
P H YSI CAL REVI EWV VOLU M E 114, NUMBER 5 JUNE 1, 1959

Theory of Direct-Interaction Inelastic Scattering*
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A model is proposed for the description of direct-interaction inelastic scattering in which resolved Gnal
states of the target nucleus are observed. This model is expected to be useful in deducing the spins and
parities of the excited states of nuclei.

I. INTRODUCTION

sINCR the development of the theory of deuteron
stripping by Butler and others' ' the analysis of the

angular distributions in these reactions which leave the
residual nucleus in some definite quantum state has
provided .an important means of investigating the
properties of low-lying states in nuclei. The usefulness
of the stripping reaction in this respect is probably due
to two important features of the process: it is a direct
interaction, and it occurs near the nuclear surface. Of
course experimental conditions can be found. in which
compound. -nucleus contributions are appreciable, but
these should be avoided in seeking data to yield in-
formation on the spins and parities of the states of the
residual nucleus.

Another process which one might expect to be
characterized by the above features is the inelastic
scattering of nucleons by complex nuclei, in which the
incident particle transfers energy and angular momen-
tum to a single bound nucleon leaving the target in an
excited state. This process is usually referred to as
direct-interaction scattering, and has been treated.
theoretically by a number of authors. One uses the
shell-model picture of the nucleus, with the direct
interaction acting between the incident particle and a
nucleon in the outer shell. The first-order processes of
course involves the change in the quantum numbers of
only one bound nucleon.

The 6rst theoretical treatment of direct-interaction
inelastic scattering was given by Austern, Sutler, and
McManus. ' They assumed a zero-range surface inter-
action with spinless particles, and. neglect the elastic
scattering and partial absorption of the incident particle
before and after the direct interaction. Their theory has
met with moderate success in predicting angular

distributions, especially in fitting peaks at forward

angles, but fails conspicuously in other cases. An

example of its failure is illustrated in Fig. 10 in which a
comparison is made with the experimental data on
C". The theoretical cross section predicted by Austern
e$ cl. does not, in general, give su%ciently reliable

*Summary of a thesis presented to the Department of Physics,
Indiana University, 1958.' S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951).' Shatia, Huang, Huby, and ¹wns, Phil. Mag. 43, 485 (1952).' P. B.Dsitch and J.B.French, Phys. Rev, 87, 900 (1952).' Austern, Butler, and McManus, Phys. Rev. 92, 350 (1953),

results to yield information on the spins and parities of
the nuclear states.

The most complete treatment of the direct-interaction
process is given by Levinson and Banerjee. ' They take
account of the elastic scattering of the free nucleon
before and after the direct interaction by using waves
distorted by a complex potential. Moreover, the direct
interaction is allowed to occur throughout the entire
nuclear volume. The theory agrees quite well with the
carbon data over a wid. e range of energies. Unfortu-
nately the numerical calculation is very lengthy,
requiring considerable high-speed computer time. Since,
as a tool for the nuclear spectroscopist, the theory is
required only to be good. enough to distinguish between
diRerent assumptions about the nuclear states involved,
it seemed worth while to attempt to formulate a simpler
model that would still satisfy the above requirement.
That is the object of this work.

In the treatment of direct interactions presented.
here, a surface interaction is used, and the free particle
is allowed to interact with the whole nucleus before and
after the direct inelastic event. It is shown how all the
integrations can be performed explicitly, thus reducing
the calculation time required in an attempt to analyze
experimental data by means of the model.

II. COMPETITION BETWEEN DIRECT REACTIONS
AND COMPOUND-NUCLEUS FORMATION

Weisskopf concludes from the experimental data that
nuclear reactions with neutrons involve the formation
of a compound nucleus with an 80 to 90% probability. '
Nevertheless it is quite possible that the low-lying
states of the target nucleus may be excited almost
exclusively by the direct-interaction mechanism, for
bombarding energies greater than a few Mev. This
follows from a rather important difference between the
two modes of excitation. In inelastic scattering through
a compound-nucleus channel, the reaction proceeds
through the formation and independent decay of a
compound state, which separates the initial and final
states of the target nucleus. For incident bombarding
energies of a few Mev, a large number of states in the
residual nucleus can be excited with comparable
probability, so that the cross section for excitation of a

' C. A. Levinson and M. K. Banerjee, Ann. Phys. 2, 471 (195/);
2, 499 (1957);3, 67 (1958).

e V. F. Weisskopl, Revs Modern Phys. 29, 1/4 (1957).
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given nuclear level may be very small. However, in
scattering by direct interaction the two-body force
between incident and bound particles is regarded as a
perturbation causing transitions of the system from its
initial state. Therefore the cross section depends on the
matrix element of the direct interaction taken between
initial and final states of the entire system, and accord-
ingly is very sensitive to the overlap of the system
states. Moreover, the lowest-order process involves a
transition between nuclear states that diGer in the
quantum numbers of only one nucleon. Accordingly, the
low-lying levels in the residual nucleus are those most
strongly excited by the direct interaction, and amongst
these, certain levels are more strongly excited than
others because of selection rules and overlap of the shell-
model states involved.

Thus in formation of a compound nucleus by neutrons
of more than a few Mev, the number of competing states
to which the compound nucleus can decay is so large
that the cross section for excitation of any given one
of them is small. However, for direct reactions, which
strongly favor the excitation of only a few low-lying
states, there are few "competing" states even at high
incident energies. For these reasons the direct-inter-
action process is expected to dominate the compound-
nucleus process in excitation of the low-lying levels of
the final nucleus, for incident energies greater than a
few Mev. These remarks are valid, of course, for
protons as well.

The most striking evidence that the compound-
nucleus contribution to the excitation of low-lying levels
is often small is found in the strong forward-hemisphere
scattering of nucleon groups leaving the nucleus in a
particular quantum state. ' " The compound-nucleus
theory predicts an angular distribution that is sym-
metric about 90' or else isotropic. " Moreover, the
magnitudes of the observed cross sections are frequently
much larger than can be explained by the compound-

nucleus theory.

III. SURFACE EFFECT IN DIRECT REACTIONS

An attempt is made here to make plausible the
assumption of a surface interaction for the direct-
interaction scattering mechanism.

The energy dependence of the real and imaginary
parts of the optical-model potential, as found by
MelkanoG et a/. ," imply that the mean free path of
protons in nuclear matter follows the rule

g=&—
~~& yp for E(10Mev,

(&)
~rp, for E&10 Mev,

E. H. Rhoderick, Proc. Roy. Soc. (London) A201, 348 (1950).' H. McManus and W. T. Sharp, Phys. Rev. 87, 188 (1952).' R. M. Eisberg and G. Igo, Phys. Rev. 93, 1039 (1954).
"Shrank, Gugelot, and Dayton, Phys. Rev. 96, 1156 (1954)."W. Hauser and H. Feshbach, Phys. Rev. 87, 366 {1952)."Melkanoff, Moszkowski, Nodvick, and Saxon, Phys. Rev. 101,

50'? (1956).

where rp is a typical nuclear radius, say 6—8&&10—"cm,
E is the incident energy, and E is the absorption coeS-
cient, equal to the imaginary part of the complex
propagation number inside the nucleus. Only for
energies less than a few Mev or greater than, say, 100
Mev does the nucleus become rather transparent. One
may expect that once an incident nucleon of inter-
mediate energy penetrates to a depth of a mean free
length or more into the nucleus, the probability that a
compound state mill be formed is very large. This sug-
gests that the direct interactions take place before the
incident particle has penetrated to within a mean free
length into the nucleus, and for incident energies
E&10 Mev this means that they take place near the
nuclear surface. Using somewhat diferent language, one
can say that, since the incident nucleon should be
regarded as moving in the presence of the complex
optical potential, its wave function will be damped
exponentially as the particle enters the nucleus.

