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When a generally radial electric field is imposed upon a mirror magnetic field configuration, the resulting
system has an increased ability to contain plasma between the mirror regions. The motion of the ions con-
sists of a drift around the axis of symmetry upon which is superimposed a spiralling motion. The guiding
center motion departs from the direction of magnetic fIux surfaces. An adiabatic invariant is derived for
the drift component of the motion, and an expression is derived for the mirror enhancement brought about
by the E&(B drift. The departure of the guiding center of a particle from a Qu~ surface and the energy
balance of its secular motion are calculated by using the adiabatic invariant.

I. INTRODUCTION

HE term "magnetic mirror configuration" is used
to describe an axially symmetric magnetic Geld

with lines of force tending toward the axis on each side
of a central plane and constricting at two points along
the axis. At these points the field intensity is a maxi-
mum, and between them it has a minimum. In this
field configuration there are many orbits for charged
particles which are bounded between the regions of
maximum field, that is to say, between the magnetic
mirrors. Typical orbits are spirals around the direction
of the magnetic field. They are contained because as a
particle moves toward stronger field regions, kinetic
energy of motion along the lines of force is transferred
to energy of motion around the lines. The possibility of
confining high temperature plasmas in mirror systems
has been studied extensively by Post and collaborators, '
who reported results of their experimental and theo-
retical investigations at the 1958 Geneva Conference. '

In the present note we shall derive some properties
of particle orbits in a magnetic mirror configuration
with an added external electric field orthogonal to 8 as
shown in Fig. 1. It will be shown that the leakage of
particles through the mirrors is less than in a mirror

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' R. F. Post, Bull. Atn. Phys. Soc. Ser. II, 8, 196 (1958).
2R. F. Post, "Summary of the UCRL Pyrotron Program, "

Proceedings of The Second United Rations International Conference
on the Peaceful Uses of Atomic Energy, Geneva, September, 1958
{United Nations, New York, 1958).
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configuration without an electric field. ' At the 1958
Geneva Conference some results of experiments with
such systems were presented. '' In the following we
shall call the arrangement an electrified magnetic
mirror.

Below we discuss the single particle orbits in the elec-
trified mirror configuration. A plasma drifts in the di-
rection orthogonal to the electric and magnetic fields,
in this case around the axis of symmetry. The particle
motions of interest consist of the drift superimposed
upon helices whose average direction slightly departs
from that of the magnetic field. Starting from the exact
single-particle Hamiltonian, an adiabatic invariant of
the drift motion is derived, and an approximate analy-
tical expression for the enhanced mirror confinement is
given. The adiabatic invariant is used to calculate the
guiding surfaces of the ions and the energy balance of
their secular motion along the axis of the mirror con-
figuration. Exact numerical calculations of the mirror
enhancement are also given.

3 Although the authors arrived at their conclusions regarding
this mirror enhancement produced by the E)&B drift independ-
ently, the effect of centrifugal force in preventing particle escape
out the ends of an electrified magnetic mirror was recognized by
O. A. Anderson and W. R. Baker in 1956.

4Anderson et al. , "Study and Use of a Rotating Plasma, "
Proceedings of the Second United Nations International Conference
on the Peaceful Uses of Atomic Energy, Geneva, September, 1958
(United Nations, New York, 1958).

5 K. Boyer et al. , "Theoretical and Experimental Discussion of
Ixion, A Possible Thermonuclear Device, Proceedings of the Second
International Conference on the Peaceful Uses of Atomic Energy,
Geneva, SePtember, 1958 (United Nations, New York, 1958).
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II. PARTICLE ORBITS AND THE
ADIABATIC INVARIANT

We consider the electrified magnetic mirror arrange-
ment of Fig. 1. The electric Geld E is assumed radial at
the central plane and everywhere normal to the B lines.
Such an electric field of course requires a space charge
distribution in the mirror region. This requirement can
be satisfied experimentally because the electrons of a
plasma can move easily in the direction of the magnetic
field, tending to neutralize any component of E parallel
to B. It is convenient to define the following angular
velocities of a particle:

Oi~ =cE/Br,

(u, =eB./mc, (2)
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FxG. 1. Schematic diagram of an electrified magnetic mirror.
The solid lines represent the magnetic Geld and the dashed lines
normal to them the electric Geld.

Since H is independent of 8, pg is a constant of motion
and may be regarded as constant in (7) for a given par-
ticle. Then (7) may be regarded as the Hamiltonian of
a particle moving in two Cartesian dimensions, v s and
r, in an eGective potential U given by the sum of the
last two terms in (7).

