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Stationary Nonequilibrium Gibbsian Ensembles*
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(Received January 6, 1959)

The general theory of a Gibbs ensemble representing a system in contact with its surroundings is applied
to several concrete situations of interest. By an appropriate choice of heat reservoirs a simply modified
Liouville equation is found to describe a heat conducting system. The stationary nonequlibrium 1-space
ensembles which describe such a system are found explicitly for some cases. In the simplest cases these
ensembles turn out to be canonical with a temperature that is a weighted average of the reservoir tem-
peratures. For other systems, such as Brownian particles inside a Quid whose temperature is not uniform,
we 6nd the stationary ensemble to terms linear in the temperature gradient. From this we are led to
discuss ensem'bles that will approximately represent an arbitrary heat conducting Quid. A more general
proof than previously given for the asymptotic approach of the I'-space distribution to its stationary value
is also presented.

I. INTRODUCTION

'HE theoretical investigation of the nonequilibrium
properties of macroscopic systems has proceeded,

with varying degrees of success, along the lines used for
the treatment of systems in equilibrium: thermo-
dynamics, kinetic theory, and statistical mechanics.
However, only in the case of equilibrium are the rela-
tionships between these methods, and hence their con-
sistency, completely established. In the domain of
nonequilibrium processes only the kinetic theorymethod
of Boltzmann has been exploited extensively. The appli-
cation of statistical mechanics and irreversible thermo-
dynamics has been confined mostly to systems not far
from equilibrium. In this paper we continue our effort
to develop a general Gibbsian statistical mechanics of
nonequilibrium processes. We try to find 1 -space
ensembles that will represent systems not in equilibrium
in the same way that the microcanonical, canonical,
and grand canonical ensembles represent systems in
equilibrium. There is of course no a priori assurance
that such a parallel can be made. After all, the class of
nonequilibrium states is richer and much more varied
than that encountered in equilibrium. Our main interest
however lies mainly in those systems which though not
i~ equilibrium are yet in a steady state, i.e., systems
through which stationary currents are Rowing or
which, subject to externally imposed periodic forces,
respond periodically. Since experimentally the behavior
of a large class of such systems is describeable by a few
characteristic parameters such as conductivity, vis-
cosity, etc. , we hope there may exist general Gibbsian
ensembles representing these systems.

In practice it is not usually necessary to know the
detailed F-space distribution of a system in order to
6nd its macroscopic properties. These are mostly ex-

pressible in terms of the reduced single particle and two
particle distribution functions. However, even aside

*This work was supported by the Air Force OfBce of Scienti6c
Research.

' For review and bibliography see E. W. Montroll and M. S.
Green, Ann. Rev. Phys. Chem. 5, 449 (1954); also D. ter Haar,
Revs. Modern Phys. 27, 289 (1955).

from the theoretical importance of the Gibbs ensemble
it might happen that, as in equilibrium, it will be more
convenient to 6rst find the E-particle distribution and
then by integration the lower order distributions.

Our approach has been described previously" and
we shall give only a very brief review here. We consider
an arbitrary system in contact with several heat reser-
voirs. The reservoirs are idealized models which have
the following properties: (1) They consist of an infinite
number of identical noninteracting components. (2)
Each component may interact with our system but
once. (3) This interaction is impulsive. These idealiza-
tions permit us to describe the time evolution of the
Gibbs-ensemble representing our system if we know the
stochastic kernel E(x,x'). E(x,x')dxdt is the conditional
probability of a system located at the point x' in its
I'-space at time t to have a collision with a reservoir
component, causing it to make a transition to the
volume element (x, x+dx), in the time interval (f, t+d/).

The equation governing .the time evolution of the
ensemble density p(x, t) is a generalization of the
I.iouville equation for isolated systems, taking account
of changes in p due to collision with reservoir com-
ponents. It has the form

rip(x, t)
+ (p)H) =

) fE(x)x')p(x', t) —E(x',x)p(x, t)]dx',
Bt

E(x,x') =P E (x,x'),

where E represents the effect of the nth reservoir
which in the cases we have considered is some kind of
temperature bath at temperature T .

The remainder of this paper deals with a system
placed between two specified reservoirs for which the
kernels E can be explicitly written. Section II
describes these reservoirs and finds the stationary
ensemble when their temperatures are equal. In Sec.

'P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 578
(1955); J. L. Lebowitz and H. L. Frisch, Phys. Rev. 107, 917
(1957).

'

' J.L. Lebowitz and P. G. Bergmann, Ann. Phys. 1, 1 (1957).
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III we simplify the right side of the generalized Liouville
equation changing it from an integral to a differential
operator. In Sec. IV we solve this equation to yield
stationary nonequilibrium ensemble for some very
simple systems. The stationary ensemble for a general
heat conducting system is treated in an approximate
fashion in Sec. V. Appendix I extends the proof of the
ensembles approach to a stationary state under the
inhuence of the reservoirs, previously given, and Ap-
pendix II is an extension of the theory developed in
Sec. IV.

