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Starting from a phenomenological analysis of the Z decays an extension is made to A (and ™)decays
using global symmetry (and M space). The relative values and signs of the asymmetry parameters are
predicted.

error is made by taking a„a,', a„, a„' as real numbers.
Use of the experimental data,

7 g+
(Z+ ~~+) =0, (5)

2w(Z+ —+ prrs)
1
[a,+a~rr —qX*'rSXrr]+[a, '+a~'rr q]A'xrr gives four possible solutions, two of which are

lt = —i(1—er q)[x~lVXrrj+(1+er q)1Vxrr, (6)
exp(iP~q r)

(1) with e=+1, the two others being just given by

(7)

SECTION I

A SSUMING the validity of the ~AI~ =st rule, the
most general wave function of the final state in Z

decay is given by

where y is a constant two-component spinor describing
the nucleon spin state, q a unit vector along the direc-
tion of the nucleon momentum p~q. a„a,', a„, a„'
are s and p wave amplitudes, respectively. In isotopic
spin space

~+=2—i(~t —i~..)
(2)

.rr—=2 i(rrt+irrs).

x is the spurion introduced independently by Wentzel
and the authors. ' (1) is a spinor in ordinary space and
a vector in isotopic spin space. The final state wave
function for the decay of a 2 having a given polarization
and a given charge, is obtained by taking the relevant
component of (1) both in ordinary and isotopic spin
spaces. (1) does not involve any approximation
whatsoever. It gives [from now on the factor outside
the curly bracket in (1) will be omitted)

[a,+a„rr q)2&prr'+[a, +a, '+ (a,+a„')e q$rrz+

for Z+ decay, (3)

[—a,+a,'+ ( ar+ a„')rr q]m. f—or Z—decay. (4)

The comparison with experimental data and the
corresponding determination of a„a,', a„, a„' can be
made, as is well known, by using the s and p amplitudes
of the I=—,

' and I= ~ states, which are linear combina-
tions of a„u,', a„, a~'. Assuming I'C conservation, the
phases of these linear combinations are just the phase
shifts of x-E scattering in 5 and I'; states. These being
experimentally known to be small one finds that, with
the present experimental accuracy, no significant

' G. Wentzel, I'roceedings of the Sixth Annual Rochester Con-
ference on High-Energy (Interscience Publishers, New York,
1956); B. d'Espagnat and J. Prentki, Nuovo cimento 10, 1045
(1956).

f =2ee qnrr (10)

The predictions are therefore, as one knows, ' that
n(Z ~ rrrr )=0, rr(Z+~ pm')=1 and that if rrrr+ are
emitted in an s-wave, n& should be emitted in a
p-wave and conversely. These predictions of the
~B,I~ = —,

' rule seem to have recently received experi-
mental confirmation. '

Remark

Equation (6) is of course completely equivalent to
the usual analysis in terms of I= ~ and I= 2 waves; it
has, however, the advantage of being somewhat more
suggestive. (6) seems indeed to indicate that the
relevant weak-interaction Hamiltonian might have
the simple form

g( —iXy„(1—pcs) [x~SX8„rrj
+Xy„(1+pcs) xEc)„sr+H.c ), (11)

with p=+1 (p=1.3 in a lowest order calculation).

SECTION II

(6) is not the only compact expression for (8), (9),
and (10). If some comparison between Z decay and A.

decay is desired, it is indeed more appropriate to
introduce in analogy with the two isotopic spinors

px+q ~ Z'q

( F') (x—)
2 M. Gell-Mann and A. H. Rosenfeld, Annual Reviezo of Nuclear

Science (Annual Reviews, Inc. , Stanford, 1957), Vol. 7, p. 407;
Y. Yamaguchi, Progr. Theoret. Phys. (Kyoto) 19, 485 (1958).' Cool, Cork, Cronin, and Wenzel (to be published).