Bjorklund et al.""take a rather diGerent view of the
absorption of nucleons by complex nuclei. They have
proposed a surface absorption model which has been
quite successful in predicting elastic scattering and
polarizations of scattered neutrons. However, whichever
view is more correct, both imply that the direct process
is concentrated near the nuclear surface.

The bound particles themselves that become excited
by the direct interaction are usually those whose
probability density tends to be concentrated near the
nuclear surface, for a nucleon entering the nucleus
cannot interact with one of the more tightly bound
nucleons unless both particles scatter into unoccupied
states. This requires a large energy transfer, and in Sec.
II it was argued that this is less probable than a small
energy transfer. Accordingly the bound nucleons that
participate most freely in direct reactions are the loosely
bound nucleons. Such nucleons generally are con-
centrated near the nuclear surface.

In addition to these arguments, the results of some
calculations are presented in Sec. V which tend to
justify the use of a surface interaction.

IV. CALCULATION OF DIRECT-INTERACTION
INELASTIC CROSS SECTION

1. Brief Description of the Calculation
The success of the shell model in describing the low-

energy properties of nuclei" sugests that direct-
interaction scattering may well be discussed in the

'3 Bjorklund, Fernbach, and Sherman, Phys. Rev. 101, 1832L
(1956)."F.Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958).»M. G. Mayer and J. H. D. Jensen, Elemeretary Theory of
Nuclear Shell Structure (John Wiley and Sons, Inc. , New York,
1955)~

"M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952).
~ K.. W. Ford and C. Levinson, Phys. Rev. 99, 792 (1955); 100,

1 (1955); 100, 13 (1955).' D. Kurath, Phys. Rev. 101, 216 {1956).» S. Goldstein and I. Talmi. , Phys. Rev. 105, 995 (1957).
ee W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958).
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language of the shell model. Since, in nuclear spectros-
copy, one would study particles scattered from a
particular excited state of the nucleus, the target
nucleus is described by a closed-shell core plus those
extra-core nucleons which characterize the ground and
excited states of interest. Such extra-core nucleons are
represented by harmonic oscillator radial functions with
angular momentum and spin coupled to give a proper
shell-model description in terms of the quantum
numbers e, l, j, m, where e is the principal quantum
number, / is the orbital angular momentum, j the total
angular momentum, and m its s component. %hen
more than one nucleon lies beyond the core, they are
represented by a properly antisymmetric wave function
with total angular momentum equal to that of the
nucleus.

The free nucleon, both before and after the direct
interaction takes place, is subject to elastic scattering
and partial absorption by the entire nucleus, Because of
the success of the optical model in describing the elastic
scattering of nucleons by complex nuclei, " ""'2 the
free particle is represented by the wave function of a
particle moving in the presence of a complex potential
well. For simplicity a square well is used rather than a
rounded well. A few calculations with rounded wells
have been made, and are discussed in Sec. V.

The direct interaction between free and bound
nucleons is chosen to have a Gaussian form, and is
spin-independent. In accordance with the assumption
of a surface interaction, the direct two-body interaction
has the form

Vd((lt ls( )=y5(r] rp) Us( j r&—r,
( ), (2)

where y has the dimension of length and is introduced
so that Ud has the dimension of energy. The coordinate
r» refers to the free nucleon and r2 to the bound nucleon,
and ro is the interaction radius.

Our choice of shell-model wave functions and two-
body interaction is the one usually adopted in shell-
model calculation ""

The above description of the direct interaction
process is illustrated schematically in Fig. 1.

The cross section is calculated in first-order perturba-
tion theory. 24 That is

(3)

where k and k' are, respectively, the incident and
outgoing propagation numbers, m is the reduced mass
of the projectile, and 9R is the matrix element of the
direct interaction taken between the initial and final
states of the system.

"R.D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
"Beyster, Walt, and Salmi, Phys. Rev. 104, 1319 (1956)."I.Talmi, Helv. Phys. Acta 25, 185 (1952).
"N. F. Mott and H. S. W. Massey, The Theory of Arorar'c

Collsszoas (Oxford University Press, London, 1949), second
edition.

FIG. i. Schematic representation
of the direct-interaction scattering.
Vq is the harmonic oscillator
potential in which the extra-core
nucleon moves. V~ is the distorting
potential representing the inter-
action of the projectile with the
whole nucleus, and Vd is the direct
potential acting between extra-
core nucleon and projectile which
gives rise to the inelastic scattering.

Projectile.

Target nuC'teus

2. Scattering from Nuclei with One
Extra-Core Nucleon

where R„& is the radial function and
~
1j m) is the spin-

angle function:

~

ljm) = p C(lsj; m&m. m) ~tLm&)
~

ms. ).
mgms

Here C(j&jsj; m&msm) is a Clebsch-Gordan coeflicient,

~sm, ) is a spin function, and

is a spherical harmonic. The free particle can be

regarded as spinless, since we use a spin-independent

interaction. Since the free particle is regarded as moving

in the field of a complex distorting potential, its

expansion in partial waves is written

~&)=Z (4~(2P+1)}'*~'f (&r) IP0)

where k has been chosen to define the direction of the

polar axis, ( p0) is a spherical harmonic, and the radial

functions f„(kr) are solutions of the equation

For illustrative purposes we suppose that the ground
state and excited state of a certain nucleus can be
described as a zero-spin core plus one nucleon. (Other
cases are mentioned briefly in the Appendix. ) Hence the
direct interaction will be diagonal with respect to the
wave function of the core particles, so that the nuclear
wave function need contain a description of only the
extra-core particle. As a result of the direct- interaction
the extra-core nucleon becomes excited so that its
quantum numbers change,

mt jm ~ e'l'j'm'.

For the wave function of the extra-core particle we write
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VD is the distorting potential and

k'= (2m/k') E,

The matrix element of this interaction is

(g) ~=(fl~li&=(4~)*' 2 2 (—) i "(2p+1)'*Y."(k')
yp'I Mp

where 8 is the relative energy of the incident particle.
If Vn—=0 then f1(kr)= j1(kr), where j1 is a spherical
Bessel function. In general the emitted particle emerges
in a direction different from k. Therefore we write

(k'I =4m. Q (—i) 'f„.(k'r){p'p,
l
Y„"(k'). (9)

(fl =4~ 2 (—i)"'f'(k'r1)R-1 (r2) Y"(k')(P'P11 (1o)

X&1 j'm I,.

The direct interaction is developed in its angular
momentum transfer operators er, (r1,r1);

Y~(lr1—r2I)

=P 111.(11,12)PL(cos812)

Notice that although f1 is a complex valued function,
its complex conjugate does not appear in the expression
for {kl (see reference 24, p. 144). Indeed {kl is not,
strictly speaking, the adjoint of

I
k&.

