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interactions. If we impose this internal symmetry
property on the interaction (6.1) and assume the ex-
perimentally well established hypothesis of a two-
component neutrino, then we see immediately that the
only possible form for 0; is p„, i.e., we have a (V,A)
interaction

L=py„(a+bys)ney„(1+ps) v+H c . . (6.3)

Here the symmetry principle a/ious parity violation but
6xes the form of the interaction.

One may also consider the question of additional ap-
proximate symmetries in weak interactions valid for
both weak and strong interactions. It seems that, be-
sides the charge symmetry just discussed, the weak
interaction Lagrangian also shows a symmetry between
the electron and the muon. "This obviously has nothing
to do with charge symmetry. It is tempting to relate
this symmetry to one of the generalized charge sym-
metries of the baryons. For instance, if we relate the
symmetry e~~y to the Ss charge symmetry (n), this
would imply that the weak Lagrangian is invariant
under the simultaneous interchange of e with p and of
E& with S&. We note that a Lagrangian with just this
property has been recently proposed by Feynman. '

'4The possibility that this symmetry has more than formal
significance has recently been suggested by M. Goldhaber, Phys.
Rev. Letters 1, 467 (1958).

Thus the extension of generalized charge symmetries
(unlike continuous groups like isospin rotations) to
leptons might not be devoid of meaning. The conse-
quences of such symmetry principles in weak inter-
actions will be discussed in a di6erent paper. All we
would like to say at present is that this attitude is
consistent with the idea of a hierarchy of approximate
symmetries in elementary particle interactions, with the
weak interactions having lower symmetries than the
strong interactions which exhibit all the universal sym-
metries and also have additional symmetries.
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Dispersion Relations for p nScatte-ring*
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The application of dispersion relations to low-energy P-n scattering is examined. It is shown that Khuri s
dispersion relation can be extended to include tensor forces, but serious difhculties appear on attempting
to include exchange forces. The application of the relativistic field theory dispersion relations to low-energy
scattering is made by using the effective range formula. The spurious poles of the S-matrix are related to
the two- and three-pion terms in the unphysical region contribution for forward scattering.

I. INTRODUCTION

~

~

~

~

K shall examine in detail the application of
dispersion relations to low-energy p-n scattering.

First we consider the dispersion relations for the
Schrodinger equation which were derived by Khuri' for
an ordinary central potential. If. these relations are to
be of value for p-e 'scattering, they must be extended
to include (a) tensor forces, or spin-orbital L(L S)$
forces; (b) exchange forces.

In Sec. 2 we show that the extension to include tensor
forces is straightforward. The result is that each element
(5~3f~S') of the scattering matrix M obeys an un-

coupled dispersion relation; in each case the inhomo-

*This work was supported in part by the Office of Naval
Research and the U. S. Atomic Energy Commission.

f Permanent address: Christ's College, Cambridge, England.
r P. P. Khuri, Phys. Rev. 107, 1148 (1957).

geneous term is the first Born approximation. It is also
shown that these dispersion relations are in agreement
with the nonrelativistic limit of the field theoretic
dispersion relations of Goldberger, Nambu, and
Oehme. ' When we say that these sets of relations are
in agreement with each other, we mean that the
contributions from the physical region and from the
deuteron state are identical. The Born approximation
in the erst set is to be equated to the one-pion, two-
pion, . . . etc. , contributions from the unphysical
region in the second set.

The extension to a spin-orbital force of the type
f(r)(L S) has not been examined. It would appear
that this presents somewhat harder mathematical
problems because of the differential operators in L.

'Goldberger, Xambu, and Oehme, Ann. Phys. (N.Y.) 2, 226
(1957).
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In Sec. 3 we examine the possibility of including
exchange (central) forces in Khuri's analysis of the
scattering solutions of the Schrodinger equation. Here
there are considerable difhculties, and it is not clear
that the usual fixed momentum transfer type of
dispersion relations exist. This is not merely a case of
requiring mathematical vigor where intuition, or simple
considerations, would suggest that the relations do
exist. In fact, it is easy to see that one part of the
scattering amplitude has much simpler analytic proper-
ties for backward scattering than for forward scattering,
This difficulty may be related to the acausal nature of
the exchange potential in the static limit.

In the field theoretic relativistic dispersion relations'
there is no comparable difficulty, presumably because
in field theory all interactions propagate causally. It is
not clear why the field theoretic dispersion relations
have a simple nonrelativistic form, whereas such simple
relations have not been derived from the Schrodinger
equation when exchange forces are present.

Our inability to find such relations means that we do
not know how to relate the Fourier transform of the
wave mechanical potential U to the unphysical region
contributions in the field theory dispersion relations.
The best we can do at present is to say that the sum of
the unphysical region terms (apart from the deuteron)
defines a potential "V." However, it is not clear what
is the relation of "U" to the static potential used in
the Schrodinger equation.