II. DESCRIPTION OF THE RESERVOIRS

We consider an arbitrary physical system contained
in a cylinder whose ends are closed by two movable
pistons. The state of the inner system is specified by
the variable y= (ri, ,rz, p&, ,pz) that of the two
pistons by (Qi,Pi) and (Q2,P2) and the whole system
by x= (y,Qi,Pi,Q2,P2), Q&&g&. To the left of Qi there
is an idea, l gas (heat reservoir) of particles having mass
m&, density c&, and temperature T&, while to the right
of Qg there is a similar reservoir of particles having
masses m&, density c2, and temperature T2. It is clear
that the only system variables which will change discon-
tinuously during a collision with a component of
reservoir one or reservoir two are E~ and P2, respec-
tively. We shall thus have Ki(x,x') =Ki(Pi,Pi')
X6(gi—Qi')5(y —y')8(Q2 —Q2')8(P2 —P2') and a similar
expression for K2(x,x'). Hence our basic equation, Eq.
(1.1), will assume the form

Bp(x,I)
+ (p,H)

[Ki(P1 Pi )p(y Ql Pi Q2 P2 ~)]dP1

Ki(Pi', Pi)p(x, t)dPi'

+J~[K2(P2 Pi')p(y, gi, Pi,g2 P2 I)]dP2

)I K2(P2', P2)IJ, (—x)&)dP2') (2.1)

where

H(x) =Hs(y)+ U (ri, . r~,gi, g2)

+PP/(2Mi)+P, /(2M, ) (2 2)

We now assume that prior to collision the particles of
each reservoir have a Maxwellian distribution of
velocities with their respective temperature Tj and T~,
and that the density of the particles is uniform every-
where outside the pistons. These assumptions are cer-
tainly not satisfied exactly by any real gas and neither
is it possible to find a rigid piston, whose state is com-

pletely specified by its position and velocity, in nature.
As was stated however in the introduction it is known
experimentally, and we hope that it is possible also to
prove mathematically for our model, that all the
important features of the stationary state of a system
conducting heat are independent of the details of the
interaction with its surroundings.

Using the laws of conservation of energy and mo-
mentum during a collision, 4 we get

Acm (M+m)'
K(P,P ') =

(2s.m kT )l(2m. M )'

Xexp—
[(P P')+—(m./M ) (P„+P ')]'

Sm kT
(2.3)

where a=1, 2, 3 is the area of the piston and e is
Heaviside unit function

e(s) =1, s)0,
=0', &0.

'

+ .—(Z 1)e PIH+))2A Q~»A Q)]— — (2.4)

where p =c„kT is the pressure of the nth reservoir and

g(2' p p ) = ~ e eÃ+»"@~ »i@)~dx (—23)1) 2

4 See appendix of reference 3.

The presence of the unit function is due to the fact
that during a collision Pj can only increase and E2
decrease.

This model can be made much more realistic if we
imagine each piston to consist of E parts which are
held tightly together by strong forces but are not rigidly
fixed. The state of the nth piston would then be specified
by (O,P )=(Q ', ,Q ~,P.', . ,P ~,s ) where s
stands for all those variables not affected during col-
lisions. The momentum of each part of the piston would
now change independently during a collision with a
reservoir component. The stochastic kernel K' (P,P ')
will now be a sum of lV kernels K I'I(P ',P ").When
the area a and mass m„of each part of the pistons is
held constant then the total area and mass, A and M,
are proportional to E . Such a piston will approximate
a physical wall when the structure of the wall molecules
is unimportant in collisions with reservoir components.
We shall however not consider this more complicated
model in detail but shall sometimes indicate how our
formulas are to be modified to apply io this model.

When the temperatures of the two reservoirs are
equal, T&= T2= T, we expect the stationary state of the
system to be one of true equilibrium. We can indeed
find the stationary solution of Eq. (2.2) for this case.
It has the form
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and no heat would be conducted across the system.
This is of course not the kind of system we are interested
in. To tackle the true nonequilibrium situation we
simplify the structure of the right side of Eq. (2.2).
First we make the hypothesis that the mass of the
pistons is much greater than the mass of the reservoir
particles, y = (m /M )«1. We now use the known
result that the integral operator on the right of Eq.
(2.2) is equivalent to a differential operator of infinite
order. ' That is, for an arbitrary E,

In order that Z be finite, i.e., p,, normalizable, the system
must be conhned to a limited region of physical space.
This is accomplished if there is some term in H which
prevents Qi, when Pi&Ps, from assuming infinitely
large negative values. If piston two has no external
forces acting on it then the pressure inside the system,
p, equals ps and p, has the form

(2.6)(g i)e p[—rr+y—v+(y yi') A Q—zl

oo ] dolt

t [t'"'(P)I (P)j, (3 1)
n=i~t dP'&

O', ["'(P)= K(P',P) (P P') "dP—'.

The change from the integral to the differential operator
can be made separately for each E . We have

where V=A(Qs —Qi) is the volume of the system.
When Ps= pi, or when Qi, is held fixed, p, has the

form usually assumed for an ensemble representing a
~

[E(P,P')Ir(P') K(P'—,p)lr(P)7''
system at Axed pressure. ' It is gratifying that we get
this ensemble, approached asymptotically in time for
arbitrary initial conditions. The fact that only the
temperature and pressure of the reservoirs enter into ~h~re
the description of the stationary state of the system
lends strength to our belief that the details of the
interaction between system and reservoir are not im- 4

portant for the final state.
It is interesting to note that the quantity

(I l
W= Ii in' —idh

(p, ,)
8["'(P)=P O',.[ &(P)

which we show in the appendix to decrease mono-
tonically until the stationary state is reached is simply
related to the Gibbs free energy G(T,p). We have

IV= I &Dn&+p(a+pV)+lnZ]a*=pa G.,](kT)—
(2.7)

K.(P.',P.) (P P.') "dP.'—,

and for the kernels considered here

8 ["'(P ) =(c,Ay [" "~'/4(2rrkT„M ')'*]

This is completely analogous to the monotonic decrease
of the Helmholtz free energy for a system whose sta-
tionary state is represented by a canonical ensemble. "

III. SIMPLIFICATION OF KERNELS

The solution of the time independent part of Eq.
(2.2) becomes much more difficult to find when the
temperature of the two reservoirs is not the same. Even
the form of the solution will now necessarily depend
somewhat on H. To take a very extreme example; let
the system consist of two separate parts, each inter-
acting with but one reservoir, i.e.,

&=&tb t Qi Pt)+&sos Qs Ps) 3 = b t,3"-).