The initial and final state of the system can now be
written down,

Ii)=(4m)'Q i1'(2P+1)1f„(kr,)R 1(r,) I p0&1lijm&2,

XR„ 1,,&P'p,
I Yi,

-
I
P0&&l'j'm'I Yl,"Iijm), (12)

I, t dr, dr2r1'r2'f„(k'r1)R„1. *(r2)
2L+1 ~

X11L(rl r2)f, ( kr1) R 1(r2). (13)

We shall show later how this radial integral can be
explicitly evaluated for the particular choice of func-
tions that we have made.

The Wigner-Eckart theorem" gives us

{1'j™I Yr. I tj m& =c(jLj '; mMm') &i'j'll Y1 lll j&. (14)

Using methods developed by Racah26 we 6nd

&1'j'IIY.llij) = (-): -'-'&(»'+1) (2j+1))-:
XIY(iji'j', lL)(i'IIY. lli), (»)

also

&P'I I
Y "IPo)=c(PLP o—M~)(p'IIY IIP), (16)

where
(2l+1)(2L+1) —:

(1'IIY~lli)= C(i';ooo). (1))
41r (2l'+1)

Rose's de6nition of reduced matrix elements is used
here. ~' The connection with Racah's is

(jll2'~ll j'&R- h= (2j+1)'*&jllr'~ll j'&R-' (1g)

4x Ford'7 has pointed out that the reduced matrix
~~(„,„,) p ( )ArY~Ar(1)Y~ —Ar(2) (11) element &/'j'IIY1lllj& can be written in a particularly

r, 2J+1 simple form,

(2L+1)(»+1)--:
«'j'IIY~llij&= C(j Lj'; ——,'0——,'), for l+E'+L=even—

4 {2j'y1)

=0, for /+P+L= odd—
Using the results given above, one obtains

(19)

, 2p+1
99= (41r) *'(—)~~' "{(21+1)(2j+1)) ** P i1 " (2L+1)R„r~C(ELl'; 000)C(PLP'; ()0())W(ljPj'; —,'L)

(2p'+1)'

g C(pLp', OMM)C(j Lj '; m —Mm') Y~.~"(k'). (20)

The cross section is given in terms of K by

where

k pm
~(~)=—

I I Zl~l'
k (21rh'j

(21)

Aw 2j+1 m, wa'

"M. E. Rose, E/ementury Theory of Angzdur 3Eomentem (Jonh Wiley and Sons, inc. , Neve York, 1957)."G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).



DIRECT —I INTERACTION I NELASTI C SCATTERI NG

is a sum over final spin. directions m and an average over the initial directions m. Notice tha, t QA„lKl contains
the sum

2j'+1
p C(j Lj ', m Mm—')C(j L'j '; m —M'm') = br', 8~~,

2L+1

where L' and M' enter through squaring the sum (20). Thus one can write

(2p+1) (2q+ 1)
2l~l'=(4 )'(2~+1)(2j'+1) 2 '"-"'-'+'
Av i v'e~'r ( (2p'+1) (2q'+ 1)) '

(22)

XC2(lLP; 000) (2L+1)R~ I,„R+q'r,,C(PLP'; 000)C(qLq'; 000)

XW'(ljl'j', ziL) P ( )~C(—PLP'; OMM)C(qLq'; OMM)Y& ~(k')Y, ~(k') (23)

where q and q' are the annalogs of p and p' that enter when the square of the sum (20) is formed. The sum over
M can be performed, first by writing the product Y~ ~Y, ~ as a series of spherical harmonics (see, for example,
Blatt and Weisskopf". ) The sum over M now involves the product of three Clebsch-Gordan coeKcients. This can
be summed by standard methods. "One obtains

Q ( )~~C(PL—P' OMM)C(qLq' OMM) Y "I(k') Y ™(k')
(2P'+ 1)(2q'+1)

(—)' p C(pqn; 000) C( p' qn; 000)W(pp'qq', L~)P„(cos8), (24)

where 8 is the polar angle of lr'. This result is of course independent of p.
Introduce the Z coeKcient dered by

Z(c!bcd; ef) = ((2a+1)(2b+1) (2c+1)(2d+1))&C(acf; 000)W(abed; ef), (25)

and observe that we can replace (—)~ by (—)'+" by virtue of C(qI.q'; 000). Then the differential cross section can
be written

b'p2m~' 1

2 Z ~" "'+' '((2P'+1)(2q'+1))'
k 4 A.' ) 2j+1 uu'ca' &~

X (2P+1) (2q+1)R~.I,„R*;I.,C(PLP'; 000)C(qLq'; 000)

XC(Pqn; 00)0C(
'
Pqe; 000)Z'(lj l'j ', 2L)W(PP'qq', Le)P„(cos8) (26)

For calculation purposes it is useful to note

Z(lj l'j '; i~L) =0, for /+1'+L= odd, other—wise
= (—)' '*((2L+1)(2j+1))*'C(jLj'i 502)

The integrated cross section is

b' ~2m'' 1
2 (2p+1)C'(pLp" 000)Z (~j ~'j " 2L) I R~ I. I'

b 4 b' j 2j+1 ii'I

(27)

(28)

The factor Z(lj t'j '; —,'L) carries the selection rules on L which is the index on the angular momentum transfer
operator, Eq. (11),

l+I'+L=—even,

1+I'yL=O,

j+j'+L=0.

If the target nucleus has zero spin then there is the additional selection rule

L=J,
where J is the spin of the final nucleus.

"J.M. Blatt and V. F. Keisskopf, Theoretica/ Ezfclear Physics (John Wiley and Sons, Inc. , 1952), p. 793.

(29)

(30)
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Notice that the first of the selection rules above states that the parity change of the nucleus is (—)L, so that for
even-even nuclei, only states of even spin, even parity, or odd spin, odd parity can be excited in our theory by
direct-interaction scattering. Excitation of the other states requires a spin Rip between incident and emitted
particle.

3. Integration of the Radial Coordinates

We now show how the integration of the variable r2 can be performed in Rv L v[Eq. (13)] for the particular
choice of functions made here. The interaction potential is assumed to be Gaussian, so that we have

where @=cos8~2. Hence

leading to

V&= Vo exp( plri r

V0 expL 8(rl +r2')] ZL (2&+1)i'jL(—»pr» 2)l L(P)

vL(ri, r2) = —(2L+1)i Voj L( 2i—prir2) expL —p(ri'+r22)]

(31)

(32)

W pQQ

RV LV
= —i Vo dri ri'fv(kri) fv (k'ri) exp( —pri') dr2 r2'R*„.i. (r2) exp( —pr2') jL(—2iprir2)R„i(r2). (33)

0 p

For the bound-state radial functions E„g, the oscillator functions are used,

~—1 (n —1) (21+1)!!
R„i(r) =cV„~v'(vlr)' exp( —2vr') P l l (—2vr')",

k ) (21+2k+1)!!

(21+222 —1)!
2 —22 (l—n+2)~—

s

(e 1)!()+22—1)!—(2l+1)!

