equal and
opposite Inomentum and spin, the trial function will be
constructed entirely from combinations of pair. creation
operators bkt where

bk = C k)Ckt.

For such states, the Hamiltonian may be replaced by
one involving only the operators bk and bk~, thus

fk fk+2 fk tk+k, k'fk' fk'
2m

+2 ~k l kk'~k' Z l kkf'k bk) (4)

where the last term is smaller than the rest. by a
factor 0, the volume of the system.

The expression Uk k contains the diagonal matrix
elements of the interaction v, which are associated with
the interactions in the normal Quid, while Vk, k contains
the pair interactions, that is the matrix elements of v

between two diferent pair states.

U„„.= (k1,k'g
~

v
~
kg, k'g) —(kl, k't~ v

~

k'1,k1)
+(ky, —k'g(z(kg, —k'g)

—(kg, —k'g[v[ —k'j„, kt);
p', „,= (kt, —kg~8~k't, —k'g)

—(kg, —kgl~~ —k'g, k'1). (5)

The trial function is taken of the form in BCS and
the expectation value of the Hamiltonian evaluated.
The diagonal terms correspond to the effective mo-
mentum-dependent potential that a particle is subject
to in the normal Quid. We make this identification, and
assume that the problem is equivalent to a modified
Hamiltonian in which the diagonal matrix elements of
the potential are replaced by the diagonal elements of
the t-matrix of Brueckner, as evaluated for the normal
Quid. If no superstate exists, or if the off-diagonal
elements associated with the strong correlations of the
superstate are neglected, and the expectation value of
this modified Hamiltonian is minimized with respect to
a, BCS type trial function, one obtains in fact the
ground-state energy and model-ground-state wave
function that Brueckner uses to describe the normal
Quid.

As for the expectation value of the term involving
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V», the trial function will diGer only very slightly
from the model-ground-state wave function of Brueckner
theory; for this reason. it is proper to use the diagonal
elements of the reaction matrix t in evaluating Ui, , i, in
order to give as well as possible the proper interaction
energy. That is, the expectation value of the true two-
body potential with the correct wave function is closely
approximated by the expectation value of the reaction
matrix with the model wave function.

For the off-diagonal elements, the true two-body
potential v must be used rather than the t-matrix,
si.nce we are looking for a state which arises from strong
two-body interactions, and hence corresponds to itera-
tion of v; t includes this iteration in an incorrect way
near the Fermi surface, and certainly cannot be iterated
further. It might be thought inconsistent to treat the
pair correlations with this Hamiltonian since the strong
interparticle potentials will introduce correlations even
in the normal state. However, in the normal state any
given particle interacts with any other particle with an
energy which goes to zero with the volume of the
container. The total effect of all of these interactions
produces the momentum-dependent potential. Thus,
although the normal wave function already contains
correlations due to the hard cores, the correlation for
any two given particles produces only an in6nitesimal
energy shift. (They are in a scattering state with respect
to one another. ) If the superstate is formed, then
pairs of fermions of total momentum zero become very
strongly correlated and a finite energy is associated with
each pair. Compared to this the normal correlation
energy of this pair is negligible. Forming'the highly
correlated state with pairs of fermions of total mo-
mentum zero involves changing the correlations between
fermions of nonzero total momentum only when either
one is near the Fermi surface. The resulting change in
the effective potential will be only that due to inter-
actions with the fermions in a thin shell at the Fermi
surface and hence appears to be no more serious than
in BCS.

III. INTEGRAL EQUATION FOR THE
CORRELATION FUNCTION

Using the trial function

given by
W= (e,ae) = W,+W„

+ Q Uk kpkk(1 —hg)hk (1—hg. )j&

XexpLi(v, —v, .)j, (10)

where ek ——(A'/2m~) (k' —k p') and A'ki'/2m~, which
determines kp, is the Lagrangian multiplier associated
with the restriction that the expectation value of the
number of particles (that is, 2(gb~tb~)) be held fixed.
Minimizing W, with respect to k~ and y~ (it is assumed
that WD remains unaltered by this variation) yields:

k~=-', (1—e~/&~),

E,=[.,'+ e(k)e(k)*j',

together with the nonlinear integral equation which is
the criterion for the existence of a minimum, namely,

5'(k) = —
~ p Uk, k~

s(k')
(12)

S= t~~e* .

In order to treat general potentials, in particular
potentials with hard repulsive cores, we note that the
wave function and Hamiltonian of 8CS give the energy
due to pair correlations, and their variational method
amounts to minimizing this energy. We thus introduce
a correlation function between fermions of opposite
spin whose total momentum is zero:

p(rit; r24) =—(4~'(ri)6'(r2)A(r. )A(ri)) (13)

For the wave function of Eq. (5) this becomes (where
1'i —1"2=r)

pii, =-',e'+
~

0 ' P ng*Pke'"'~'

where 5'0 is the normal state energy and 8', is the
energy due to the pair correlations.

