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Geometrical Significance of the Einstein-Maxwell Equations*
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Rainich geometries are analyzed in terms of the invariants associated with the Ricci vierbein of principal
directions. At any point the four unit vectors of the vierbein pair of7 into two blades which contain the
maxima and minima directions of mean curvature, respectively. The blades can "mesh" into smooth integral
surfaces for certain electromagnetic fields. In general, neighboring blades are shown to be related by only
two independent differential conditions.

R=0. (2)

I. INTRODUCTION

HE Einstein-Maxwell equations govern the gravi-
tational behavior of classical electromagnetic

radiation. Considerable interest attaches itself to elec-
tromagnetic fields which are non-null, in the sense that
the square of the Maxwell stress tensor is greater than
zero, '

p2 =—~R&,R p)Q.

When this non-null condition is satisfied, the whole
content of source-free electrodynamics and Einstein
gravitation theory is contained in the statement that
the space-time geometry satisfies the following Rainich
conditions' ':
The Maxwell stress tensor has zero trace, or

Rainich geometries (2)—(5) are entirely equivalent to
Einstein s original description of gravitation and elec-
tromagnetic radiation. In this paper we seek to deter-
mine the geometrical meaning of Rainich's system of
equations. With this purpose in mind, we proceed to
reduce (2)—(3) to an equivalent, but more tractable,
set of geometrical conditions.

II. RAINICH GEOMETRY IN TERMS OF THE
RICCI VIERBEIN

The local canonical form of a non-null Rainich-Ricci
tensor, ' ' available to any point through an appropriate
coordinate transformation, guarantees the existence of
the Ricci vierbein of principal directions. 4 The sixteen
vierbein components are established by the set of
equations,

The square of the stress tensor is proportional to the
unit matrix, or

R~.R „=p2b~„. (3)

The electromagnetic energy density is positive defi-

nite, or
Rpp& Q. (4)

A certain vectorial combination of the Ricci curvature
components and their first derivatives shall have zero
curl; that is to say, this prescribed combination shall
be expressible in the form of a gradient,

(&„,— pg„,)l~~"=o, (a=o, 1, 2, 3),

tv~a) ~b) =~atv~bj &a~aha

ee= —1, ei=e2=ca=+1.

Relations (7) and (6) imply

3

g„,= Q e,X,~„X„~„
a=p

tg

+aa P eapaliatalia~v

(6)

(7)

(g)

g,.~

4p'v'( g)—
where o, is a scalar invariant, the "complexion" of the
electromagnetic field. ' The Levi-Civita symbol e &'~ is
skew-symmetric in all pairs of indices, with 6 =1.

Whenever the non-null condition (1) is satisfied,

*This work was performed while the author was a predoctoral
fellow of the National Science Foundation.

' In the idealization for which space-time is treated as approxi-
mately Rat, the electromagnetic form of (1) requires that (E'—8')
and (E 8} do not both vanish. This non-null requirement is
satisfied by a general superposition of waves traveling in various
directions. An outstanding exception, however, is the case of a
pure monochromatic wave traveling in a single direction. It is
not known whether this null case has a rigorous correspondent
which satisfies the Einstein-Maxwell equations.' G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

3 C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).

Substituting (10) into (3), we find the Ricci invariants

Pa= faP1)
where each

2= 1.

Then from (2) it follows that

(12)

Q f,=o
a=p

(13)

Without loss of generality we can satisfy (12) and (13)
by taking

fo= fi= —1, fr=f3=+1 (14)

These values for f, pair the vierbein legs into a negative
and a positive blade (Fig. 1). The particular numerical

I.. P. Eisenhart, Riemannian Geometry (Princeton University'
Press, Princeton, New Jersey, 1949), p. 113.
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FIG. 1. The two blades of
a Rainich geometry Ricci
vierbein at a point.

Before looking at the geometrical content of (22) in the
general case, we consider Rainich geometries for which
the blades "mesh. "

III. THE BLADES CAN "MESH"

Let us investigate the existence of two sets of integral
surfaces which contain the blades at every point. The
integral surfaces are defined by the intersections of
pairs of 0. hypersurfaces [o.=o.(x', x', x', x')]:

R„,=p Q e.f.X.~„X,i„,
a=o

(16)

assignment to fb in (14) fixes the sign of p according
to (4),

p) 0.
The Ricci tensor (10) with (11), (14), a,nd (15), and

0-p = constant

0-1=constant

0-2 = constant

0-3 = constant

such that

such that

800 0= 810p= 0

800 1=8101=0)

820-2= 83a-2= 0

82O-3= 83O-3=0.

(24)

3

[Ba)Bb]=BaBb BbBa P Ccabilc
c=p

(18)

In analogy to a hydrodynamic Row, these structure
coefficients may be called "the projected vorticities" of
the Ricci vierbein,

C..b
———C.b.—=e, (X,~„„.—li, ~„,„)X.i9.bi".

With the aid of this intrinsic notation, Rainich s final
condition Eq. (5) can be drastically simplified. Sub-
stituting (16) into (5) and performing a few obvious
ma, nipulations establishes the relation

g~= B~n) (20)
in which the g's are abbreviations for the structure
coefficients,

(21)go= C123, g1=C032,

$2= C310) 'g3= C201.

The integrability conditions equivalent to (20) are
easily found with the help of (18):

satisfies the first three requirements of a, Rainich
geometry.