(34)

(The lowest oscillator state is given by n= 1 in this notation. ) Therefore we write

tR 1
—N llV 1 vi(v'r) exp( vr )

n+n' —I
Q (vr2) k=1

k=1
(35)

where nI, depends on ale'l' except n&=—1, and is defined by referring to the explicit form of R„&. Introduce the
dimensionless quantities

Then
y=v~r2, b= 2ipv 'ri— (36)

&& " dyy'+'+'jL(by) exp

Call

Then the integral over y is

s= 1+i'+2 (k 1), p= v/(—8+v)

pQQ

GL(s) = dy y'+2i L(by) exp( —y'/p)

Rv. Lv = —i V01V„1%„1 ~ dri ri'fv (k'ri) exp( —Pri') fv(kri)

P+ V 0+n, '-1
y2 Q ~ y2(k—1) (37)

(3g)

(39)

Konopinski" has illustrated the use of the following result in evaluating Slater integrals:

~J p

J„(ar) exp (—p2r2) r'dr = exp {—(a/2 p)'},
(2p2) @+1

(40)

which of course can be rewritten in terms of jL,. To arrange for the appropriate power of y to appear in GL(s) so
that Eq. (40) can be applied, use the fact that differentiation by (p28/8 p)

~ introduces the factor y'" into the inte-
grand. Then

~bL ) a y
-'*t~L&

G.(s) = -I p2
l

pL+-: exp{ b2p/4}—
2L+2 ( Bp)

' E. J. Konopinski, Indiana University (private communication).

(41)
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Note that s-L is always an even integer because

2g = /+/'+L= even,

as required by the factor C(/L/'; 000) appearing in the cross section.
This completes the integration of the variable r2. The integration over r& can be done explicitly if we make the

assumption that the direct interaction takes place when the incident nucleon lies on some interaction surface of
radius rp. For this purpose we insert the factor yb(ri —rp) into the ri integration (y has the dimension of length).
The result is

where

1
(//ro) ~+~'-1

R„r,= . (&—op—ro )& 8' i fv (k'ro) f, (kro)
I I 2 ~ig. (//'; L)

4 ( v2 I k=1

~
g L+o i- —

go(//'; L) =
I p —

I
p~+' exp( —(l —pP(v)Prp ).

ap)

(42)

(43)

4. Proyerties of the Surface-Reaction Model
of Direct-Interaction Scattering

It is shown here that if the direct interaction is a
surface phenomenon then the shapes of the angular
distribution and excitation function of the inelastically
scattered particles are rather insensitive to the force
range of the direct interaction, to the radial parameter
~ of the bound radial function, and to the single-particle
quantum numbers nlj of the bound nucleon, except as
they determine the allowed angular-momentum transfer
numbers L.

For a surface interaction as defined by Kq. (2) the
radial factor E„z,„,which appears in the expression for
the cross section, can be written

1
Rv z.„=pro'fv(krp) fv (k'rp)

2L+1

X~t dr r'R i *(r)vi, (rp, r)R i(r), (44)

For an even-even nucleus, only one J is allowed,
namely J =J. Only one term appears in the sum, and
no approximation is implied in writing Eq. (46) in this
case. Thus we see that the function a& becomes merely
a multiplicative factor, and the assertion made above is
true.

The foregoing discussion is valid in the limit of a
surface interaction. Such an interaction is of course an
idealization. Physically one would expect the inter-
action to occur throughout some region of finite
extension near the nuclear surface under those circum-
stances where a surface interaction is expected. Even
so the thickness of this region may be too small to allow
the incident nucleon to react sensitively to the radial
state of the bound nucleon. Moreover, if the interaction
region lies in the region in which the bound particles are
represented by exponential tails, it is clear that the
shapes (but not the absolute magnitudes) of the cross
sections are insensitive to the single-particle transition
in the nucleus.

where the notation of Sec. IV-2 has been used. Thus the
surface interaction causes a factorization of R„L,„in its
dependence on its indices. Referring to expression (26)
for the angular distribution, one sees that as a conse-
quence the cross section has the form

p(&)=Jr, ar. (8,v) Q bi, (k,k')P (cos8), (45)

where
ai, =a&(e/j ' e/ j Isv)

is a function of those quantities to which the cross
section is stated to be insensitive, arid

b&~ b&„(V,W,R I
kk')——

is a function of the optical-model distorting potential
whose parameters are denoted by V, 8', and R, the
real and imaginary well depths and radius, respectively.

One expects that when more than one J is allowed by
the selection rules, the smallest one, say A. , gives the
largest contribution to the sum. Therefore we can write
approximately

0(8)' a],(P,v) P„bi, ( ,k)kP„( coes). (46)

V. STUDY OF THE APPROXIMATIONS

Several approximatioris have been made in calculating
the cross section for direct-interaction inelastic scatter-
ing of nucleons by complex nucl. ei. We here attempt to
establish the significance of these approximations.

1. Square-We11 Distorting Potential

It is well known that a significant improvement in the
fit to elastic nucleon-scattering data was obtained when
the edge of the square-well optical potential was
rounded. "Nevertheless, because of the increased calcu-
lating time that use of a rounded optical potential
would require, a complex square well was used as the
distorting potential in the calculations for this paper.
However, several sample calculations were performed
with a rounded well, to ascertain the eGect of the
rounded edge.

It should be noted that a potential with a rounded
edge tends to cause less reflection of the incident waves
at the edge of the potential than a square well. Accord-
ingly, a square well that gives reflection at the edge
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FIG. 2. Comparison of calculated direct surface-interaction
angular distributions. of 15.2-Mev (lab} neutrons scattered from
the 4.43-Mev level in carbon using a Saxon well and a square-well
complex distorting potential. The cross sections are normalized
at their minima. Lengths are quoted in units of 10 "cm and
energies in Mev.
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Fxa. 3. Angular distribution of 14-Mev nucleons inelastically
scattered from the 4,43-Mev level in C". Curves compare the
Levinson-Banerjee calculation with the surface-interaction model
of this work, in which the same Saxon well potential was used for
the distorting potential. An interaction radius of 3.3X10 " cm
was used in the surface-interaction model. The Saxon well parame-
ters are listed in Fig. 2,

comparable to a Saxon-type optical potential requires a
deeper imaginary well depth than the Saxon potential.

In Fig. 2 a comparison is made between the angular
'distribution calculated from the surface-interaction
model, using a square and a rounded-edge complex
distorting potential, for inelastic scattering of 15.2-Mev
(lab) neutrons from the 4.43-Mev level in C".

This particular calculation agrees only qualitatively
with the experimental data, and is presented to indicate
to what degree the parameters defining a square well
can be chosen to yield a cross section similar to that
calculated with a particular set of Saxon-well parame-
ters. The shapes of the angular distributions agree quite
well, although the total cross section for the rounded-
well calculation is about 5.5 times that for the square
well.

It appears therefore that, by a suitable increase of the
imaginary part of the potential, the square distorting

potential can be made to yield the same shape of
inelastic angular distribution as the rounded well, but
with a change in the magnitude of the predicted cross
section by as much as a factor of 6. Therefore, the use
of the square well, with results suitably renormalized,
has the advantage of saving a substantial amount of
calculating time without sacrificing the ability to fit
experimental cross sections. On the other hand, it has
the disadvantage that it does not accurately predict
elastic angular distributions, so that elastic and inelastic
scattering are not fitted into a single consistent model.