Approximating the dependence of the diagonal part
of the Hamiltonian by the use of an effective mass' we
obtain (in the limit: of infinite normalization volume)
for the correlation energy:

W.=r+U= P 2[., [(1—k,)+ P 2.,k,

'I'=ll (ok+PAk')+-u
k

where ~nqj'+ ~P~~ '=1, we can write

~k= (1—hk)')

P~ =k~'e'"~,

(6)
where e is the fermion density.

Ke then define

x(k) = Lk, (1—k,)j'e'"=,*P,,
and passing to the limit of very large volume,

where kk is the expectation value of the number
operator for the pair state k:

kk ——(+,b»b&'F), (g)

and 0&h=h*&1. The energy of the system is then

x(r) =
I I

t x(k)e'"'dk
&2~i

where x(r) represents the extra correlation between spin
6 See reference 3 as vrell as K. A. Brueckner and J. I,. Gammel,

Phys. Rev. 109, 1023 (1958), for a complete list of references.
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zero pairs due to the interaction. Assuming a local
inversion-symmetric potential, we can rewrite the
potential term of 5', in terms of this correlation func-
tion as:

V=+ Lhk(1 —hk)hk (1—hk))'
kk'

xexpl p(pk ppk'))vk', k,

In this last form we see that the criterion for super-
Ruidity is equivalent to the existence of a solution for
an integral equation in the two-body correlation func-
tion, where ep' plays the role of an eigenvalue. It is
instructive to compare Eq. (19) with the Schrodinger
integral equation for the relative coordinate wave-
function of a pair with zero total momentum:

=Z x*(k')x(k) Vk, k (16) P(r) = —-', ~t Ge(r —r') v(r')f(r')dr',

=fi(2~) P~ «v(r)lx(r)l' dke'"'1
G.()=

(27r) ' ~ (h'/2m) (k' —kp')
(20)

It turns out then that the term T of the correlation
energy l Eq. (10)) gives the increase in kinetic energy
due to two-body correlations while V gives the change
in the potential energy due to the correlations. In this
last form V can be negative even if v(r) contains a large
repulsive core, as lx(r) l'v(r) =0 for v(r) = oo. Thus W,
can possibly be made smaller than zero even for
potentials with hard cores.

The equation for p determined by setting the varia-
tion of 8',=0 can conveniently be expressed as a pair
of coupled equations:

The entire diGerence, we see, occurs in the denominator
of the Green's function. Instead of favoring states of
k=0, the Green's function of Eq. (19) picks out states
near the Fermi surface k =k p. Since these states already
oscillate rapidly it is often possible to construct "bound
solutions" to Eq. (19) where no bound solution to
Eq. (20) exists.

If we chose to construct states with triplet spin our
results would remain essentially unaltered except that

x(r) = —x(—r);~(k)
x(k)=o

t ok'+ s'(k) r*(k))&

s(r) = ~P(k)e'"'dk= —v(r)x(r).
(2pr)l ~

IV. CRITERION FOR SUPERFLUIDITY

the correlation function being antisymmetric in its
coordinate. Solutions of the integral equation then must

(17)
have odd parity.

In this form, singular potentials v(r) can be handled,
since x will be zero in regions where v(r) is infinite;
5, on the other hand, will be 6nite in such regions, and
have a delta function singularity at the core boundary.

It can easily be shown that if a nonzero solution for
P(k) exists, all of the qualitative conclusions of BCS
follow (excluding those explicitly dependent upon the
fact that electrons are charged). In fact, if (as usually
seems to be the case) P is slowly varying in the region
of kp then the explicit calculation of BCS is almost
entirely unchanged. Assuming that F varies slowly in
the vicinity of the Fermi surface, we may replace

l E(k)
l

' by a constant oo', in the square root of Eq. (17).
The constant ep is now the eigenvalue of the system of
equations, and is closely related to the energy gap and
the transition temperature. The criterion for existence
of a superstate is thus the existence of a nonzero solution
to Eqs. (16) which can then be written:

We can now write down a criterion for superQuidity
in a particularly simple form. If we de6ne

X=2 '

dklx(k) l'Ek+ drlx(r) l'v(r), (21)

it is easy to show that for any p

X)&(2pr)%',/0, (22)