The stationary ensemble would now be a product of
two equilibrium ensembles,

&
—(gt t) e Pi [rri m& Qil—(g ——i) e

—A—[as+us& Qsl

'E. A. Guggenheim, J. Chem. Phys. 7, 103 (1939l; see also
T. L. Hill, Statistical Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1956), p. 60.' If the pistons are tied down to some equilibrium positions by
very strong forces, then our system would in effect have a constant
volume and the stationary solution would be the canonical
ensemble appropriate for such systems.

(y.)isP.
X 1+ +0(y ) ds. (3.2)

2M kT

When only terms of 0( (y ) '*) are kept in the differential
operator' above, then Eq. (2.2) assumes the form

BIJ,(x,t) c[P c[P
+ (IJ,,H) = —PtA +PsA

BPJ BP2

where

+ 2 (4P-I )+ (D-I ) . (3.3)
BP~ BP~

It =c A(8y kT /7r3f )', D =It 3E kT .

' J. Keilson and J. E. Storer, Technical Report No. 33, Cruft
Laboratory, Harvard University (unpublished), or see M. C.
Wang and G. E. Uhlenbeck, Revs. Modern Phys. 17, 323 (1945).

These are the lowest order terms which contain the essential
features of the reservoirs.

The right side of this equation has a structure
similar to the usual Fokker-Planck equation where ptA
and (—p&A) is the average force exerted by the reser-
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Bp B—+(t,H')= 2
Bt

D exp/
2M

voirs on pistons i and 2 and X is the friction coeScient.
Note that if the nth reservoir were on both sides of the
0.th piston then the average force term would vanish
and the friction constant would be 2X . The average
forces can be included in the I iouville term by de6ning
a new Hamiltonian H', H'= H+p2AQ2 —piAQ1. The
fundamental equation whose stationary solution we
want is then

P X.T.~-&=+ X.T.= (P ),.) T, (3.I0)

is the heat current in the stationary state. We expect
the following relation to hold in general T~&T~&"&
&T2& &) T2 where M kT ~"~ —=(P ') is the wall tem-
perature. The physical meaning of the expression for
J' is obvious. J' is proportional to the deviation of the
mean kinetic energy of the 0,th piston from the equi-
librium value it would have if it were only in contact
with the nth reservoir. It is a further consequence of
Eq. (3.9) that, in the stationary state,

8 (P P')
X exp I lt, (3 4)

BP (2M J

where use has been made, in the last expression, of the
relation between X and D. After this simpli6cation of
the kernels the total entropy production 0 can be
written down easily. The entropy produced in the 6rst
reservoir is 0'1= —(Ji'/Ti) where Ji'= Ji P,Ad(Q1—)/dt
is the heat current Rowing into the system from that
reservoir; J& being the energy Rux. Similarly for the
second reservoir

d(Q )
&2 (J2 /T2) T2 J2 p2+

dt

where T is the weighted average temperature of the
two reservoirs.

It also follows from the de6nition of A. that J and 0-

are proportional to the area of the piston so that a heat
Rux per unit area, j, can be de6ned. The quantity
(X /A) plays the role of a heat conductivity across the
interface between piston and reservoir. In the more
realistic case described after Eq. (2.3), of a piston con-
sisting of T parts, the mass of the piston 3f is replaced
by m &") the mass of one segment of the piston, in the
expression for the heat Rux.

IV. SIMPLE STATIONARY ENSEMBLES
while

d(H) d(H')=Ji+A; =Ji'+ Ju'.
dt

The rate of entropy change in the system is

p lnpdg — P I lnpdg
dt" & clt

We find from Eq. (3.4) that

J.'=Z.[kT. (P.')/M. ],—

We consider here some very simple systems for which
exact stationary nonequilibrium ensembles can be found.
First we consider the case of one piston between two
reservoirs. The position and momentum of this piston
are designated by (Q,P), and its Hamiltonian is
h(Q, P) =P'/2M+ V(Q). Equation (3.4) will now have

(3 5)
the form

BI1(Q,P, t) 8
+ (t1,k') =P D exp[ —(P P'/2M)]

Bt ~ BP

0 =01+C2+ = k p D ~~ exp( —p P '/4M ) (t1)
—I

X [exp(P.P'/2M)t ], (4.I)
BI

..=(~-) -p[-Pk'(Q, P)], (4.2)

where k'= k+ (P~—P1)AQ. Equation (4.1) has the time
B independent solution

[exp(P.P '/2M )p] dx&0. (3.6)
BI'

In the stationary state where

so that

d(H')
=0=Ji'+Jg', J =J ', (3.7)

P=(Z D-P-/2 D-)=(kT) '
T= [cl(ns,T,') +c2(nz, T2') ]/

[c1(miT1)**+ c2(nz2T2)'*]. (4.3)

and) lf TyQ T2) J=4k(T1—V') =Ã2k(T —Tu)(T1—T2)

[~1~2/(~1+I12)]k(T1 T2) '
(44)J—=J1=X1(kT1—(Pi')/M1) =X2((PP)/M2 —kT,) &0.

(3.9) c =J(T1 Tg)/T1T2-
=[()1),2k)/(X, + X,)T,T,](T,—T,) .' S. Chandrasekhar, Revs. Modern Phys. 15, 1, (1943).