1.0--

~ 0.8

s0
= 0.6
I
0
t0 pp
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FIG. 4. Angular distribution of 31.5-Mev alpha particles
scattered from the 4.43-Mev level in C". The curves compare a
surface and volume direct-interaction model in the plane-wave
Born approximation. The curves are arbitrarily normalized. For
the surface interaction, the interaction radius is 5.9X10 "cm.

volume interaction. This is compared in Fig. 3 with a
calculation for a surface interaction based on the same
distorting potential, except that the Coulomb repulsion
is not included. For the latter calculation an interaction
radius was used that is larger by about 10% than the
radius of the Saxon potential. Considering how sensitive
the cross sections are to the optical-model parameters
(Sec. VI), the agreement is quite satisfactory. Et
indicates that the main contribution of the volume
interaction used by Levinson and Banerjee comes from
the surface region, and corroborates our use of a surface
interaction. Moreover, the agreement implies, as earlier
discussed, that the shape of the cross sections is deter-
mined principally by the optical-model parameters and
by the allowed angular-momentum transfer numbers I;
not by the particle quantum numbers.

A comparison is made in Fig. 4 between plane-wave
calculations for 31.5-Mev alpha-particle inelastic scat-
tering from the 4.43-Mev level in carbon, " Here of

"H. J. Watters, Phys. Rev. 103, 1763 (1956).

2. Surface Interaction

Reasons have been given in Sec. III for expecting that
a surface interaction for direct reactions may be a good
approximation for a suitable range of incident energies.
Levinson and Banerjee' calculated the inelastic cross
section for 14-Mev protons on the 4.43-Mev level of
C', using a rounded-edge distorting potential, and a
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course the free-nucl'eon wave function is not damped
inside the nucleus, as it is for a function distorted by a
complex potential. As one might expect, the volume
interaction shows little trace of the di8raction minima
present in the surface-interaction angular distribution.
The volume interaction also reduces markedly the
scattering at larger angles, compared with the 6rst
peak at small angle.

Energy of
level (Mev)

0
0.803
1.45

Spin
Percentage admixture

(Pl/2) ~ (Pl/2f5/2) 1 (Pl/QP3/2)
-1

73 0 0
0 56 30
0 37 60

a See reference 20.

TABLE I. Percentage admixtures of the dominant configurations
in several states of Pb~6, ~

3. Exchange Forces

Throughout this work, a nonexchange force has been
used for the direct interaction. In addition, the wave
function describing the system of incident nucleon
plus bound nucleons has not been antisymmetrized with
respect to interchange of the free nucleon with one of
the bound nucleons, as required when all are identical
nucleons. Both the exchange force and antisymmetriza-
tion of the wave function have similar consequences,
so that we make no distinction between them in the
discussion of their omission.

Antisymmetrization gives rise to exchange integrals.
Therefore it is appropriate to examine the relative
magnitudes of the direct and exchange terms, which
have the form

D= (f, (ri)&~ (r2) l'12f, ( i)r&~( )r),

~= (f, (r2)~v(ri), &12f, (ri)A(rm)) ~

These integrals are quite sensitive to the degree of
overlap of the radial functions. The exchange integral
generally contains poorer overlap because a bound
radial function is associated with a free-particle radial
function, and the latter decays with an exponential
amplitude inside the nucleus. Indeed, the calculation by
Levinson and Banerjee' for C" indicates that the ex-
change contribution is very small.

For a zero-range interaction, the exchange contribu-
tion is precisely zero. For, in this case, the two nucleons
can interact only in the symmetric space state because
the direct and exchange integrals are equal. The matrix
element of the interaction accordingly is proportional
to 2D. The statistical weight of the space-symmetric
state is, however, 4. Hence the cross section is pro-
portional to

~
D

~

2. This result is equivalent to that which

would be obtained if nonsymmetrized functions were

used from the beginning.
In the limit that the direct interaction becomes

strictly a surface interaction as defined in Sec. IV, the
shapes of the cross sections, both total and differential,
become insensitive to the range of the direct interaction.
In particular, for a zero-range force the cross section is
independent of the symmetrization. Therefore, in the
limit of a surface interaction, the shape of the cross
section is approximately independent of the exchange
character of the interaction and of the possibility of
exchange collisions between identical nucleons.

4. Pure She11-Model States

differ by a factor of 100 in favor of the first. The relative
cross sections which lead to the final con6gurations
shown are listed in Table II. It is evident that the
excitation of both 2+ levels is due to the same con-
figuration component, and this component is excited
with a cross section large enough that the other com-
ponents and interference terms contribute negligibly.

In summary, it appears that none of the approxima-
tions introduced in our calculations introduces serious
errors, except for the error in magnitude, which can be
corrected by a renormalizing factor. It should be possible
with the model considered here to calculate angular
distributions for inelastic scattering nearly as accurately
as in a re6ned model which includes a rounded complex

well, a volume interaction, exchange forces, and mixed

con6gurations —re6nements, however, which would

greatly lengthen the calculating time.

TAm. E II. Calculated relative cross sections for excitation of the
dominant configurations in the two low-lying 2+ states of Pb~s.

Energy of
level (Mev)

0.803
1.45

Relative cross section
(P&/2f&/&) ' (Pv P /)

1X10 2

4X10 ' 1
4X10 '

Throughout the calculations in this work, pure shell-
model wave functions have been used to describe the
bound nucleons. If one were to admit configuration
mixing, interference terms would appear in the cross
section, and these cannot be evaluated as concisely as
has been done for the pure states. The justification for
use of pure states is that certain of the states of the
residual nucleus are excited with far greater probability
than others. Such states are those whose overlap with
the initial stage is large.

Consider, as an example, excitation of the 2+ states
at 0.803 and 1..45 Mev in Pb"'. The dominant con6gura-
tion admixtures for the states involved found by True
and Ford" are listed in Table I. The excited states are
seen to contain large impurities. However, the calcu-
lated cross sections for direct-interaction inelastic
scattering, which cause the singIe-particle transitions

3Pk ~ 3Pb

2f& —'3P;
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Energy of excited state,

Real depth of square well,

Imaginary depth of square well,

Radius of square well,

Interaction radius,

EI.=2 Mev,

V= —40 Mev,
5"=—12 Mev,

R=4X10 "cm,
Ez——R.