Explicitly

/~=2([1 —er qj2 &prrs+rrrr+), (g)

its= —2l[1—er q]prr +[1+so q]rrrrs, (9)
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the entities

(ip+ q ]por'/f2+Is+ —ee qpor%V2p
(12)

(imp ) & Por —m'/v2 pe q—m'/K2)

(6"i ( ee qpir )
«' qlor

these expressions may be written as

where (|Pp"—ihip')/2&=iPp. The choice for ihip' and |Pp"

being such that, introducing the notations,

fNil (ply (s i' pri'l (s'/V2

(e) (ors' orps) & or —orp/V2)

x'y Oy

If the strong x interactions are also scalars in E with

N e 1)(-', ,0), (Z,A) o K) (-,' is), pop X)(1,0) (20)

(as is assumed in the global symmetry) then the
symmetries in I., cannot be destroyed by the strong
interactions.

The symmetries of 1.„, on the other hand, can be
spoiled by the final-state interaction (they cannot be
modified by vertex corrections since the strongly
interacting and weakly interacting vr can formally,
as far as invariance laws are concerned, be treated as
different particles with different transformation proper-
ties in E). The theory thus seems to make sense only if
the Gnal-state interactions are not too important.

Remaining in the realm of a, phenomenological
theory, a step further can still be made by introducing
the M space formalism. 4 To that end it is sufhcient to
replace iV~x' by BA, ' with

]~i N„x'~ )N,x"s„'~
I+2«. qi

&or,"N„x') KN, x"or„')

(pri"N x') (Nix"or 'q
iP&'i = 2/ i+2

&N x-~ i) '

(15)

(16)
The total weak-interaction Lagrangian is then

2gZ p'p„rl„vr p "8„'+2gpZ p'y py„Bp "r1„7r„'.

(21)

(22)

i.e., as isotopic spinors (a summation over m and n is
implied by the notations).

From the relations

Zo (Zo Fo)/2', . A (Zo+ 7o)/2'*, (17)

it is then inferred that A decays into the wave function

iP~= (iPo"+go')/2&=2&L1+pe q](or P—2-**or'rs)

exp(ip&q r)
'x (18)

i.e., that the asymmetry parameters u(A —& por ),
n(A~moro) of the two decay modes of the A have
(roughly) their maximum value and the same sign,
which is opposite to that of n(Z+ ~ por').

The assumptions underlying this deduction are of
course that the same kind of symmetry holds, as far
as the (Z+I'o), (Z'Z ) doublets are concerned, for the
(dominant) or interactions and for the weak interactions.
As regards the interpretation of the above formulas in the
language of Geld theory, the following remark can be
made. The weak-interaction Lagrangian which gives (15)
and (16) for the final-state wave functions can be split
into two parts I., and I„corresponding respectively to
the first and second brackets of the expressions (15) and
(16). Then 1., is a scalar in an Euclidian 4-space E with
the assignments

N p S (-,',0), (Z,A) p S(-,')-,') ) xeS(0,—',), pop S (1,0) ) (19)

while I.„ is a scalar in this same space E with the
assignments

N p S(,',0), (Z,A-) e S(-,',—',), xe X) (0,—,'), ppeg) (0,1).

ZP ) (Zo Z+)

&Z,i Zpoi &Z- yo)
' (24)

which introduces a factor, p/( +Q)p—p pp)l(Q+p) i iil
the ratio of p amplitudes to s amplitudes. The significant
feature of (23), however —and of the general approach
of this section —is that it is not equivalent to taking
over for the A. case the I=—,

' amplitudes, even modified

by this factor, which came out of the analysis of the
Z case. Instead, (23) can be written'

—sg Xy„(1—py p) Lx~N XB„po)+gXy„(1+py p) xNB„pp

+gXy„(1+py p) x~Nr)„pp. (25)

When exPanded in I= ip,
spamPlitudes, (25) gives

different values for I=-,' Z amplitudes and for A

amplitudes.
4 d'Espagnat, Prentki, and Salam, Nuclear Phys. 5, 447 (1958).
p Although the Lagrangians (11), (22), (23), and (25) are

written in the Yukawa form, the present spproach works of
course just as well in connection with I'ermi-type Lagrangians.

This predicts that a( —&h.or ) should have the same
sign as n(A —+ por ) and should be large.

Remark

Of course the amplitudes may depend on the Q value
of the reaction and therefore the phenomenological
approach cannot give precise predictions on re/rr
nor on n(A)/a(Z+ —+ piro). For instance a lowest order
calculation based on the ideas of this section would
start with a Hamiltonian of the form

H=2gZp'y„r)„mp N x'+2gpZp'y„ypNpx"r)„7r„', (23)

with