We consider first the case with no electric field, V= 0.
For definiteness, we consider a positive particle and take
tP positive. A positive particle which does not encircle
the axis will have 8=0 at some point on its orbit.
Equation (8) shows that such a particle has positive
pg. Therefore, for a given value of s, pg

—P will vanish
at some radius, and the effective potential will be zero
and have a minimum at this point. The locus in an r-s
plane of these minima forms the bottom of a potential
trough with the minimum following a B line. The two
dimensional particle moves in this trough, oscillating
between the two Qux surfaces for which U equals the
total energy. The bottom of the potential trough is the
locus of the guiding center of the particle, while the
oscillations represent the cyclotron motion about the
guiding center.

If there is an applied electric field, the equipotential
surfaces of U will be altered. For a given value of s, the
minimum of U occurs where BU/Br=0 Evaluating.
BU/Br, one finds

where e is the charge of the particle and m its mass. "

If the particle drifts about the axis with angular velocity
coD there will be equilibrium between the centrifugal,
electric, and Lorentz forces so that there is no net accel-
eration in the radial direction. In Eq. (3) the sign of the
radical is chosen so that in the limit of weak electric
fields (~sero, ), cuD approaches —cvs, which is the angu-
lar velocity of the E&&B drift.

The magnetic field, which has no 8 component and
which has axial symmetry, can be derived from a vector
potential with only a 0 component, A&. We define a Qux
function

such that 2gr(c/eg is the flux enclosed in a circle of
radius r. The potential energy of a particle is

V= e4,

where C is the electrostatic potential function. Since
/=constant describes B lines, and since B lines are
equipotentials, it follows that

V= V(iP)

The Hamiltonian of a particle in cylindrical coordinates
under the inQuence of these fields is

II=p '/2m+ p '/2m+ (pg —f)'/2mr'+ V, (7)
' Gaussian units are used throughout.

8
mr3

1 e
(Pg iP) rB. eL~'„=—0. — —

mr2

Substituting expressions (1) and (2) for cue and co, and
solving, one finds

pg
—P = —mr'(co /2) L1—(1—Cue/co, )&j. (10)

If there were no electric field (~~——0), this would give a
minimum at pg

—/= 0 as before. The right-hand side of
Eq. (10) measures the amount that the guiding center
of a particle of given pg departs from the Aux surface
P(r, s) =pg= constant.

Equations (10) and (3) state that for motion along
the potential minimum,

pg ip= mr'a) D Lo, — ——

where I.~ is the angular momentum of the particle drift
motion under the combined action of centrifugal, elec-
tric, and Lorentz forces. Thus, for particles which
oscillate but stay near the potential minimum, we may
say that Lri+iP is an adiabatic invariant, which we
shall call A. Since Ln and iP are functions of position

~ This method has been found previously to be convenient, by
T. Northrop and collaborators, in discussing the problem of the
nonadiabaticity of particle orbits in mirror magnetic Geld
configurations.

For particles which encircle the axis, the analysis is only
slightly modified.
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only, so is A, and a surface A = constant thus determines
the path of a particle's guiding center. We shall use the
A invariant in Sec. IV to calculate the departure of the
guiding center of a particle from a Qux surface as well
as the energy balance of its secular motion between the
mirrors.

One can determine the direction of departure of the
guiding center from a Qux surface as follows: returning
to Eq. (11), let us make the approximation of small E

I.D = mrc—E/B, (12)

and take the case where E is negative. Then pg
—P is

positive at the potential minimum. Since on a Qux sur-
face, rE is roughly independent of z, and since 8, is
larger in the mirror region than at the central plane,
pg —P is less positive at the mirror than at the center.
Therefore P must be greater in the mirror than at the
center, or the guiding center moves outward across Qux
surfaces as it enters the mirror region.

III. EFFECT OF THE ELECTRIC FIELD ON THE
LEAKAGE FROM THE MAGNETIC MIRROR

In order to calculate the leakage from the mirror in
the presence of the E&&B rotation, it is convenient to
make a transformation. We define an equivalent Qux
function P which includes the effect of the raCha/ varia-
tion of V. Let us pick a given pg and a given z and define
f' by requiring

(P& P)'/2mr'+ —V(r z) = (P„—P')'/2mr'+E(z). (13)

Here E(z) is taken to be the minimum value of the left
hand side for the given value of z. This allows pg
to vanish at the minimum, and therefore allows P' to be
a smooth, monotonic function of r, as it ought if it is to
represent an eGective Qux function which still looks like
that for a mirror device. Solving (13) for 1t', we find

i.e., the minimum value is the nega, tive of the quadratic
term evaluated at the position of the minimum. Thus
E(z) is the negative of the term (py —f)2/2mr' evaluated
at the minimum. But at the minimum, pe f is given-

by Eq. (11).Thus

E (z) = ——,'mvD2,

where vD=rcoD is the drift velocity evaluated on the
same flux surface (of P') at each z. In the small E
approximation

vi) =cE/B. (17)

to the simple one offending the effect of the longitudinal
electric fleld, or of the potential energy E(z). We shall
first determine E(z) in the small E approximation which
led to Eq. (12).