In Pig. 5 we compare cross sections for various
assumptions about the levels. Two curves correspond to
an even-even nucleus with two nucleons beyond doubly
closed shells. (Except for a multiplicative factor this is
the same as for closed shells. ) The curves corresponding
to a 2+ and a 4+ excited state show a marked differ-
ence in character. This suggests that the analysis of
inelastic scattering may be a useful tool in determining
the spin and parities of nuclear states, provided that in
the same nucleus one or more known levels may be
successfully analyzed to provide the parameters of the
distorting potential. Contrast these curves calculated in
the distorted-wave approximation with the plane-wave
result, which for the 2+ state is just j22(QR). The
latter predicts negligible scattering in the forward
direction, and is smoother than the cross sections
calculated in the distorted-wave approximation. This
comparison illustrates the dominant role played by the
distortion of the incident and emitted waves by the
nucleus. The remaining curve on this 6gure is calculated
for an odd-even nucleus having a single nucleon
beyond a zero-spin core. The single-particle transition
is d; ~ g~, which allows angular-momentum transfers
L=2, 4, and 6. This cross section is very similar to the
0+ ~ 2+ transition in even-even nuclei because

I.O

.= 0.6
0
C

.o 0.4
LJ
Q

o 0.2

0 50 60
I

90
Angle (degrees)

I

I20 I 50 IBO

Fre. S. Angular distribution of 15-Mev neutrons inelastically
scattered from a nucleus (A~30). The 0~2 and 0—+4 curves are
for an even-even nucleus with ground- and excited-state spins and
parities as indicated. The —;~ & curve is for an odd-even nucleus
which allows angular momentum transfers 2, 4, and 6. The O.p
indicates relative total cross sections when there are two nucleons
beyond closed shells in the even-even nuclei.

Vl. GENERAL STUDY

We wish here to report a few calculations for inelastic
scattering of 15-Mev neutrons from a hypothetical
nucleus (/f 30) to illustrate the sensitivity of the cross
sections to assumptions about the target. For this
purpose, we adopt as standard parameters the following:

the L=2 component is larger than the L=4 or 6
components.

In Fig. 6 two cross sections are calculated under the
same circumstances except that the excited state is
at 2 Mev for the one calculation, and 4 Mev for the
other. The curves are very similar, and probably this
is generally true as long as the energy of the excited
state is small compared with the incident energy. The
magnitude of the cross section is somewhat reduced
for the higher excited state, as expected from overlap
consideration.

In Fig. 7 we compare the angular distributions of
neutrons inelastically scattered from even-even nuclei
having several diGerent radii. Curves with constant
VE.' and 5'E' are similar, so that similar results would
be obtained by changing the depth of the distorting
potentials. These curves exhibit marked differences,
illustrating once again the dominant role played by
the distorting potential in determining the inelastic
scattering.

Figure 8 shows cross sections resulting from excitation
of odd-parity states in even-even nuclei. These cross
sections are small at forward angles, in contrast to the
forward peaking found in most calculations with no
parity change (Fig. 5 and 7). This qualitative difference
suggests that the parity change may be determined

experimentally by a very cursory examination of the
angular distribution. It is intended that a closer study
of this matter will be made at a later date.

We compare, in Fig. 9, calculations made by using
several values of the interaction radius Ez and imaginary
part 5 of the distorting potential. Increasing either Ez
or 8" tends to reduce the back-angle scattering relative
to scattering in the forward hemisphere. If 8' is varied
over a reasonable range of values, the direct-interaction
inelastic cross section decreases as 8" increases, while

the cross section for compound-nucleus formation
increases, or—more precisely —the cross section for all

other inelastic processes increases.

I.O

nergy level

nergy fevet
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FIG. 6. Angular distribution of 15-Mev neutrons inelastically
scattered from an even-even nucleus (2~30). The curves corre-
spond to states at 2 and 4 Mev, respectively. The single-particle
transition is the same in both cases and the spin change is
0+ —+ 2+.
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VII. COMPARISON OF THEORY
WITH EXPERIMENT

I. Introduction

In the preceding sections a model for the description
of nucleon inelastic scattering by direct interaction with
a bound nucleon has been presented. The calculations
reported below apply to uncharged particles, because
Coulomb distortion of the incident waves has not been
included. However, Levinson and Banerjee found for
proton scattering on C" that the Coulomb distortion
played a very minor role in determining the angular
distributions for incident energies greater than about
16 Mev. Because of this ending, and the fact that there
is a dearth of experimental measurements of neutron
angular distributions from resolved final states, we
include a comparison of the present theory with
charged-particle inelastic scattering.

2. Choice of Nuclear Parameters

It was pointed out earlier that, in the model of
inelastic scattering presented here, the shapes of the
cross sections are almost independent of the parameters
P, t, and Vo, the depth of the direct interaction. The
choice of values for these parameters is therefore not
critical.

The direct interaction parameters Vs and P are
chosen to be those which yield the correct e-rI, low-

energy scattering in singlet even states.

Vo ———32.5 Mev,

8=a.2922&& (1O-» cm)-s.

The parameter v which appears in the oscillator
radial function Lit exp (—t

gt r')] is determined by
requiring the classical turning point in the oscillator
potential to lie at some reasonable radius Ro. In par-
ticular we shall often choose E.o to be the radius of the
Saxon well at which a nucleon in the S state would be
bound with energy of 8= 10Mev. I.et Tobe the oscillator

1.0
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FIG. 8. Angular distribution of 15-Mev neutrons inelastically
scattered from an even-even nucleus (A~30). The levels excited
are odd-spin odd-parity states with spin changes as shown.
Relative intensities are shown by oq.

quantum number [iV& 2(N———1)+lj, which determines,
the energy of the oscillator state, E= (Ps+3/2)irido.
At the classical turning point we have

(iVp+3/2) 4)= V(Rp) = (1/2) Mto'Rp'.

Since t =Men/5, then

t = (2Xp+3)/Ep'.

Since, however, only one value of v can be used con-
veniently in the theory, we choose v to be the same for
both initial and final single-particle states, and equal to

t = (Xp+ alt p'+3)/Res.

In seeking to fit the theory to experimental angular
distributions, the usual procedure adopted was to
choose the radius R of the square-well distorting
potential to be approximately equal to that given by
elastic scattering data, and then to adjust V and W for
a best fit, where

Vdistorting= V+iW, for r(R
=0, for r&R.

The analysis of neutron elastic scattering by Beyster
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FIG. 7. Angular distribution of 15-Mev neutrons inelastically
scattered from an even-even nucleus (A~30). Curves show the
effect of changing the radius of the distorting potential. Changing
the depth of the distorting potential produces similar changes.
Relative cross-sections are indicated by az. The spin change is
0+ —+ 2+.

FIG. 9. Angular distribution of 15-Mev neutrons inelastically
scattered from an even-even nucleus (A~30), with excitation of
2+ states. The curves illustrate the effect of changing the imagi-
nary part of the distorting potential W and the interaction radius
Rl. The radius of the distorting potential is R, and its real well
depth V. Energies are quoted in Mev, and lengths in units of
10 "cm.



T308 NORMAN K. GI. ENDENNI NG

70

Proton (Peele)
~ Neutron (Nakada)--- Theory (Levinson)

Theory (this cwork)

........ [i,(aR)]'

U
0 50—8

E 40
C
0'= 30

Q 2

V

f

~ ~

0—

I
~

o+

0,--.----" "'
i

0 30 I50

IO—

I I

60 90 I20
An g le (de g ree s)

I80

Fxo. 10. Angular distribution of 14-Mev nucleons inelastically
scattered from the 2+ level at 4.43 Mev in C". The curves
compare the theory of this work and the theory of I.evinson and
Banerjee with the experimental data. The optical-model parame-
ters used in our calculation are listed in Table III.

et u/. 22 was used for guidance in the choice of optical-
model parameters.

3. Inelastic Scattering of Protons and
Neutrons from Carbon

There are more experimental data" "available on the
inelastic scattering of protons from the 4.43-Mev level
in C" than for any other level. There exist 14-Mev
neutron data also."