&(oo) =2
) dklx(k) l'(ok'+oo')'*

so that if we can 6nd a g which makes X(0, 8', will
also be smaller than zero. Replacing

l
Fl ' by op' in Ek,

where oo'=
l
F(kz)&*(kr)

l
(which is equivalent to the

approximation which linearizes the integral equation in
the previous section) we have

x(r) = —-', ~ G(r r') v(r')x(r')dr—', (18) + drlx(r) l'v(r), (23)

where the Green's function G(r) is given by

dke'"'
G(r) =

(2or)o ~
l gQ +op )&

(19)

where X(pp) is to be evaluated for a trial function x,
and then the equation X(op) =0 solved for op. The re-
sulting value of 6p will always be less than the maximum
value of 6p, attaining the correct value when the trial
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function x satisfies Eq. (18). We have written the
variational equation partly in momentum space and
partly in configuration space because the kinetic energy
would be nonlocal and quite complicated in configura-
tion space, while the potential energy is easy to evaluate
even for infinitely repulsive cores in configuration space
L lx(r) I

'e(r) is zero in such regions. ) It should be ob-
served that if X(0) is negative then there exists a real es

for which X(es) =0. Thus the criterion for a superfluid
phase at some sufhciently low temperature is simply
that for some trial function'.

7 (0) =2 "dkl~(k) I'I "I+ «l~(r) I "(r)«(24)
J J

Inspection of the criterion Eq. (24) shows immedi-
ately that (a) a potential which is everywhere repulsive
cannot satisfy the criterion; (b) a hard core is not in
principle a deterrent to superQuidity. It is seen that
what is required is that the potential have an attractive
region. The correlations then tend to increase the
probability that particles reside in the attractive region.
This is done by building the correlation out of Fourier
components with wave numbers as close to kp as
possible.

If we assume that g(r) is spherically symmetric
(an 5-state solution), and let

g(k) =k7t(k),

g(r) =rX(r),

g(r) =
I

—
I g(&)»»«&,

E~j
(25)

adopting as the unit of length ki '(x= kyar), and as the
unit of energy lid'kr'/2m*, the criterion for superfluidity
may be written

expressed by indicating the factor by which the poten-
tial must be multiplied (for fixed density, extent of
potential, etc.) in order to make the system just go
into a superQuid state at the absolute zero. The smallest
such factor we have found is approximately 6 for He',
while for nuclear matter it is about 5.

In the absence of a repulsive core the trial functions,

gi(x) = Ci(Px) sinx, g, (x) = ln(Px) sinx

for x &1/P,
=0 for x&~ 1/8,

gs(x) =Es(ax) sinx, g4(x) = 1nL8(x+1) ] sinx

for x+1&1/P,
=0 for x+1 &~ 1/g,

(27)

gs(x)=lnLP(x —e))L1—e ' '] sinx, c&x&1/8,
(28)=0, x&c, x& 1/P.

all have the property that for small P the kinetic energy
term in X(0) goes as 1n(1/P), while the potential energy
term goes as ln'(1/P). Thus, for arbitrarily weak
attractive potential by choosing a trial function with P
suKciently small 'A(0) can be made negative. Thus
such systems are always in a superHuid state at the
absolute zero.

In regions of strong repulsion the function g(x) must
be very small so as not to contribute a large positive
term to X(0).We have approximated the true two-body
interaction in He' ' and nuclear matter' with a central
potential which is infinite for r &r, (x&c) and attractive
beyond r, ."Thus g(x) is identically zero for x&e. Since
the kinetic energy operator is

I

k' —1 I, the function g(x)
must be a function with wave number predominantly
near 1 (k p in these units). It may be expected also that
for large x the function g(x) will be in phase with sinx,
or else the kinetic energy will tend to be very large.
It is also important for the no-core situation that g(x)
be very large for small x. Guided by this we choose

+s ~ ~(~)Ig(r)l'«&0 (26)

V. APPLICATION TO He' AND NUCLEAR MATTER

In this section the criterion for superconductivity
I Eq. (26)] is used to study liquid He' and nuclear
matter. For this purpose we have employed many trial
functions. The calibre of a trial function can readily be

A similar criterion has been obtained by Bogoliubov, Tol-
machov, and Shirkov (to be published): Joint Institute for
Nuclear Research, Steklov Mathematical Institute of the U.S.S.R.
Academy of Sciences, Dubna, June, 1958. The above preprint was
received while the present manuscript was in preparation. One of
the authors (L.N.C.) wishes to thank the above authors and the
Joint Institute for Nuclear Research for this and other preprints,

In this case the kinetic energy term in (1/8m)X(0) may
be evaluated in the limit as p—+0. For large rl this takes