The stationary heat Rux J and the entropy production0= —(Jl Tl J2 T2 J1 T1 T2 T1T2 &0)r ~are (for T &T)
3.8
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The magnitude of J will be determined primarily by
the reservoir with the lower value of ). It is that reser-
voir which imposes the limit on the transport of heat.

The stationary nonequilibrium ensemble found here
for a simple pistion can be extended immediately to a
piston consisting of E parts. The Hamiltonian of such
a piston is

(4.6)

where s stands for all those pairs of canonically con-
jugate variables which do not change during a collision.
The equation governing the time evolution of this
system's ensemble is similar to Eq. (4.1),

8p, N—+(t,~') =2
i=1 0.=1'2 ~pi—

(p p2)
D 'exp —

I

2m, ~~&

8 t' (P.P2 i
I

e pI Is I, (4.7)
cjP; ( ~2222 &"& j

where in order to get the right side of this equation we
had to assume 2' «221, &"&. Equation (4.7) again has the
stationary solution

t1,= (Z ') exp[ —(PX')3, (4.8)

with P given by Eq. (4.3). This average tempera, ture is

the same for all parts of the piston being independent
of the mass m,'") and the area ai of each part. The heat
Qux j across this piston will be proportional to

[2 o*(~" ') '/2 ~'3

but will not depend otherwise on the structure of the
piston.

The stationary ensembles found here for these simple
systems may have some relevance to the kind of en-
sembles we may expect for a Quid between two tem-
perature reservoirs. They suggest that, as a, starting
point, we might isolate (mentally) a narrow cylinder of
Quid perpendicular to the temperature gradient and
consider the Quid to the right and left of this cylinder
as two temperature baths. These baths will tend to
bring this cylinder of Quid into a canonical distribution
with a temperature intermediate between those of the
sides. Thus a kind of local equilibrium can exist in the
Quid. This similarity will be clarified by treating a
system whose surroundings have a continuously varying
temperature.

Our system consists of a dilute concentration of large

From the expression for I1 given in Eq. (3.3) we get for
the heat current per unit area

j =J/A = (Sk'/2rM2)'*(T, —T,)
X [clc2(21222122T1T2) *j/[(cl 2121T1) + (c2 2222T2) 'j (4 5)

l9p

+(t1,H) =Q—[E (R: P,P')t2(R, P', t)

where

—E'(R P' P)p(R, P,t)]dP', (4.9)

H=P2/2M+U(R),

E (R:P,P') =E.(R: P n., P' n.)8(PXn.—P'Xn.),

and the summation is over all solid angle elements. The
stochastic kernel E is essentially the same as the one
in Eq. (2.3)

0'd2c.m (mt+ M) 'c.( R)E.= e[(P—P') n.]I(P—P') n„I
(2n.mkT. (R))-**(2mM)2

Xexp
[(P—P') n„+(m/M)(P+P') n ]2

821tkT (R)
, (4.10)

where nz is the mass and c (R) =C(A+ann) is the con-
centration of the gas particles.

When we convert the integral stochastic operator
into a differential one and keep only the lowest order
terms in (2I/M), we get the following equation for

spheres, i.e., Brownian particles, embedded in a gas,
treated as a reservoir, whose temperature varies with
position. Since the concentration of the Brownian par-
ticles is assumed dilute we shall neglect the interaction
among them and only consider the ensemble density in
the F-space of a single such particle p, (R,P,t);
R= (X,I',Z). This distribution will change under the
influence of the system Hamiltonian H(R, P) and due
to collisions with the gas particles. Such a collision will
occur whenever the distance between the centers of the
Brownian particle and some reservoir particle is equal
to 0-, the sum of their radii. The velocity distribution of
the gas particles just prior to a collision is again assumed
to be Maxwellian with a temperature T, and concen-
tration c, that depends on their position during a col-
lision, i.e., on the surface of a sphere of radius a. centered
at R. In accordance with the approach of this article
we shall not consider how such a reservoir could be
maintained.

In order to treat this syetm by the methods de-
veloped before, we divide up the surface of the collision
sphere of radius 0- into small elements of area
dA =0-'dm, where dx is an element of solid angle.
All the gas particles which during collision, with o

Brownian particle located at R, have their centers ii.
dw will form one reservoir with temperature T (R)
=T(R+On ), where n is a unit vector in dw . Evi-
dently collisions with the nth reservoir will a6ect only
the component of the systems momentum in the
direction of n, i.e., P n . We may now immediately
write down the generalized Liouville equation for
t (R,P, t).
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Ii(R,P, I),

8p
+—(I,a') =P.~'die. (X.V~(T n.n.p)

83
+D ~p, ~p(n n.p) }, (4.11)

where
H'=H+P p. (R) 'd„.(R n, ),

p =c,kT, D =MkT X,

and X„ is the friction constant for a plane piston per
unit a,rea given in Eq. (3.5),

X.= (c./M) (8mkT. /m-) l.

where we have assumed for simplicity that the external
forces are along the X-axis, the direction of the tem-
perature and concentration gradients.

We shall now find the stationary solution of Eq.
(4.14) for the situation in which the change of the
reservoir temperature is very small in one "mean path"
of the Brownian particle. In effect we will expand the
stationary nonequilibrium ensemble density, which is a
solution of Eq. (4.14), in powers of ~rv d lnT/dR~
where r(E) = [1 (R)] ' is the relaxation time and e is
some characteristic velocity of the Brownian particle.