E (z) has been defined as the minimum (in r) of the
left hand side of Eq. (13). This minimum is near the
point ro where P=pg [i.e., the bottom of the trough
when V(r,z) is neglected). Let us expand the effective
potential about this point, letting @=r—ro. Then

(pe P)—'/2mr'= Ax'

V=Bx+C,

where A, 8, and C are constants. V is a roughly loga-
rithmic function of r, and we have kept constant and
linear terms in its expansion. The constant C is the
value of the potential V at the point where/= pe, which
is a 8 line, so that C is a constant independent of z also.
A and 8 depend on z.

Now the minimum of Ax'+Bx+C is at x= B/2A—
and the value at the minimum is (apart from the con-
stant C, which can be neglected).

182
(A x'+ Bx+C);„=———= —A (x;„)',

4A

P'=Pg+ [(Pg—P)'+2mr'(V —E)]'*, (14)
Now on a given Qux surface,

where the minus sign is taken for r inside the minimum
and. the plus sign outside.

The Hamiltonian (7) can now be rewritten,

II=p, '/2m+ p,'/2m+ (pg P')'/2mr'+K(z). (1—5)
so that

B 1/r',

E 1/r,

v D (z)-r (z), E(z)-—r'(z)- —1/B(z). (18)
This is the Hamiltonian of a particle in a mirror mag-
netic field corresponding to f with a longitudinal elec-
tric field whose potential is E(z). There is no radial
electric field, and hence the E&(B rotation has been
eliminated in the main. The rotation would be elimi-
nated completely if the new electric field were parallel
at all points to the new magnetic field. This condition
would hold quite closely if we had found the minimum
of the effective potential by taking its derivative in a
direction normal to its trough instead of in the r direc-
tion. However, for a mirror field in which the 8 lines
never make a large angle with the axis, we have elimi-
nated most of the rotation.

The problem of the mirror reQection is now reduced

Thus the potential energy E(z) is more negative in the
center of the machine than in the mirror, The potentia. l

difference from center to mirror is such as to prevent
particles from leaking. To determine the effect on the
leakage, we use the fact that

w

i+wan

i+ E (z) =constailt

for the motion of a particle along a flux tube (w, and
w„are the perpendicular and parallel kinetic energies).
Thus

wi(c)+ w„(c)+E(c)=w&(m)+w~ ~ (m)+E(m),

where c refers to the center and nz to the mirror. But,
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from the adiabatic theory where we have used the constraint imposed by the
adiabatic invariant. Finally, m& is the kinetic energy
associated with the cyclotron motion about the drifting
guiding center. zv& always obeys the adiabatic relation

tv'(5$) = tv'(c)R,

where the mirror ratio E. is defined by

(24)R= B(m)/B(c).

regardless of whether the electric field is present or not.
If the electric field is not present, the terms mD and V
disappear from Eq. (22); then the constancy of W to-
gether with Eq. (24) lead to the usual formula for the
reRection of the particle by the mirror, namely Eq. (20)
without the last term on the right. This term, as we
shall see, comes from the terms tvn+ V when the elec-
tric field is present.

In order to pass through the mirror, a particle must have
tv„(m)&0. Thus, for leakage

tv„(c))tv, (c) (R—1)+E(m)—E(c)
& tv'(c) (R—1)+-,'mvzP(c) (1—1/R). (20)

The last term gives the effect of the E(s), and this term
makes it more difficult for a particle to leak. If the par-
ticle motion is generated impulsively from rest, as it
might be in practice, -,'mv&' is about equal to tv&+tvit).

In going from Eq. (17) to the final result (19) we
have neglected the difference between the actual field
8 and the effective field connected with P'. This dif-
ference is a higher order eGect.

i
f

l
I

I
I

OUTER
ELECTRODE
NEGATI VE

5-

UJ

CL

~K
QZz&~O
O 0
O~O
OZ~
O Z

ZK
O

C9~
Cf mr,O-

O

IU. ENERGY BALANCE OF THE
SECULAR MOTION

In this section we shall show how the result of Eq. (20)
can be derived by considering the particle energy and
the constraint imposed by the adiabatic invariant

20Kv

A=Ln+P= constant (21)

of Sec. II, without making the transformation of
Sec. III. To this end it is convenient to split up the total
energy 8' of the particle as follows:

5-

(22)W= tv»+tvi+tvD+ V.