In Sec. 4 we examine another way of relating the field
theoretic dispersion relations to more familiar quanti-
ties. We show how the one-, two-, and three-pion
contributions in the unphysical region are related to the
parameters appearing in the effective range formulas
for low-energy triplet and singlet state p-e scattering.
There is qualitative agreement between the positions
of the poles of the S-matrix for s-wave scattering and
the energies at which the above unphysical region
terms occur. A quantitative comparison must await the
completion of calculations of the two-pion and (possi-
bly) the three-pion contributions.

The dispersion integral in the field theoretic relation
we have used, appears to diverge at high energies. In
Sec. 5 we discuss briefly the relation between such
dispersion integrals and hard core potentials.

II. KHURI'S RELATION AND ITS GENERALIZATION

finite, ' and for large r obeys
~
Vp(r)

~
&e " (where n is

some positive constant), it can be shown that, for
7&2+, f(k,7) is a regular function of k in the upper
half plane Imk~&0 except for simple poles at the bound
states k, =+is; (~,)0). With the same conditions,
Khuri also shows that f(k, r) is uniformly bounded for
(k( ~ pp in Imk&~0, and

f(k, r)+ —Vp(r) exp(i~ x)d'x ~ 0,
4m~

as Rek -+ pp in Imk ~& 0. Integrating f(k')/(k' —k) (real
k) over the contour consisting of the real axis and the
infinite upper semicircle gives a dispersion relation for
fixed p. &2n. Regarding f as a function of E=k' and p. ,
this can be written

1 1——Vp(~) = —— exp(i~ x) Vp(r)d'x
4 J

(4)

is the first Born approximation for scattering from k
into k' (~=k—k'). Also, E;=—xP are the bound-state
energies and R:,(r) is the residue of f(E,r) regarded as
a function of E at E=E,

The Residues

As an example of how the residues are determined
we consider an s-wave bound state Ey= K] . Suppose
its wave function is g( —iki, r)/r, normalized so that
g( —ixi, r) —& e "i" as r ~ pp. The partial wave expan-
sion gives

00

f(k, 7) =—p(21+1) (ep'p'&"' 1)P~(1——7p/2kp) (5)
2ik ~=o

where Si(k) = expL29i(k) j is the S-matrix for the
partial wave / For s-wav. es, Sp(k) =g(k,0)/g( —k, 0),
and the residue of Sp(k) at 0= iki (as a function of k) is'

[g(—k„r)]'dr.

1 1 pImf(E', r)
Ref(F,7) = — Vp(r)+ —P~' —— dE'

4x E.' —E~'

R, (7.)+2 — — (3)
E

where

Khuri' examined the analytic properties of the
scattering solutions of the Schrodinger equation for an
ordinary central potential Vp(r):

Using (3) the residue Ri(p.) is therefore given by

rRi(~)?'= — Lg( —~xi'))'« (6)
V'P(x)+k'P(x) = Vp(r)g(x).

These solutions have the asymptotic form

P(x)~yak ~ x+ (f(k 7.)/y)gikr (2)

where 7 is the momentum transfer. Provided Up(r) is

For P-e scattering the only bound state is the deuteron

' We do not state the sharpest form of Khuri's conditions on Vp.
4R. Jost, Helv. Phys. Acta 20, 256 (2947); R. Jost and W.

Kohn, Kgl. Danske Videnskab Selskab, Mat. -fys. Medd. 27, No.
9 (~9S3).
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and the right-hand side of (6) is the well-known in Imk&~0, and also
deuteron wave-function normalization factor. '

The Tensor Force

where S~.=3(eo) x)(e&" x)r '—(e") e"'). e'" and e&"

are the spin matrices for the two nucleons. The state
vectors for the total spin are is=0);

l
5= 1, 53),

(S3——1, 0, —1) where 53 is the component of total
spin along the initial direction k. A convenient notation
for these state vectors is lS) where 5 denotes any one
of (0,0), (1,1), (1,0), (1, —1).

The p-n wave function can be written

here P, =(sjp) is a function of x only. These four
functions )p, obey the coupled Schrodinger equations

Vy.+k2P, =P..(Sj VjS')4. . (7)

Qy time reversal invariance (Sl V
l
S') is a real function;

it is symmetric in S, 5'. We assume lW(r) l
(e ' fo

r —+ ~, and look for a solution of (7) having the
asymptotic form

P ( ) 8 ~ e'"'+ (e'""/r)(5'j M
j 5)

where lS) is the initial spin state.
The scattering matrix element (5'lMls) contains a.

factor expLi(53 —53') p); p is the azimuthal angle
measured about k. Also, (5'jMjs) can be regarded as
a function of k, r and (k' —47')'; in other words it is a
function of k, cose and sin8 where 0 is the center-of-mass
scattering angle (8= 28]gb).