We first write the stationary ensemble density Ii(R,P)
in the form.

p(R, P) =e(R)F(R,P); F(E,P)dP=1, (4.15)If it should happen that the temperature and con-
centration of the gas are the same everywhere then the
summation over n, or integration over dm, can be
performed explicitly, yielding the well known Fokker-
Planck equation for a, Brownian particle, ' "

where rp(R) is the density and F(R,P) the momentum
distribution of the Brownian particles. Letting R stand
for differential operator on the right side of Eq. (4.14)
we may rewrite the stationary part of Eq. (4.14) in the
form+(p,H) =fMkTV p

Bt

with f=(4/3)m. o.9 the friction constant for a large
sphere in an ideal gas also found by Green. "For com-
parison, the friction constant of a Brownian particle in
a liquid is related to the viscosity of the liquid p by the
well known Stokes relation /=6 sgrI/Mbut Eq. (4.12)
is otherwise unchanged. The stationary solution of this
equation, for constant T and c, is evidently the canonical
ensemble at temperature T.

In general the temperature and concentration of the
reservoir gas will vary but little over the distance 0-.

We may therefore expand these quantities about their
value at the point E,

F =p( )'rF; a= Q(r)'ri;, Ii= nF =Q(r)'Ii, , (4.17)
i=o i=o i=o

(4.18)Fi——IR
—

'[Fp(luego, X)], I o
——ripFp.

The functions m, as well as the integration constants
appearing in Eq. (4.18) can be determined by con-
sistency requirements. In particular we must have

F,dP=O, 7'a. PF;dP=O, i)0. (4.19)dT ( dlnT )'
T (R)=T(R)+en. +O~ e

dR & dR
(4 I 3) This leads to the following expressions for the stationary

ensemble density to first order in the gradientsdc ( dlnc )'
c.(R) =c(R)=on +Oi o.

dR E dR

r(R) (nF, 3C) = ~pIII(F —F,), (4.16)
pP'q ~ (pP'y

exp] — [Vp exp( ~p, (4.12) where Fo=[2prMkT(R)] l exp[—p(R)P'/2nz]. Here Fp
2M~ - ~2M~ is the locally canonical distribution which is the zero

order solution of Eq. (4.16). Writing in general

X exp
( p(X)P') ( (p(X)P') )

Vp( exp
2M ( 2M

jp2 jp2 dp
BC= +V(X)= +U(X)+—proPX

2M 2M 3 dx
'o J. G. Kirkwood J. Chem. Phys. 1.4 180 (1946)"M. S. Green, J. Chem. Phys. 19, 1036 (1951).

and keep only the terms linear in the gradients. When
this is done in Eq. (4.11) we find the following equation
for p(R,P,I) to term linear in o ~d 1nT/dRt,

L9p—+(IJ,, X,) =l'(X)MkT(X)VP

Ii=yo+ (r/3)Pp [P'/2M —', kT(X)]Px/M-
dX

J dV
1pp =BP(X) exp — ' P dX

dX

(4.20)

where 8 is a normalization constant. This e represents
a balancing of the external forces by the pressure
gradient of the Brownian particles, p clearly reduces
to the canonical distribution when the temperature
gradient vanishes.

The form of the stationary ensemble (4.20) is re-
markably independent of the detailed properties of the
reservoir and its interaction with the system. Thus we
would obtain the same stationary ensemble, (to first
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order), if we had started [instead of Eq. (4.14)] with a
relaxation type equation

Bp pp —P—+ (p, 3'.)=, r'= (r/3) = (3i)-'. (4.21)
Bt r

We shall use this fact to guide us in the construction of
approximate stationary ensembles for a general heat
conducting Quid which we shall do in the next section.

V. APPROXIMATE STATIONARY ENSEMBLE

In this section we will discuss some ensembles which
we believe to be similar to the true stationary ensembles
representing a system conducting heat. Restricting
ourselves to a one component monatomic system, the
Hamiltonian H(x) [or H'(x)) has the form

N
t

pP
H(*)=2 —+!2 V(,;)+~( .—Q.)+~(Q.— )

i=1 2m 7gi

+h'(Qz, Pz)+h'(Qz, Pz), (5.1)

where $ is the interaction potential between particles of
the system and the pistons. Both t and V are assumed
to have a range which is very small compared to any
distances over which there is a variation in the bulk
properties of the system. We always have Q& & x, &Qz,
(x; is the coordinate along the cylinder axis).

We have seen in Sec. III that when only piston 1 or
piston 2 is in contact with its reservoir, then the system
ensemble will appraoch and remain in a canonical dis-
tribution with temperature T& or T2. The way in which
this canonical distribution is approached will of course
vary with the type of potentials & and V, the density
and size of the system, as well as the form of the
ensemble at 1=0. However, except for a rarefied gas
(Knudsen gas) where the mean free path is of the same
length as the system, we may expect the evolution of
the system to proceed as follows. First, collisions
between the molecules will tend to set up a kind of local
canonical distribution in each region of the system.
These local distributions gradually become more exactly
canonical at the temperature of the reservoir, as the
effects of the reservoir are propagated via collisions
between the molecules.

When the two pistons are in contact with different

reservoirs, there is a competition between the efforts of
eachreservoir tobring the system to its own temperature
This will lead to some new kind of stationary ensemble.
The results of the last section suggest that if we look
at some narrow region of our system, its distribution
should be almost canonical with a temperature inter-
mediate between those of its neighbors. The tempera-
ture gradually changing from nearly T& to nearly T2

as we cross our system from left to right.