An attempt has been made to fit the data at 14, 19.4,
and 39.6 Mev (lab).

The excited state is assumed to be formed from the
ground state by raising a particie from the p; shell to
the p, shell.

In Fig. 10 the 14-Mev neutron and proton data and
the theoretical curve calculated by Levinson and
Banerjee' are compared with a calculation using the
theory developed in this work. The neutron and proton
data are very similar; the minimum in the proton data
near 90' is shifted toward larger angles by about 10', as
one would expect due to the Coulomb repulsions. "
Because the Coulomb distortion was not included in
our work, our curve should agree more closely with the
neutron data. The theory predicts a lower cross section
at angles less than 40' than is actually observed;
for larger angles, however, the agreement is quite
satisfactory.

It must be stressed that both our theory and that of

~ R. W. Peele, Phys. Rev. 105, 1311 (1957)."S.Chen and N. M. Hints, University of Minnesota Progress
Report, March, 1958 (unpublished).

"Anderson, Gardner, McClure, Nakada, and Wong, Phys. Rev.
Ill, 572 (1958).

"According to classical mechanics, a 14-Mev proton with
impact parameter equal to the C'~ radius would be scattered by
that nucleus through an angle of about 12'. The agreement be-
tween the experimental shift of the minimum in the proton and
neutron angular distributions and this prediction tends to confirm
our assumption of a surface interaction.
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FIG. 11.Angular distribution of 19.4-Mev protons inelastically
scattered from the 2+ level at 4.43 Mev in C".The optical-model
parameters are listed in Table III.

Levinson and Banerjee had to be renormalized. Our
calculation had to be multiplied by the number 220 to
get the result shown in Fig. 10.However, the calculation
was carried out with the length parameter y set equal
to unity LEq. (2)j. If instead one sets p equal to the
force range, and recalls from Sec. V that use of a square
well rather than a rounded well reduces the absolute
magnitude of the cross section by a factor of 5 to 6, the
discrepancy between calculated and measured cross
sections is reduced to a factor of about 14. Because of
the uncertainty in the factors just mentioned this must
be regarded as essentially in agreement with the factor

6 by which Levinson and Banerjee renormalized their
theory.

Figure 11 compares our theory with the experimental
proton data at 19.4 Mev (lab). The agreement is only
qualitative, and is not as satisfactory as the fit obtained
by Levinson and Banerjee.

Figure 12 shows the experimental data for scattering
of 39.6-Mev protons. The theoretical curve agrees only
qualitatively, exhibiting much larger oscillations than
indicated by experiment. It is interesting to note,
however, that there is evidence for alternate maxima
and minima at 90', 110', 140', and 180', which are
predicted by the theory. The size of the oscillations
would probably be reduced by allowing the direct
interaction to occur throughout a region of finite
thickness near the nuclear surface.

In Table III we summarize the parameters used in the
calculation of the inelastic scattering from carbon. The
imaginary part W of the distorting potential shows the
correct dependence on the bombarding energy. The
calculation at 39.6 Mev does not represent a very
thorough search for a best fit, and the parameters R
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and V might quite possibly be chosen di6erently, and in
better agreement with our expectations.

In summary we may say that a rather good agreement
of theory with experiment was obtained for 14-Mev
neutron scattering, but only qualitative agreement was
obtained with the two higher-energy proton experi-
ments. Even the qualitative agreement is, however, a
marked improvement over the plane-wave Born ap-
proximation which predicts distributions similar to the
one shown in Fig. 5 with very small forward scattering.

4. Proton Inelastic Scattering from Oxygen

100

50-

0
o lo

5
E
C0

YpI
o l.0

~&

'
~ ~ ~ ~

~ ~

--- Experiment
Theory

----
[) (QR)]'

~ ~ ~ ~

TABLE III. Summary of parameters used in analysis of inelastic
scattering from the 4.43-Mev level of C".

Energy RI
(lab system) (10»

Projectile (Mev) cm)

R
(10» V W
cm) (Mev) (Mev)

gaia

neutron
proton
proton

proton
proton

14
19.4
39.6

14
19.4

3.45
3.3
3.5

This calculation
3.2 35
2.98 35
3.2 35

Levinson-Banerj ee
2.98 ~39.4
2.98 34.4

10
14
20

' Normalizing factor by which theory must be multiplied to obtain agree-
ment with experiment.

"W. F. Hornyak and R. Sherr, Phys. Rev. 100, 1409 (1955).

Hornyak and Sherr'4 have measured the angular
distribution of 19-Mev protons inelastically scattered
from a number of states in 0". The most strongly
excited state is the level at 6.14 Mev. Its spin and
parity are known to be 3—.However, to illustrate that
the theory adequately distinguishes this from the
assumption that the level in question has spin and
parity 1—,two theoretical curves corresponding to
these assumptions, together with the experimental
results are shown in Fig. 13. For the theoretical curve
designated 3—,the single-particle transition 1ps -+ 1d~
was assumed.

The maxima and minima are predicted by the 3—
curve to within about 15' of the observed values. The
cross section in the backward hemisphere is too large
compared with the forward-hemisphere scattering. Since
volume interactions tend to reduce this ratio, the
agreement could probably be improved by taking these
interactions into account. Nevertheless the agreement
of theory with experiment is fair, and represents a
vast improvement over the simple plane-wave Born
approximation.

Just as for carbon, the calculated cross section (for
3—) has been renormalized, this time by a factor of 210.
Again if we set the length parameter equal to the force
range, and recall that use of a square rather than a
round distorting potential can reduce the absolute
magnitude of the cross section by a factor of 5 or 6, the
remaining discrepancy is a factor of 10.

The square-well parameters used in the above

0.5
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Fzo. 12. Angular distribution of 39.6-Mev protons inelastically
scattered from the 2+ level at 4.43 Mev in C".The optical-model
parameters are listed in Table III.

calculation were

V~= —(40+16i) Mev, for r(3.3S)&10 "cm

=0, otherwise,

and the interaction radius used was 3.6)&10 "cm.
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FIG. 13. Angular distribution of 19-Mev protons inelastically
scattered from the 3—level at 6.14 Mev in 0".The experimental
curve is a smooth curve drawn through the results of Sherr and
Hornyak. The calculation labeled (1—) corresponds to assuming
the excited state has this spin and parity, and is included to
illustrate that the theory can discriminate between various
assumptions concerning the spin and parity of the excited state.
The optical-model parameters are listed in the text.

S. Inelastic Scattering of Alpha Particles
by Carbon

Watters' has measured the inelastic scattering of
31.5-Mev alpha particles from the 4.43-Mev level in C".
He shows that the simple plane-wave Born approxi-
mation gives a reasonable fit to the data. The minima
of the plane-wave approximation are actually zero,
which does not agree with experiment. One might
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expect the zeros to be removed by the introduction of a
distorting potential. Several calculations have been
made in an attempt to fit the data with our theory, and
such a calculation is shown in Fig. 14. The theory gives
too large a ratio of maxima to minima, but this might be
removed by a more extensive search for a 6t. The first
two peaks are in agreement with experiment. At larger
angles, however, the experimental positions of peaks
and valleys are shifted toward larger angles. This could
be accounted for by Coulomb repulsion (not included in
the present theory) which would. be more effective for
large-angle scattering.