Using the matrix kernel

K,... (x,y) = —(5'j V(y) js")e'~"—r~/l x—yl,

The scalar dispersion relation (3) proved by Khuri
will now be generalized to include tensor forces. Suppose
the interaction is of the form

V= Vo(r)+W(r) S)2,

(s lM(k,.)lS)+ —(S l vis) exp("x)d'x 0,
4m.

as Rek ~ ~ in Imk~& 0. We can therefore derive
dispersion relations if we know the crossing properties
of (S'

j M j 5).
From now on we drop the factor expj i(53—S~') q]

from the elements of the scattering matrix. For
lS3—S3'l =0 or 2, the amplitude (5'jMjs) is now a,

function of k and cos8= 1—r'/2k'. It is easy to see (by
looking at the general form of the Fredholm expansion
terms) that in these cases

(5'jM(k, ) ls)*=(5'lM( —k*, ) js).

For
l
53—S3'

l
= 1 the scattering amplitude is also

linearly dependent on sin8= ~ (k' —~ r') '/k'. The complex
k plane has a cut from —-', to +-,', and, on crossing,
sin8 will change sign. It follows that the general form
of the crossing relation is

(5'jM(k, ~) j
5)*=(—1)&'"-'»(5'jM( —k", ~) j 5).

Hence for
l
S~'—S3 j

= 0 or 2, the dispersion relation is

1
«(5'jM(E, 7) ls)= —— (S'l VlS) exp(i~ x)d'x

4 J

1 p" Im(S'l M(E', ~)
l
S) (S'l RD(r) l S)+ P il dE' — +,(10)

E —E

(we have only considered one bound state —the deuteron
state with energy ED = —kn'). The residue (5'

l ED (7) l 5)
is evaluated in a similar way to that of Goldberger et ul. '

Eq. (7) can be replaced by the coupled integral equa-
tions

W. . (x) =8. .e"*+2, &""(x,y)4" ~ (y)d'y (9)
s" J

Iterating once gives a (matrix) integral equation having
bounded kernels and bounded inhomogeneous terms.
The Fredholm solution can readily be written down,
and the same method as Khuri used will show that
(S'lMls) is a regular function of k in Imk&0 except
for simple poles at the bound states k, =+i~, (x;)0),
provided we consider momentum transfer v-(2o.
Further (5'jMls) is uniformly bounded as jkl ~ ~

~ See, for example, H. A. Bethe and. C. Longmire, Phys. Rev.
77, 647 {1949).

Pro. 1. The contour in the complex E'-plane for
integrating Eq. {14).
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For Sp —Sp' =1 there is a similar dispersionrelation Fig. 1, we see that for ISp —Sp I
=0 or 2, we have the

for (S' M(E,r) IS)(E—~r') dispersion relation

Relation to the Field Theoretic Formulas

The relation between these dispersion relations and
the nonrelativistic limit of the field theory p-e relations
derived by Goldberger, Xambu, and Oehme' should be
examined. They write the scattering matrix in the form
(we give the nonrelativistic limit)

+p (). ()y ( ()+ ()).
+h(n(" m)(n") m)+p(n(') l)((r(') I) (11)

where I, m, n are unit vectors in the directions k+k',
k —k', k&&k'. The coefF(cients n, p, y, 8, p are functions
of k, cos9 and sin8. The relation between these coeffi-
cients and the scattering matrix elements is (see
reference 2, Appendix)

4n= 2(1,1IMI1,»+(1,0IMI1,o&+(olMI»,
4p= —2(1 1IM I1 1)+(1,0I M I1,0)—(0

4~ =v2(1,1I M
I 1,0)—v2(1,0 I

M
I 11),

48= (1—sec8) (1,1 I
M

I 1,1)
+ (1+sec8) (1,1 I

M
I 1, —1) (12)

+sec8(1,oIMI 1,o)—(oIMIo),
4p= (1+sec8)(1,1 I

M
I
1,1)

+ (1—sec8)(1&1 I
M

I 11 —1)
—sec8(1,0I M

I 1,0)—(0 I
M

I
0).

In the nonrelativistic limit n(E, r), P(E,7), 8(E,r),
p (E,r) separately obey dispersion relations of the
typical form

Ren(E, 7) = (U.P.)+
E E~

1 ( Imn (E',~)
+ P' dE' — . (13)

~p E'—E

Here no, pi) are the residues at the deuteron pole
E=Er) = —)(i)'. Also (U.P.) denotes the unphysical
region contributions coming from one-pion, two-pion,
. . . etc. , terms and from anti-proton-neutron scatter-
ing. [In (13) as in (3) and (10) there is another un-

physical contribution arising from the range 0(E'&~7'
in the integral. j The coefFicient y obeys a dispersion
relation obtained from (13) on replacing n(E', r) by
p (E',r) (E'—~~ r') '* everywhere.