This idea can be made very precise when dealing with
the lower order distribution functions. It forms the
starting point of the Chapman-Enskog solution of the
Boltzmann Equation, ~ of the Bogoliubov" virial ex-
pansion and the Born-Green" "normal solutions" for
the zz-particle distribution functions f, zz«E. These
authors were interested in the evolution of the general,
even if not the most general, time dependent state of a
system. They could therefore not say anything about
the higher order, particularly the E-particle, or I'-space
distribution. These could be expected to depend sensi-
tively on the initial conditions for very long times.
Since our interest here lies in the stationary distribution
which we have shown to be independent of the initial
conditions we shall take for the zero order form of zz(x)
something that corresponds to local equilibrium zz&(x).
The corrections to p& we have to get in a very rough
way, but are probably qualitatively right. They are
proportional to the temperature gradient. If the tem-
perature of the two reservoirs is kept fixed while the
length of the system and the number of particles in it
are permitted to increase indefinitely, then we expect
that p& will approach the true stationary distribution.

To represent explicitly our assumed local equilbrium
solution, we write H as a sum of /+2 parts

H= P h;(p, ,r,Qz, Qz),
i=p

where

h, =p /2zzz+-,' Q V(r;;)+t(x,—Qz)+$(Q, —x;),

(5 2)

1 (i &cV, (5.3)

&&o=/z'(Qz, Pz), h~+z ——Iz'(Qz, Pz), r = (rz, . ,re).

hi represents the energy of the ith molecule in the field
of all the other molecules and the walls. Thus the mean
internal energy per molecule at the position r is simply

U, (r) = 1'zzZz(x)6(rz —r)dx ) Zz(x)5(rz —r)dx .

(5.4)

The local equilibrium ensemble p~ is of the following
form:

zzt(x) = (Z~ ')[g(2zrzzzkT(r, )) &]
i=1

N+1
&& p( + [&( ')h'+&( *)j) (5 5)

i=p

where ZE is a normalization factor and @ is related to
'2 S. Chapman and T. G. Cowling, The Mathematical Theory of

nonuniform Gases (Cambridge University Press, London, 1939).' N. Bogoliubov, J. Phys. U.S.S.R. 10, 265 (1946).
'4H. S. Green, The Molecular Theory of Fluids (Interscience

Publishing Company, Inc. , New York, 1952).
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the density in physical space N(r)

1 (P(r,)+P(r;) )
n(ri)=e —~i"'& I exp ——Q! !V(r, ,)2'~( 2 )

+P p(r, ) dr2 . d.ry

What we have done so far has been completely
formal and rigorous. We now make the drastic assump-
tion that in tkeietegrat of (5.8) where very small weight
is given to exceptional initial states x, we may approxi-
mate P (x,x'/t) by some "relaxation time" type P, (x,x't).
P„(x,x'/t) represents a system which forgets its initial
state exponentially,

/P(r')+P(r ) ~
)"exp —-P! '

!V(r,i)

K

+Q 4(r,)
!
dri dr~, (5.6)

i=1

where, for simplicity, the boundary terms have been
omitted from the last expression. We will choose P(r;)
and @(r,) later to satisfy certain consistency conditions.

We write now p= p&+tii and substitute this into Eq.
(3.4), giving us

~P, 1 P. P(Q.)—
+(t i,&)= (»t i)+2

Bt a=1

P(Q.)P.'
X ~ —

p&

8 ! $ PP2) 8—
+ gD, exp!

BP I 0 2M )BP

X exp! !ti, !. (5.7)
&2M ]

The stationary solution p&(x) of Eq. (5.7) is

P (x x'/t) = e "ti(—x x')+—P(x, t), (5.10)

P(x,t) can be arbitrary as far as we are concerned since
it makes no contribution to (5.8). The time r must be
related to the macroscopic "relaxation time" of the
system (i.e., mean time between collisions for gases and
the reciprocal of the Kirkwood' friction constant for
liquids. ) This relaxation time is a local property and
depends on the temperature and density in each region
of the system. We shall therefore assume ad hoc a
r, (P(r;), e(r;)) for each term in the sum in Eq. (5.9).

These ~; have no direct relation to the properties of
the reservoirs. The reservoirs establish and maintain
the stationary ensemble but, we believe, do not influence
its actual form except near the boundaries. Their role
is somewhat, but not completely, analogous to that of
walls all at the same temperature in equilibrium.
However, the distinction between the boundaries and
the rest of the system can have meaning only for those
properties of the system which can be associated with
a definite position (or small region) in physical space.
These include the lower order distributions f, after
suitable subtraction of their asymptotic values. It is for
the calculation of such quantities that our approxi-
mation might be valid.

Putting in our relaxation assumption in Eq. (5.9) we

find to terms linear in the temperature gradient, which

are the only ones we shall consider,

p, (x) = dt dx'P(x, x'! t)t'ai(x') (H(x'), 1npi(x'))
J,

P(Q.') P.-P-(Q.')-P."
~+ P D. 1— !, (5.8)

M M

dP dn(P(r'))
gati(x) =alii(x)g r, h,+ (p;/m)

dr; dP

BV(r;i) p;
)

l'81'; m

where P(x,x'/t) is the solution of Eq. (3.4) for t&0
with the initial condition P(x,x'/0) =b(x —x'). "For-
getting" about the surface terms, we can rewrite the
above equation as

p&(x) =P dt dx' P(x,x'! t)pi(x')

(r,')[h, (x') —-', kT(r )]+
dr, ' dr, '

8V(r,g') p.
+-' E[P(r') —P(» )j — (5 9)

Ie Br m

where iI=&(r,)——,
' 1nP(r~)=it(P) to first order in the

temperature gradient. The term p1 will give rise to
small correction terms for the macroscopic properties

of the system whenever ! rw!«!d lnT/dr!, e being a

representative molecular velocity. For a gas this

amounts to having a very small change in temperature

within one mean free path.
In order to make Eq. (5.11) definite, we have to

determine P(r) and it(r) [or g(r)$ within our approxi-

mation. We find N(r) by requiring that the pressure p
be uniform inside our system. [We shall see later that
this also makes the mean flow velocity u(r) calculated

from Eq. (5.10) vanish. $ The temperature T(r) must
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1&(ri) =n'(ri)kT(r, )l
V'(r)

n2'(ri ——,'r, ri+-,'r)
r

rr d'r=pl,

be such as to make the heat Rux j constant. This Qux
is equal to the energy Rowing from the reservoir at
the left into piston 1 and from this piston to the mole-
cules adjoining it, flowing out again into the second
reservoir through the second piston. These conditions
are sufhcient to determine the temperature (mean
kinetic energy) of the pistons and the system inside.