A geometrical interpretation of the Ricci tensor (16)
goes as follows. Let e& denote any unit vector which
lies in the positive blade at a point. Then the mean
curvature4 of the space in the direction e&, defined by
geometers as R„„e"e", is equal to (+p). This is the
maximum value attainable for all directions at the
point. Furthermore, the minimum mean curvature
(—p) is associated with any unit vector which resides
in the negative blade at a point.

Let us denote the intrinsic derivative in the direction
of a vierbein leg by

8 =X
[ 8/l9x . (17)

The structure coePciemts are introduced in the com-
mutation relations

By virtue of (18) and (21), the integrability conditions
which admit the existence of the negative-blade integral
surfaces 5( ) are

q2= q3=0. (26)

Similarly, the necessary and sufhcient conditions for
the positive-blade integral surfaces 5(+) are

qp=q1 ——0. (27)

FIG. 2. The two systems of blades are, respectively,
"meshed": a identically equals a constant.

In view of (20), we have the theorem:
The negative-blade integral surfaces exist if and

only if the normal to the n=constant hypersurface is
contained in the negative blade at every point; similarly,
the positive blade integral surfaces exist if and only if
normal to the n=constant hypersurfaces is contained
in the positive blade at every point. Finally, both sets
of integral surfaces exist if and only if n is identically
constant (Fig. 2).

The case of n identically constant, characteristic of
the Reissner-Nordstrom solution' ' and most Rainich
geometries presently known to us, is physically signih-
cant in that it describes an electromagnetic field which
is purely electrical. This does not mean that the geom-
etry is necessarily static, since n=—constant is rot

Q„g=0,
3

Dab= ~a'gb ilbga Z CcabVc
c=p

(22)

(23) ' K. Reissner, Ann. Physik 50, 106 (1916).
6 L. Nordstrom, Proc. Amsterdam Acad. 20, 1238 (1918).
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suf6cient to guarantee a group of motions in the
direction of A.p~„.

Notice that if the normal to the a=constant hyper-
surfaces is contained in the negative blade, not only do
the negative-blade integral surfaces exist, but also the
positive blades are contained in a set of hypersurfaces,
namely, {a=constant}. We are thus tempted to
consider whether the general content of Rainich's
fourth condition (20) amounts to the statement, "Two
sets of hypersurfaces exist which contain the positive
and negative blades, respectively. "This possibility was
studied and found to require more than the content of
.(20) or its equivalent equation, (22). Thus it does not
allow electrodynamics to have its full known scope
and has to be ruled out as a formulation of Rainich
geometry. Misner and Wheeler' had previously re-
jected the much more stringent requirement, namely,
that the blades shall ahvays "mesh" into smooth integral
surfaces of the form 5(+) and 5( ).

IV. THE CONTENT OF RAINICH'S FOURTH EQUATION

At first glance, the integrability conditions (22)
comprise six independent conditions which must be
satisfied by the geometry. However, since the Ricci
vierbein is not uniquely determined, these conditions
are not all independent. An internal gauge exists which
can Lorentz-transform blade partners in the vierbein
in a way which preserves (9), (16), and all relations
which follow from them. Under the internal gauge
transformations, the components of (23) within the
blades (IIot and II») remain unchanged —they are gauge-
invariant. The cross-components of (23) (Qos, &os, &rs,

IIts) suffer mixing with the two arbitrary internal gauge
functions. The Rainich conditions (22) for the cross-
components reduce to a pair. of internal gauge condi-

tions, and a pair of bonafide geometrical conditions.
Hence, (22) states two and not four geometrical condi-
tions on the cross components.

What is the nature of the two conditions in (22) which

require the gauge-invariant components within the
blades (Qot and Qss) to vanish? We shall prove that the
conditions

001=023= 0, (28)

are trivially satisfied, as a consequence of the algebraic
form of the Ricci tensor (16). Thus, the components of

(22) within the blades express nothing that we do not
already know about Rainich geometry.

The proof starts with the Poisson operator identity,

L~,P-,~bj1+[~.L~b, ~.jj+r~b, r~ ~.Z=—o (29)

We substitute (18) into t:his identity and find

rL,C,.b+ B.C,.b.+ rI bC...
+2 (Co.bC. e+Ceb C-a+Co..C.be) —=o. (30)

d=0

Equating c and e in this expression and summing, we
have

4'.b
=—Q (B,C,.b+B.C, b,+.BbC...)

+ Q C-dCo. b —=0. (31)

Substituting (16) into this expression, we eventually
obtain

where
B.(1np) = 2t.,

50=C202+ C 80 bi

kr= C212+Csl sy

gi= Co~o+Ctst,

55=C0 80+ C 1 st.

(33)

(34)

The intrinsic curl of (33) is

4 b
—=B,gb Bbg, —QC—. b$, =0.

c=0
(33)

Now it is readily seen by referring to the definitions

(23), (21), and (34), as well as the definition parts of

(31) and (3S), that

~01 +32 C 32)

~23 +01 C 01
(36)

Hence, (31) and (35) prove the assertions made in (28).
The Rainich conditions (22) within the blades are
trivially satisfied.

The geometrical significance of the two gauge-free
cross-components of (22) still remains a mystery. In
view of (21) and (23), equation (22) expresses two inde-

pendent relations between neighboring structure coeffi-

cients. At any point the structure coefficients can be
regarded as structure constants for a I-ie group. If the
Riemannian manifold is considered to be a manifold of
Lie groups, the two "mysterious" conditions in (22)
may enjoy a clean geometrical interpretation in the
language of fiber bundles. ' This possibility seems

worthy of investigation.
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Next, observe that the contracted Bianchi identities
and (2) state that.

(32)