The functions (S'
I
M

I S) sec8 = (S'
I
M

I S)2k'/(2kP —r')
have the same analytic and boundedness properties as
(S'I Ml S) in Imk &0, except for extra poles on the real
axis at k= &r/V2. On integrating the function

(S'IM(E', ) iS) 2E'

(E' F) (2E' v')— —

around the contour in the E'-plane which is shown in

1
sec8 Re(S'IM(E, r) IS)+— (S'I VIS) exp(i~ x)(Px

4m~

1 (
" Im(S'I M(E', r)

I S) E'
=—I' dE

J, E'—E PI 1~2

(S'IED(.) I
S)

ED

—Re(S'IM(E'=2r', r) IS) sec8(r'/2E). (14)

The last term in (14) arises from the extra pole at
E'= 2

If we substitute the dispersion relations (10) and
(14) into (12) in order to derive dispersion rela, tions
for 8 and e, we obtain the typical relation

1 6D
Re() (E,r) = ——Vp+-

4m E—Ez)

1 t" Imb(E', 7)
+ PdE' ——

, (15)E'—E

where —(1/4)r) Vp is the first Born approximation.
This takes the place of the term (U.P.) in the field
theory relations [see (13)j. The last term in (14) does
not appear in (15). This is because when we use (12)
to collect the correct linear combination of terms
(S'I M IS) to give 8, the sum of these terms (S'I M(E'

,'7', r) IS) will-vanish. There is a general relation'
between the elements of the scattering matrix, '

III. EXCHANGE FORCES

The Fredholm method does not lead to simple
dispersion relations when the potential is of the form

V = Vp(r)+V))r(r)P„
' L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).
7 As usual we drop all factors e+'&, e+"&.

(» IMI11&—(» IMI1 —1)—(1olMI 1o)
=&2 cot8((10I Ml 11)+(11I

M
I 10)}. (16)

The left side of this equation is exactly the coefhcient
of sec8 in the expressions for 8 and p in (12). Also,
E'=i2r' gives cos8'=0; hence the left side of (16)
vanishes for E'= —,'7-'.

It is now clear that our relations (10) and (13) agree
with the nonrelativistic limit of the field theory relations
(13).It is also clear that the relations for (S'I M(E,7) I S)
X(E,'~') '

for ISp —Sp'I =1 and the relations for
y(E,r)(E 4r') 'will agree. I—n eac=h case the terms
(U.P.) in the field theory relations are replaced by the
first Born approximation.
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E(x,y) = —(1/4 ) Vo(y)e'"~* "~/I x—yI
—(1/4s) Vsi-(y) e'"~*+"~/

I
x+ y I

. (18)

The erst few terms in the scattering amplitude derived
from the Fredholm solution are [see reference 1, Eqs.
(16) and (»)]

1 f'

f(k k'), =——' e '"' YVp(y')e'" rd'y'
4m ~

1
e'"''r V,pi(y)e' 'rd'y

4x ~

1 elk j I—yf

+ I'e "rVo(y) V (x)e'k *d'xd'y
4~)'"

I

x—y

eikf I+y(1
e""''"Vir(y) V II(x)e'" *d'xd'y

fx+yf
ezaf x+yf

+ e "rVp(—y) Vsi(x) e'" "d'xd'y
(4 )'"

I x+yf

(47r)'

e'af x—y I

V~'(y) VII(y) e'" *d'xd'y
fx—

yf +. .. (18a)

The remaining terms in the complete Fredholm solution
can readily be written down.

Those integrals in the numerator of the solution
which contain either no factor V~ or an even slusher of
factors V~ have the same boundedness properties in
Imk)~0 (for fixed r&2n) as we saw in the ordinary
force case. The proof follows Khuri's method closely.
The basic step is the bound for the iterated kernel

where P is the space exchange operator. Vp(r) and

VIir(r) are assumed to be finite central potentials, both
of them obeying the condition

I V(r) I &e ~' as r ~ ~
for some 6xed positive n. The scattering integral
equation

P(x) =e'"'*+~ E(x,y)P(y)d'y

has the kernel

exp( —ik' z) V(s)M(z, y) exp(ik y)doydos,

where
I
M (z, y) I

&+[V(y)/ I y I j exp( ~
I
z y I ) and 1II'

is a constant; or it is of the form (b)

exp(ik' z) V(s)M(z, y) exp(ik y)doydos,

~vhere I1III(z,y) f &1V[V(y)/I yI j exp( —s
f z+yf) and g

is a constant. Here V is written for either Vo or V~I ~

Khuri's methods will now show the required regularity
and. boundedness for r &2n. (It may be useful to notice
that the fourth integral in (18a) gives some idea of the
behavior. The exponentials appearing can be written

exp[ik I x+y I+ik (x+y)] exp[i(k' —k) y].
For constant r this is bounded in Imk&~0. )