The optical-model parameters used for the curve
shown in Fig. 14 are

VD ———(20+14i) Mev, for r(3.1&(10 "cm
=0, otherwise,

and the interaction radius used was 81=5.5)&10 "cm.
It is not clear what depth one should adopt for the

direct-interaction potential. When the same value is
used as that quoted for nucleon scattering, the calcu-
lated cross section is smaller by a factor of 2.7 than
the experimental result. Of course some of this dis-
crepancy may be due to use of a square well. For square
wells with a depth of 35 to 40 Mev, we have seen that
the absolute magnitude of the cross section is less by
about a factor of 5.5 than for a corresponding calcula-
tion using a rounded potential. For our calculation we
used a real square-well depth of 20 Mev, so that it is no
longer clear what this correction factor would be.

The Bessel-function angular distribution predicted by
the plane-wave Born approximation 6ts the alpha-
particle scattering by both carbon and magnesium

quite well, " in contrast to the poor fit given by that
approximation to nucleon scattering by carbon and

Oxygen,
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FIG. 15. ¹utron-excitation function for the 2+ level at
0.803 Mev in Pb" . The theoretical curves correspond to inelastic
scattering by direct interaction at the nuclear surface. The
experimental curve is deduced from the work of Day and Lind.
The optical-model parameters are V= —40 Mev, W= —2.4 Mev,
and the radii in units of 10 "cm are indicated in the 6gure. The
theory was multiplied by a factor of 10 (see text).

6. Excitation Function for Inelastic Scattering
of Neutrons by Lead

The cross section for inelastic scattering of neutrons
from the 0.803-Mev level in Pb"' has been measured

by Day and I.ind' for incident energies up to 3 3~Iev.

The excitation function deduced from their data is
shown in Fig. 15. Also shown are calculations for the
excitation of this level, assuming a direct interaction
mechanism. As was pointed out in Sec. V, this level is
strongly admixed, and the (p,p;) ' component of the
level at 0.803 Mev is excited with an intensity 100
times as great as the (p~fi) ' component. The curves
shown represent the cross section for excitation of a
pure (p;p, ) ' level.

The calculated curves are less than yp of the experi-
mental cross section. However, recalling that the theory
ought to be renormalized as has already been discussed,
we see it is possible that the direct interactions may
contribute signiicantly to excitation of this level, even
at these low energies.

It is probable that compound-nucleus formation and
decay is the dominant mechanism at energies near
threshold. However, in Pb"' there are about 20 excited
states between 1.3 and 3.5 Mev, so that competition in
the decay of the compound nucleus amongst these
states may rapidly damp the compound-nucleus con-
tribution. The experimental cross section, nevertheless,
shows no sign of decreasing between 2 and 3 Mev,
indicating that the direct excitation may already be
making an important contribution to the excitation of
the 0.803-Mev level. The answer to these speculations

~' David Lind and R. Day (private communication).
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probably lies in the measurement of the angular
distribution. A simple calculation of the angular distri-
bution indicates that the forward-to-backward scatter-
ing ratio may be quite large.

7. Concluding Remarks
For inelastic nucleon scattering by complex nuclei of

more than a few Mev incident energy, a direct-interac-
tion mechanism is the predominant mode of excitation
of the low-lying nuclear levels, particularly those whose
overlap with the ground state is large, Inelastic scatter-
ing should therefore provide an important means of
studying these highly excited levels, because, as for
stripping reactions, the scattering depends on the
nature of the ground and excited states more intimately
than it does for scattering through a compound-nucleus
channel. That a few of the levels are excited much more
strongly than others by the direct interaction inelastic
scattering is important from the experimentalist's point
of view, because it means that the resolution of scatter-
ing events from various levels in the target nucleus can
more readily be achieved. The experimental work by
Cohen and co-workers on Pb"' indicates that only a
few states are strongly excited. '6 " Tamura and
Choudhury have met with some success in analyzing
these experiments, using the plane-wave Born-approxi-
mation model of direct interactions. "

We have compared the theory of direct interactions
developed in this work with some of the more appropri-
ate experimental measurements. It appears that within
the range of validity of the theory, sufficiently good
agreement can be obtained to permit one to deduce
information on the spins and parities of excited states
when the ground-state spin and parity are known. The
analysis would be particularly unambiguous if the
optical-model parameters could be fixed by fitting the
theory to the angular distribution from an excited state
of known spin and parity.

The modest success of our surface-interaction model
demonstrates the usually dominant role of the distorting
potential in determining angular distributions. The
extent to which the surface-interaction model is success-
ful measures the degree to which the cross section is
independent of the single-particle configurations in-
volved, aside from their importance in determining the
absolute cross sections (see Sec. IV-4). Nevertheless,
direct interactions will undoubtedly provide an im-

portant means of studying nuclear energy levels, and
may contribute to our understanding of the physical
significance of the optical model. In this connection,
Levinson and Banerjee' found that the optical-model
parameters that fit the elastic-scattering data are not
the ones that give the best fit to the inelastic data.
Indeed, in our calculations, the real part of the distort-

'6 B.L. Cohen, Phys. Rev. 105, 1549 (1957).' B. L. Cohen and S. %. Mosko, Phys. Rev. 106, 995 (1957)."B.L. Cohen and A. G. Rubin, Phys. Rev. 111, 1568 (1958).
» T. Tamura and D. C, Choudhury, Phys. Rev, 113,552 i1959l,

ing well depth was always smaller than indicated by the
elastic-scattering analysis. In particular, the parameters
used by Beyster et a).22 to fit the elastic scattering of
14-Mev neutrons by the 4.43-Mev level in carbon were
used by us to calculate the cross section for the inelastic
scattering, and the theoretical curve bore little re-
semblance to the experimental curve. It is not clear,
therefore, from these analyses that the optical-model
parameters for elastic scattering should be the same as
for mechanisms that contribute to the absorption from
the incident beam.
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APPENDIX

The cross section for direct-interaction inelastic
scattering can be simply written for the four cases:
1. One extra-core nucleon, 2. Closed shell nucleus,
3. Two extra-core nucleons, and 4. Two holes in closed
shell.

Define the differential cross section.

k' ~2nsq ' 1
~z(e) =

( [ g&()j )'~' L) p &rr'+s e'-—
l E hs ) 2j+1 rn'oa'~

X ( (2P'+1) (2q'+1) }*(2P+1)(2q+1)

XC(pLp', OOO) C(qr.q'; OOO) C(pqn; OOO)

Xc(p'q'n; 000)R„.I.,R*, r, .
XW(pp'qq'; Ln)P„(cos8),

and total cross section

k' (2m' ' 1
or, 4~

~

——
~

Z'(f j7j '; -', L)
u E I') 2j+1

Xp (2p+1)C'(pLp', 000) ~R„.„~'.

Then for the four cases listed above

&1 I &I )

os ——(2j+1)oJ,
03= 20 J)

o = (2j—1)'iZ- (g(~j)(~jljo) I'

where in the last three cases the ground-state spin is
zero, and the excited state spin is J. The symbol
(nIlIJ) is a coeKcient of fractional parentage

(~III~)=(j" '(~1)Jllj" '~)

where iV= 2j+1.