J. L. Yntema and W. G. Schneider, J. Chem. Phys. 18, 641
{1950).' J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957)."For both nuclear matter and liquid He' the calculations seem
quite insensitive to the features of the two-body potential other
than the gross characteristics of the strongly repulsive internal
region and the weakly attractive outer region. In particular,
g'(r)v{r) becomes very small in a region where the potential is
large and positive, so that the use of an infinite repulsive core for
He' is a good approximation to the repulsive part of the Yntema-
Schneider potential. We have consequently used in our calcu-
lation the following simple analytic 5 state potential:

V= ~ for r&r,
= —V0e ~(~) for r&r.,

where r, =0.4X10 " cm (2.5 A), V0=26 Mev (10'K), p, =0.544
Xioa cm- (1.85 A-I).
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the following relatively simple form:

in'(1/P) z.
—(1—cos2c)ti+ 2 in4yc —2 Ci4c

4x 2

—2+-', m sin2c+2 cos2c+—sin4c ——sin2c
2G c

2 (1 q (ir 2y
+ —+] ——4 [ sin2c+

(
——

)
cos2c

c (c' ) E2 c)

2——cos4c —4 sino —+.
c -7l

where p is the Euler-Mascheroni constant, equal to
1.781

For small core radii the dominant term in the kinetic
energy as P—+0, for large ti may be written as

+[zz+ tl(c)]—+Oil —
i (29)

4 ti'&

gs(x)=sinx[e i'"' ' —e ~'tx '] x)c
=0; X&G (30)

Thus the kinetic energy has a minimum value for
tl=&2/c which is K.E. 0.42c 1n'(1/P). As c-+0 and
g~~, therefore, the term in the kinetic energy pro-
portional to ln'(1/P) vanishes. Since the P.E. varies as
in'(1/P) for this trial function one can see that as c —+ 0,
and for P sufFiciently small, the system will certainly
become superQuid for any attractive potential outside
the repulsive core.

We have evaluated the ln'(1/g) term in X(0) for He'
and nuclear matter, using this trial function. Ke have
chosen the value of ri which minimized the 1n'(1/P)
term in X(0), and find that unless the attractive part
of the potential is 15 times larger than it is in He' the
system does not go superRuid with this trial function.
For nuclear matter (c=0.59, compared to c 1.9 for
He') the factor is 5.

Most trial functions'do not go continuously as G
—+ 0

into trial functions which indicate superAuidity for
arbitrarily weak attractive potentials. Nevertheless
since G is so large for He' it was thought profita, ble to
use some of these functions. We ha, ve tried

and after minimizing X(0) with respect to Pt and Ps still
find approximately the same factor of 15 for He' and 7
for nuclear matter.

Another trial function which although not successful
in showing the superAuidity in the case of a weak purely
attractive potential, might nevertheless be useful for a
large repulsive core is

gr(x) = sin(x c—)e &t—* (31)

UI. sUMMARY

The basic result of our investigation is the integral
equation [Eqs. (18) and (19)j for the correlation func-
tion. This leads to the very simple criterion for a
superRuid state, expressed as a variational principle
[Eq. (24) j. In Sec. U we have used this in a preliminary
way to investigate liquid He' and nuclear matter, but
have not so far succeeded either in finding a trial func-
tion which makes these systems superQuid or in proving
that they do not become superAuid.

$ Pote added ie proof We are.—grateful to S. A. Moszkowski
for pointing out to us the virtues of a trial function which is the
solution of a Schrodinger equation with reduced effective mass
&m*, and a truncated potential so chosen that the solution has zero
phase shift. With a modified form of such a trial function one can
prove a low-density theorem: if the 5-wave solution to the
Schrodinger equation, with reduced mass —',m and the true two-
body potential, has positive phase shift at zero energy, then at
suKciently low density the fermion system would have a super-
fiuid state. This suggests the investigation, now in progress, of
the properties of He' in dilute solution in He', as well as a careful
study of the 6nite nucleus, with particular attention to the reduced
density at the surface.

In this case for appropriate choice of P the ratio by
which the potential energy must be multiplied in He' is
only 6,5. The reason for this is that for He', G is such
that the function g(x) is large in the region of the
potential energy while the additional kinetic energy
coming from the wrong phase of sin(x —c) is more than
compensated.

One is thus led to try the trial function

gs(x)= {[1—e &'* '] sinx+ne &'* ' sin(x —c)) 1nPx;

."&x& 1/P (32)
=0; x&c, x) 1/P,

where n, 8, y are variational parameters. This function
is large in the region of the potential and then slowly
shifts to the correct phase at large r. The calculations
with this function, even in the limit of P —+0 are
extremely complicated. We have only carried them to
the extent of seeing that although the ratio may be
reduced from 6.5 it will not go below 4 for He', while in
nuclear matter there is no significant improvement. (