Even and the Odd Dispersion Relations

Now we divide the scattering amplitude f(k', k) into
two parts

f(k', k) =f. ,„(k',k)+f,eo(k', k), (19)

where f, ,„, f,od arise from Fredholm numerator terms
having respectively an even or odd number of factors
VIIr. It follows that f, ,„obeys the dispersion relation

where Ã is a constant and ~—=Imk ~) 0. Similarly the
inequality

I x+ z I+ I
z—y f ~&I x+ y f

shows that both
f
ApM(x, y) I

and IAiIrp(x, y) f
are

bounded in Imk ~) 0 by a constant multiple of
exp( —II'I x+yl)»nally IAor~(x y) I

&&'exp( —
&I x

—y I) where 1P is a constant.
Using these results it is easy to show that the Fred-

holm denominator A(k') is regular in Imk&&0 and
D(k') —+ 1 as

I
k

I

—+ oo. Again the zeros of 6(k') give
the bound states (k, =+is,', Io,)0). The analytic prop-
erties and the boundedness of the terms in the Fredholm
numerator which have an ever number of factors V~~

follow readily. The contribution of these terms to the
scattering amplitude is either of the form (a)

E,(x,y) = tE(x,z)E(z,y)d's. Ref, ,„(E,r) = —— Vp(x) exp(i~ x)d'x

We can write

Eo(x,y) = (Aoo(x, y) Vp(y)+A~p(x y) Vp(y)

+Ao~(x, y) VM(y)+Aor~(x, y)V~ir(y))1/y,

where A 00 comes from the term in E2 containing Vo Vp,

etc. The triangular inequality

fx—zf+ fz—yf&~fx—yf

can be used to prove fAIIp(x, y) f
&Eexp( —sfx —yf)

Imfeven(E )r) R,' '"(r)
+-~ dE', +2, (20)

7I o E'—E 8—E

where R, '"(r) is the residue of f. , (E,r) at the bound
state E=E;.Eq. (20) holds for r &2oI.

The behavior of f,oo(k', k) is very different. This
can be seen from the fifth and sixth terms in (14),
whose exponential factors are, respectively,

exp[ik
I
x—y f+i(k (x—y))j exp[i(k+k') yj
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exp[ik( x+y~+i(k (x+y))g exp[ —i(k+k') yg.

These are not bound in Imk&~0 for constant v.. However
they are bound if we keep r' fixed where ~'=k+k'. It
is straightforward to examine the boundedness and
analytic properties of all the terms in f,sa(k', k) for
fixed r'. Then it appears that for fixed r'& 2n, f,ss(k', k)
obeys a. dispersion relation whose inhomogeneous term is

1 f
P' (a) si(k+k') ~ xdsg

Such a dispersion relation is associated with backward
scattering.

Thus we see that if exchange forces are present the
method of Khuri cannot be used to prove that the
scattering amplitude f(k', k) of Eq. (19) obeys a simple
dispersion relation for constant momentum transfer.
Indeed the form of the first few terms in f,zs [see Eq.
(14)j suggests that ie general there may not be such a
relation.

Discussion

Physically the results are perhaps not unexpected.
The scattering solution of Eq. (1) in a certain way
involved causality. The integral equation form of the
solution shows that a disturbance P(y) at y gives rise
to outward propagating wavelets of the form

(s" * "'il x—yi) I'p(X)it (y).

For an exchange potential the outgoing wavelets are

(c"'"/I x+y I) I'~(y)~t (y);

these wavelets can get ahead of the incident wave and
thereby appear to violate causality. This suggests that
there may be some difficulty in deriving dispersion
relations in the case of exchange forces; it does not
prove that such relations do not exist. '

These difhculties do not occur in the field theory case;
there we have the nonrelativistic dispersion relations
(13) for fixed momentum transfer r PThis is no. t
surprising, because the field theory description of the
p-e interaction, even when it deals with exchange
processes, is causal. The present difhculties could
suggest the inadequacy of the static potential for p-is
interactions.

If we cannot find a (fixed momentum transfer)
dispersion relation for f(k, r) when exchange forces
occur, we carrot use the field theory relations (13) to
describe the static potential in terms of the unphysical
region (one-pion, two-pion, ) terms (U.P.). Even
if we were to conjecture that f(k, 7) did satisfy a

It may be that for certain forms of exchange potential we
could use an analytic continuation of f(k,r) from the real axis
to the region Imk &0.' Of course there may be some argument about the validity of
the nonrelativistic limit which is used.

dispersion relation of the form (3), we would not know
what was the correct inhomogeneous term to replace
Vp(r)."