It is easy to see from symmetry considerations that
neither the density n (r) nor the two body position dis-
tribution n2(ri, r2) can have any terms linear in the
temperature gradient. Hence, they will not depend on

pl. We then have for the pressure tensor IP

our approximation =f12+f,'

fi"=n(ri)[22tmkT(ri)1 l exp[ —p(ri)p12/2m7, (5.17)

dT
~

82I
fi'= fi'ri[n(ri)mkT(ri)] ' pi'/2m+ —n(ri)

dr, I ap.
1

+ l n2(rl r2) V(r12)dr2

1 ~ )pi
n, (r, , r,+ r) r V'(r)dr —.

lm

For a gas the potential energy terms are negligible and
fi is equal to that gotten from the solution of Boltz-
mann's Equation by a relaxation method.

The requirement that there be no net mass Row in
the stationary state gives

where the superscript zero designates quantities cal-

culated from p~ only to terms of zero order in the tem-

perature gradient. We shall usually omit the super-

script on those quantities which have no terms linear

in the gradient. It follows further from symmetry con-

siderations that the pressure tensor will be equal to
its equilibrium value at T= T(r), n= n(r)

pifi(ri pi)dpi

j. r

(nk T)+
l

——V(r12)n2 (r, , r2) dr2
nfl 2 ~ 8rl

dp =0. (5.18)
ZI'l

II(r,)=D„.(n(ri), T(ri))= p., l.

The density is therefore determined by the equation

clp) dT(r, ) ( dn ) dT

Bn) ct. di'1 &dT~ p const d=ri

(5.14)

dn(r~) (cjp

EgT

f2'= f1'(ri Pi) fi'(r2, P2)g.(r», P,n), (5.19)

where we have used the integro-differential relations
(g ]33 between rll and e~ mentioned before. Hence, the re-

quirement that the pressure be constant insures that
there is no mass Qow.

The two particle distribution function f2(ri, r2, pi, p2)
is symmetric in the indices 1 and 2. It is given to first
order in the temperature gradient by f2'+ f2'

The relation between the diferent order configura-

tional distributions n, (ri, ,r,), calculated from pt

can be expressed by integro-differential equations of

the type derived by Hogoliubov for equilibrium. This
leads to an explicit equation for g

where go is the equilibrium radial distribution at a
temperature and density which is a symmetrical average
between their values at rl and r2,

f2 I(rl r2 pl p2)+I(r2, rl p2 pl)

8'g—= —U, (n, T) p(n, T)/n— (5.15)
I=f,'(n.. ') r, pi'/—2mi+-2 V(r, 2)

dll

e=kT, Q y(r,). (5.16)

The single particle distribution fi(ri, pi) is found in

which together with Eq. (5.13) determines 2I(p). These
integro-di8erential equations also permit a virial ex-

pansion of the e, in powers of the average density N.

It is interesting to note that for a gas of hard spheres

the configurational part of p~ is equal to what it would

be if this gas were in equilibrium at a temperature To

in an external force field derivable from a potential C

cjiI[tl(ri)$ 1
n2+ — V(r, 2)ns'(r, ,r, ,r,)dr,

BP ~ 2~

+-
~

(r2 —ri) V(r, s)n2'dr, —
ar, 'Im

Pi+ P2
+-(r2—ri) V(r»)

4 Brl
n, . (5.20)

From this expression we can calculate the heat Aux
j and hence determine T(r) We can also fi.nd from p
the higher order distributions f but we shall not give
any details of those calculations here.
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APPENDIX I We further have from the linearity of the equation

It was shown in reference 3 that the quantity 5', for P that
defined as

W(t)= '

t (x,t) iny(x, t)dx; y(x, t)=t (x,t)/t, (x),
r a,nd by definition, t4(x) must have the property

A1.1

where t4 is a stationary solution of Eq. (1.1), is greater
than zero when p, (x,t) Wti, and has the property that

ti, (x) = ~P(x,x'i t)p, (x')dx'. (A1.6)

,

i E(x,x')ti(x', t)J J

y(x', t) y(x, t)
X ln + —

1i dxdx'&0. (A1.2).y(x, t)' y(x', t)

The integrand in (A1.2) will be zero only for those
pairs of points x,x' for which either E(x,x') vanishes or
g(x)=g(x'). This implies that W will continue to
decrease towards its minimum value until p is constant,
or p(x, t) is proportional p, (x), inside those regions A;
of I'-space where E(x,x') WO for x,x' both in the same
A;. This by itself is clearly insufficient to show an
over-all asymptotic approach of p(x, t) towards p, (x)
when, as in the case considered in this paper, the sets
A; are of a much lower dimensionality than the whole
I'-space (i.e., of measure zero). It was therefore argued
there that W should continue to decrease until g is
constant inside all regions 8,, defined by the property
that a system starting at a point in some 8; can reach
any other point in the same 8; region under the combined

action of its natural motion and collisions with reservoir
components, In this appendix we formalize and make
more rigorous the arguments given in reference 3.