Here zoll is the kinetic energy associated with the com-
ponent of velocity parallel to B, and V is the electro-
static potential energy. ~D is the kinetic energy associ-
ated with the drift motion about the axis

I I I I I I

2 3 4
x

tvii = LD'/2rrw'= (A P)'/2mr'— (23) Fxo. 3. Computed values of the change in macroscopic energy
of a deuteron as it moves from the central plane into the mirror
of an electrified magnetic mirror arrangement (solid curves). For
comparison it —1/Rl times the drift kinetic energy at the central
plane is also plotted against the radial position g, at the central
plane (dashed curves). The curves are labelled by the value of
electrostatic potential applied at an outer radius of 12.6 cm.
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According to Eq. (23), the differential of tv' when the
particle moves along a A. surface is

AtvD = 2tvDar/r oinAP, — —(25)

where o&n is the drift angular velocity given by Eq. (3).
In the approximation of small E used in Sec. III,rr i I

TrlQ)D= —COg= V, (26)
X

C

where the prime denotes differentiation with respect to
P. The second term of the right-hand side of Eq. (25)
is then just the negative of the change hV in the elec-
trostatic potential energy of the particle. Hence

&w~+ 6V= 2wrphr/r= —(mv D'/r) Ar. —(27)

FIG. 2. Computed relationship between the radial position x,„
(in units of the reference radius e;) at the mirror and the corre-
sponding position x, at the central plane of the guiding center of a
deuteron in an electrified magnetic mirror configuration. The solid
curves are identified by the applied electrostatic potential at an
outer radius of 12.6 cm. The dashed curve refers to the case of no .
electrostatic Geld.
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This energy change comes from the work done against
the centrifugal force associated with the E)&B rotation,
For a mirror ratio E. not greatly diGerent from unity
in the small E approximation

2hr/—r=AB/B= (1—1/R). (28)

(BP/Br) g = —(BLr)/Br) g= 2L g)/r—, (30)

where additional terms involving co~/a&, as a factor have
been neglected. Therefore in the small E approximation

When this approximation is used in Eq. (27), one sees
that the change in (wD+V) contributes exactly the
last term in Eq. (20).

We can rewrite AV using Eq. (26) as follows:

AV= V'hg=(ug(8$/Br)phr (29)

Using Eq. (26) in the expression (11) for Ln and dif-
ferentiating Eq. (21), we find that

-3.2
43

-2.8
~ CI
UJ ~"2g «24
LLl ~
CZ

-Z.o
~ I-
l U.
o~4 o -l.e
4. ~oo
LLjm~ -la~ C9
~ Kr+oxo -0.8

-0.4—

6V= 4zv g)Ar/r, —

and Eq. (25) becomes

(31)

xc

hwD= 2wDdr/r. (32)

C = s inLP/P, (r,)], (33)

where f, (r,) is the Aux function on the central plane at
some reference radius r;, chosen as 2.86 cm and s is a
constant. For simplicity the magnetic field was taken
to be uniform in both the central plane and the mirror
with respective values of 5.00 and 13.25 kilogauss
(2=2.65). Potentials of +20, —20, +40, and —40

Thus the drift kinetic energy decreases as the particle
moves into the mirror (Ar/r negative). The increased
mirror containment comes from the fact that the in-
crease in electrostatic potential energy as the particle
crosses Aux surfaces is approximately twice this de-
crease. in experiments on electrified mirrors one would
expect to see a smaller plasma drift velocity in the
mirror than at the corresponding radius on the central
plane.

Numerical calculations were carried out to find the
changes AzvD and AU as well as the departure of the
guiding center of a deuteron from Aux surfaces in an
electric and magnetic field configuration approximating
that of the Los Alamos experiments. ' Using the exact
expression (3) for the drift angular velocity, the energies
z D and V were computed at the central plane and the
mirror on a A surface for an assumed electrostatic po-
tential distribution.

FIG. 4. Computed values of the ratio of the change of potential
energy to the change of drift kinetic energy of a deuteron as it
moves from the central plane to the mirror of an electrified mirror
machine versus the radial position x, at the central plane. The
curves are labelled by the values of electrostatic potential applied
at an outer radius of 12.6 cm.

kilovolts were assumed to be applied at r=12.6 cm in
the central plane.

In Fig. 2 is plotted the radial mirror position
x = r /r; of a deutron against its corresponding central-
plane position x,=r,/r, The str.aight line through the
origin corresponds to a Aux surface on which x =x,/E'*.

In Fig. 3 the solid curves represent the variation of
the mirror enhancement energy (hV+AwD) with x,.
The dashed curves show for comparison the drift energy
at the central plane multiplied by 1—1/E. For large
values of x, the two sets of curves coincide, in agreement
with Eqs. (20) and (27). However, for small values of
x, the centrifugal eGects cause a separation of the two
sets of curves.

The ratio AV/Awo is plotted against x, in Fig. 4.
For large values of x, the ratio approaches the value
—2, in agreement with Eqs. (31) and (32).
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