Finally we notice a related difhculty which occurs in
discussing solutions of (1) for p-p scattering without
exchange forces. The scattering amplitude f(k', k)
arises from the incident plane wave e'" . Therefore the
actual scattering amplitude must, by Pauli s principle,
be

1
f„,(k',k) =—(f(k',k)+f(—k', k)),

where + and —occur in the singlet and triplet spin
states. f(k', k) obeys the dispersion relation (3) with

~

k—k'
~

constant, but f(—k', k) obeys a relation which
differs from (3) in that ~k+k'~ is constant. Again we
cannot, for example, give a simple dispersion relation
for forward p-p scattering.

IV. FIELD THEORY RELATIONS AT LOW ENERGIES

We examine the field theory relation for forward p-is
scattering. The variable we consider is D(E) where
4D(E) is the forward scattering amplitude for an
unpolarized beam. In the notation of Goldberger et al."
D=4(r(1+E/M) & where E=k' and k is the relative
momentum in the center-of-mass system. "Where units
are not explicitly stated we use the system with 5=c= 1
and nucleon mass 3f= 1; this gives units of energy= 940
Mev, length=2. 11)(10"cm, area=0. 45 mb.

The dispersion relation is"

(1+E/M) :ReD(E)-
21' (0) f' 1 4 )(+ &~) Imn -(E')

+ dE'
E~—E 4s. E E„7r"( „) — ( E')+E—

+ P' dE'([E'—(1+E'/M) j*' . (21)
"0 E

In the last integral the optical theorem has been used
to express ImD(E') in terms of the total cross section
a. ~(E'). The first term on the right is the deuteron
contribution, where E~= —z~'= —2.25 Mev; the
residue is

2I' (0)=6Ki)/(1 —Ki)rs),

(rz is the effective range of the 'S state). The next term
is the single pion pole contribution at center-of-mass
energy E„= ys/4M = —5.15 M—ev where p, =pion mass.
(f /4)r) is the renormalized coupling constant in Heavi-
side units (f'/4n~0. 08). The rest of unphysical region
(the continuum) and the antiparticle scattering contri-

"S. Matsuyama and H. Miyazawa LProgr. Theoret. Phys.
(Kyoto) 19, 517 (1958)j suggest using a perturbation expansion
in terms of V to determine V from the field theory dispersion
relations."See reference 2, Kq. (6.16)."In the nonrel@&&vistic limit 8 is the energy in the c,m. system,
and E~@p=?E,
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On the left of (24), for low energies we substitute

E+ (2/rs') (2 rs—/as)=as, (25)
E'+E(4/rs') (1 rs/as)—+4/rs'as'

bution is in the term Imn„„-(E') in the first integral.
Clearly for low-energy scattering (small E) the most
important contributions" will come from small (—E'). 1 f 1

Such terms are the two-pion annihilation, which occurs I

'n2 s+as I

for E'(E2„=—u'/M'= —20.6 Mev, and the three-pion
annihilation which occurs for E'(E» ———9u'/4M
= —47 Mev. The unphysical region is shown in Fig. 2.

k cot8s = —1/as+-,'rsk',

k cotter ———1/ar+ ,'rrk', -

where, in our units,

(23)

cg= —112,

ay ——25.4,

rs=11 8,

rT = 8.05.

Substituting (23) into (22) we get an accurate expres-
sion for ReD(E) at low energies. It is easy to check
that the P-wave phase shifts give a very small correction
to ReD(E) at these energies. This is done by assuring
the P-wave phase shifts vary like k' and remembering
that at 40 Mev the largest 'P phase shift is about 11'
and the 'P phase shift is about —15'.

Before substituting (22) on the left of (21) we make
one subtraction. This is because the dispersion relation
as it stands probably does not have a convergent
integral over 0-„~. In any case, it is very useful to
subtract once; in this way we can use the relation at
low energy without having to know the values of cr„„
at high energies particularly accurately. The subtracted
relation is

f 1
+.

I
ReD(E) —D(O) =——

a) 4 E„(E—E„)

Imn. „-(E')E2p

+— dE'—
E (E E) ~~& .& (——E')I E+(—E')7

2r. (o)

pJlI+E'y * -.(E')

& E )
13More precise]y, the contributions svhich vary most rapidly

with 8,

Effective Range Formulas

At low energies [say less than 20 Mev (lab)7 we can
write

ReD(E) = (1/2k) sin26s+ (3/2k) sin28q, (22)

where 6q and 6z are the singlet and triplet s-wave phase
shifts. These phase shifts are given accurately by the
eRective range formula

and we use a similar expression for the triplet term.
Again we can verify that the P-wave terms which
should be added to (25) are unimportant. In the
triplet case they are of relative order E (E is measured
in the above units) and in the singlet case they are
smaller.