The proof given here will also apply directly when
the stochastic operator on the right side of Eq. (1.1)
reduces to a I'okker-Planck type differential operator.
For the kernels considered in this paper Eq. (1.1) is
then transformed into Eq. (3.4) and (A.2) assumes the
form, after some integration by parts,

8 2

= —P D ti, (x)PQ(x, t)$ '
Q dx&0. (A1.3)

BP

This quantity will vanish whenever Bp(x)/BP =0
Since Eq. (1.1) is of first order in time and H and E

are time independent the probability density ti(x, t)
behaves like a Markoff process. Hence the conditional
probability P (x,x'/t) dx of finding the system in

(x, x+dx) at time t if at t=O it was known to be at
x' will satisfy the Chapman-KolmogoroG equation

I et us define a new function:

W(t) = I (x,t)y(x, t)dx (A1.7)

The difference between W +i =—W(t„+i) and W =W(t„)
for t +»&t, can now be written in the following form.

I (x,t~,)y(x, t„+,)dx t (x,t.—)y(x, t.)dx

P(x,x'I t-+i t )t (x'—)y(x t +i)y(»t )d~x'

P(x,x'~ t„+,—t„)t .(x')y'(x, t~,)dxdx'

"P(x,x'i t„+i t„)t,(x')y'(x—',t.)dxdx'

J P(x,x'~ t„pi—t.)ti, (x')

&& fy(x, t„+i) y(x', t„)]—'dxdx'

The integrand will vanish only if P(x,t„+i) is constant
and equal to g(x, t„) in each set 8,, for if x, x' and x" are
all in the same set 8, then for some value of (t~i —t„)
P(x, x'~ t„+i t„) and P(x—", x'~ t~i —t„) are both
greater than zero and we must have P(x,t~i) =P(x', t„)=
p(x",t„+i) if W +i is to equal W . This shows that
W(t) will continue to decrease until IJ,(x,t) =a,tI„(x), a;
constant, in each 8;. In general we expect there to be
only one set, 8», consisting of the whole phase space.
When that happens the constant of proportionality will

be unity because of normalization. When there are
several 8; there will be a different stationary ensemble
fox each di6erent initial distribution of systems over
the 8;. Inside each 8; the diferent densities will be
proportional to each other.

P(x,x'~ t) &0, P(x,x'~ t)dx=1.

(A1.4) APPENDIX II

In this appendix we consider in more generality than
done in Section IV, the problem of a simple system,
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like a Brownian particle, interacting with several
reservoirs when the e8ect of the reservoirs on the time
evolution of the distribution function of the system is
expressible as a Fokker-Planck type differential opera-
tor. A possible example of such a system might be an
atomic particle moving in a plasma of ions and electrons
which have different temperatures for times suKciently
long for this particle to come to a stationary state. A
di6erent example, may be found in the case where the
different degrees of freedom of the molecules of the
medium through which our particle is moving are not
in equilibrium with each other.

Consider a particle moving in such a three dimen-
sional isotropic medium. Calling the distribution
function of our system, (particle), f(Q, P, t) and its
Hamiltonian h, h(Q, P)=P'/2M+V(Q) we will ha, ve
the following equa, tion for f
af P af av af—+— — =E ~'L&.f+~.(D-f)j (A2 1)
at MaQ aQ aP

It is now our result, which is a generalization of Eq.
(4.2), that the curly bracket in the above equation will
vanish for

f= exp( —@),

dP (P')
Q D Q D d(P') (A2.5)
0.'d p2 0.'

The constant of integration can depend on Q. We
therefore have that when p can be chosen to be a
function of h only, or if the I iouville term vanishes, and
D is independent of Q, then exp( —p) is the stationary
solution of Eq. (A2. 1).

When 2 (P)=X P then g =P a+constant, and Eq.
(A2.5) reduces to the stationary solution ti, of Sec. IV,

ti, = (Z ') expL —Ph(Q, P)$. (A2.6)

The heat cruxes J are now given by

J-=».I (P-)-'-(P)-'j, 2 J.=0. (A2.7)

where (2 )~,=X (P', .P~;), i=1, 2, 3 and D„=D (P')
have essentially the same interpretation as the quan-
tities defined in Eq. (3.2) except that we now permit
them to depend explicitly on Q and P. Further we do
not require that the reservoirs themselves be in true
equilibrium, it is sufhcient that they have a stationary
(or approximately stationary) distribution.

In many cases the Liouville term in Eq. (A2. 1) is
zero because there are no external forces and f is spa-
tially homogeneous. In any case, let f =e & be the
solution of the equation

Lg~ =—

apy aa p ti api all p =p
L,g, y Wa. —(A2.8)

From Eq. (A2.7) we get for the case considered here

aJ, 3x, -g.(x.~p.) 1-w.,
+—;X=+ X, (A2.9)

apg x x pg apg pg

The Onsager relations for the type of Qows encoun-
tered here were discussed in reference 2. It was proven
there that, in the stationary state,

~p. p, f+~p(D f)]=0 f =f (p2 Q) (A2.2) which, when all p are set equal to some p, gives

2 f = vp(D f ). — (A2.3)

Hence the right side of Eq. (A2. 1) can be written in the
form

(".f)
i=& QP~i OPS

(A2.4)

This implies, by the condition of isotropy and nor-
malizability, that (A2. 10)

We see from (A2.9) that in the nonlinear region, where
the heat cruxes J are not proportional to the thermo-
dynamic driving forces, (P—P ), then aJ~/aP&A aJ&/aP~
so that the J cannot be derived from a potential, which
has sometimes been suggested as a generalization of the
Onsager relations.