In the low-energy range [say, 0(E(10A~fev (c.m. )7
the function on the right of (25) differs at the most by
about 10% from the value we would obtain on putting
rs= 0 In the trip. let case we have a larger ratio (rT/ar)
and the corresponding diRerence for some low-energy
values of E is about 25%. We expect therefore that
insofar as our results involve the eRective range r, they
will be appreciably more accurate for the triplet than
the singlet case. We shall see also that the triplet
eRective range plays an important part in the deuteron
contribution.

—14.6/(E+5. 15 Mev), (26)

where the numerator is in the above units. At. low
energies an antiproton and a neutron can only produce
a single pion if they are in the singlet state. Hence
the single pion term (26) contributes mainly to the
singlet state scattering. (This is not true after a
subtraction. )

For energies of a few Mev the term (26) contributes
about 15%of the total singlet term (25); the proportion
is much less at very low energies. Using Fq. (21) we
can make an estimate of the contribution of the single
pion term to the total singlet cross section at low
energies; it gives a few percent of the whole. It therefore
appears a reasonable, if rough, first approximation to
ignore the single pion term. '

The second term on the right of (24) is the deuteron

1' In a later paper ave shall discuss the single pion term.

Evaluation of the Dispersion Relation

We now examine the various terms on the right of
(24). Taking (f'/4ir) 0.08, the single pion gives
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algebraically. This gives

E+ (2/rr') (2—rg /ar)—3GT'—
E'+E(4/rr') (1 rr/—ar)+4/ap'r p'

as L+ (2/rs') (2—3rs/as)

(1—2rs/as) 1 E2+E(4/r s') (1 rs/as—)+4/rs'as'

pio. 3. The poles of the s-wave matrix S(k) with sD = (1/rr) [1—(1—2rr/sr) &], Er'= (1/rr) Li+ (1 2rr/a—r) ij; 2fs= —(1/rs)
XL(1—2rs/us)'* —1J, Es'= (1/rs)P+(1 —2rs/&s)i]

contribution. It is

The Poles of 8(k)

Substituting all these results in (24) gives

f2 4 I
s' Imn„p(E')

+—
I

dE'—
4~ (—E.) (E—E,) ~"(--l (—E') (E—E')

xn(1 xg)rr) E—+2.25 Mev (1 2rs—/as) 'Ks'-E+Ks"

Kri(1 —2rr/ar)** E+2.25 Mev

202

E+2.25 Mev
(27)

(1—2rr/ar) '* Ky' E+Kr"

Ks'= (1/rs)(1+ (1—2rs/as)i},
Kr'= (1/rr) (1+(1—2rp/ar) l},

(If we were to put rr=0 in this large term, the error
produced would be great —the correct normalization of
the deuteron wave function is very important here. )
The third term on the right of (24) contains the
remaining unphysical region contributions. We shall
now use Eq. (24) to find this term (or at least its
low-energy part).

The dispersion integral is written

so K~"——29.7 Mev) Kp 37.7 Mev.

The first two terms on the right of (30) can be written

—12.5/(E+29. 7 Mev) 49.5/(E+3—7.7 Mev). (31)

The integral over (E") on the right of (30) can only
give appreciable contributions for large A"". The present
analysis is only valid for low-energy E (& 10 Mev) and
for such E the integral over o(E") is effectively a
constant. We shall discuss this constant in Sec. 5 below.
In the unphysical region integral over Imn„„-(E'), we
should expect (for small E) that the contributions
from E'& —50 Mev behave as a constant. "

The first two terms on the right of (30) have a very
simple form. They are in fact the residues of the singlet
and triplet s-wave 5-matrices 5(k) at the spurious poles
k=iKs', k=iKT', respectively. LThe poles of S(k) are
shown in Fig. 3.) The reason for this simple result is
that we have effectively used a dispersion relation for
5(k). This is because o.o(E) is such a good approximation
to o.„„even for high energies, and because the 0.0 term
is separated out in (28). In this dispersion relation for
S(k) all the poles in. Imk&0 will contribute. It is well

known that these "spurious" poles at k =iK8', k = iEy'
do not correspond to actual bound states of the p-e
system. A pole at k=+iK need only give a bound
state if (1/K) is greater than the range of the p-e force";

1 I" (M+E'& & o„„(E') 1 t "dE,' o&(Ii')

"o & E' ) E' E~' & E"* E'—E—
1 t" )M+E'~ 1 o(E')

dE'~ ~, (28)E' ~ E' E—
where

o(E)=o„,(E) (1+E/M) 'oo(—E)

We notice that although the effective range formula
(23) only applies to s-waves and is only valid [in form
(23)j for low energies, the function o.s(E) is a good
approximation to the total p ncross secti-on o„„up to
50 Mev (lab). At 47 Mev the error is 4% and at 94
Mev it is 15%. It is clear that for energies up to 100
Mev (lab) o(E) is small and we shall neglect any
contributions from the last integral in (28) from the
region of small E,'.

The first integral on the right of (28) can be evaluated

"Our analysis is not suKciently accurate to detect any variation
in these terms."R. Jost and %. Kohn, Kgl. Danske Uidenskab. Selskab,
Mat. -fys. Medd. 27, No. 9 (1953).

«(E) = +— . (29)
E+ (1/as ', Ers)' E+ (1/ar —,'—Err)'——
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this is true for the deuteron pole k=i~D but not for
the others.

Comparison with Experiment

We compare the left and right sides of (30) consider-
ing only the one-, two- and three-pion annihilation
terms. The angular momentum and parity section rules
show that 2x-annihilation cannot occur in a singlet
neutron antiproton state. Both the singlet and the
triplet states can give 3a. annihilation. 'r Hence in (31)
we expect the triplet term ( 49.5)/—(E+37.7 Mev) to
give an estimate of all the 2m contribution, together
with some 1x and 3x contribution. The energy —37.7
Mev is well within the 2~ contribution (see Fig. 2).
To get an accurate comparison it is at least necessary
to make a good calculation of the 2~ contribution in
the field theory case."

In (31) the singlet term (—12.5/(E+29. 7 Mev) has
to give the rest of the single pion term (—14.6)/
(E+5.15 Mev) as well as the remainder of the 37r

contribution. Since the 3m contribution can hardly be
a rapidly varying function of E (for small E), the
agreement here cannot be very good. However, we
should remember that (a) these singlet terms are small,

(b) for the reasons mentioned above (small rs/as, etc.)
we do not expect the singlet-state calculation to be
particularly accurate.

A further source of inaccuracy should be noted. In
our analysis we have separated the singlet and the
triplet terms throughout. Although o.e(E) LEq. (29)j is
a reasonably good approximation for tT„~ even at
energies above 50 Mev (lab), the individual singlet and
triplet cross section show larger relative errors. For
example, a phase-shift analysis at 95 Mev" shows that
the triplet part of o-„„ is much smaller and the singlet
part is much larger than is indicated by (29). However,
the eRect on our results would only be important if
this type of error were appreciable for energies less than
50 Mev (lab).

V. "THE HARD CORE"

Under this heading we consider the last term in (30).
There is some evidence that even at very high energies

'7 See for example, H. A. Bethe and I.Hamilton, Nuovo cimento
4, 1 (1956).

'8 Professor M. L. Goldberger tells me that such a calculation
is under way.

'9 R. N. J. Phillips, Proc. Phys. Soc. (London) A70, 721 (1957).

00

—a+-', Vaa'= ~ dk ~(k),
2x'~ 0

(32)

where a(k) is the total cross section.
If Ve is large (i.e., Vea')&1), in the energy range

Vo))P&)1/a' we have

o (k) 2m a'

For k'& Vo we use the Born approximation

o (k) = -,'x. (Vep')'/k'.

(33)

(34)

Rough agreement can be obtained in (32) by using
(33) for k &k' and (34) for k) O'. Here k" is the energy
k"= Ve'a /4 at which (33) and (34) are equal.

Letting Vo —+ ~, the high-energy cross section be-
comes 2ma' and we see how both sides of (32) become
infinite. For a nonrelativistic scattering problem Eq.
(32) could thus be used to subtract out the hard-core .

eRect.
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( 50 Bev lab) the total p-e cross section is about the
same size as it is at a few Bev. If this is so, the
integral over o in (30) will not converge. This gives rise
to an infinite constant on the right of (30) which should
be removed by a further subtraction in the dispersion
relation. As we have only considered the variation of
certain terms with E (for small E) the analysis given
above should not be affected by this infinity. (There
may also be an infinity on the left of (30), coming from
the integral of Imtr„„- over the unphysical region. )

Here we use the simple dispersion relation (3) to
suggest how an infinite term coming from the high-
energy cross-section values can be regarded as a hard
core eRect. First, consider a finite potential repulsive
sphere,

V(r)= Vp, r&a
=0, r)a,

where Ve)0. (We only examine the ordinary force
case.) At zero energy (k=0) this behaves like an
impenetrable sphere, so the zero-energy scattering
a,mplitude is f(0)= —a. The forward scattering dis-
persion relation for E=O is


