Nuclear Spectroscopy of Odd-Mass (161–173) Nuclides Produced by Proton Irradiation of Er and Yb

B. HARMATZ AND T. H. HANDLEY, Oak Ridge National Laboratory,* Oak Ridge, Tennessee

AND

J. W. MIHELICH, † University of Notre Dame, ‡ Notre Dame, Indiana (Received November 17, 1958)

To study the effect of nucleon number on nuclear levels of odd-mass rare-earth isotopes, enriched isotopes of Er and Yb were irradiated with protons in the ORNL 86-inch Cyclotron. After chemical separation, the decay chains leading to stable isotopes were analyzed with internal-conversion, photographic-recording, permanent-magnet spectrographs. Precise energy values as well as photometrically measured intensities of conversion lines of 8 to 1600 kev energy were obtained. Very light isotopes of Lu and Tm, each eight mass units from the mass stability line, were produced. The following activities were studied: Tm¹⁶¹ (~30 min), Ho^{161m} (E3, 211 kev), Tm¹⁶³ (2 hr), and Lu¹⁶⁷ (54 min), all previously unreported, as well as Tb¹⁶¹, Ho¹⁶¹, Tm^{165, 167}, Yb¹⁶⁷, Lu^{169, 171, 173}, Hf¹⁷³, and possibly Yb^{169m}. Genetic relationships and partial level schemes for decay chains of masses 151 to 173 are shown. Where comparison is possible, excellent agreement with the predictions of Mottelson and Nilsson is obtained, particularly for the case of the various isotopes of Tb (Z=65), Ho (Z=67), and Tm (Z=69), where striking similarities in the level structure are observed.

I. INTRODUCTION

X/E reported previously on the radioactivities of a number of neutron-deficient rare-earth nuclides.1 We have extended our investigation utilizing new permanent magnet spectrographs (with fields of 64 and 360 gauss) capable of recording conversion electron lines of energy from 8 to 1600 key. Separated isotopes of erbium and vtterbium were irradiated in the ORNL 86-inch cyclotron with proton beams varying in energy from 12 to 22 Mev, and the radioactivities were separated chemically.

Separation of even-A isotopes of Er and Yb was simply achieved by using the 180-deg mass spectrograph designed for enrichment of transuranic isotopes. Performance parameters of this 60-cm radius separator are an ion collection rate of 40 ma (2 beams), a process efficiency of 7%, and an enhancement for 1 mass difference $[A:(A\pm 1)]$ of 36. By comparing spectra of two enriched targets, a factor of $(36)^2$ in the intensities of radiations of two adjacent isotopes is obtained.²

Improved source preparation techniques and the ability to record the conversion lines of higher energy have made the data complete enough in many cases to begin the construction of level schemes. It is most logical to present our data for odd-mass nuclei at this time; our results on even-mass nuclei will be reported in the near future.

Our energy measurements (good to 0.15%) along with our intensity measurements suggest level structures which are consistent with these data. Coincidence experiments were sometimes impractical due to the extreme complexity of the photon spectra and short half-lives of the activities. Figure 1 displays a typical set of spectra obtained from targets of various enrichments.

The experimental procedure was much the same as that described previously,¹ and the remarks made concerning uncertainties in intensities are still valid. The 64-gauss spectrograph makes the data on Lconversion line intensities more reliable due to the improved resolution.

The intensities of the conversion lines must be used with some discretion, except for the case of lines which are not too different in energy and intensity. The tabulated lines encompass a wide variation in intensity $(10^5$ or more for a given activity) and are read on a series of spectrograms of various exposures which must be normalized to each other. Furthermore, only peak heights (corrected for radius of orbit and film response) are given since a detailed analysis of each of the thousands of lines reported here would be impractical. The electron data presented are not meant to be complete, but should be of use in the postulation and interpretation of the relevant level schemes.

An ideal source for an internal conversion spectro-

FIG. 1. Reproduction of internal conversion spectra obtained with 127-gauss spectrograph for sources produced by proton irradiation of targets of Er of varying isotopic enrichment.

^{*} Operated for the U. S. Atomic Energy Commission by Union Carbide Corporation.

[†]Oak Ridge National Laboratory temporary employee, summer 1957, 1958.

¹ Work supported by the U. S. Atomic Energy Commission. ¹ Mihelich, Harmatz, and Handley, Phys. Rev. **108**, 989 (1957). ² During the course of this investigation, enriched isotopes of

Er and Yb have become available from the Division of Stable Isotopes at Oak Ridge National Laboratory.

graph will fulfill two basic requirements: (1) the source will be free of solids to prevent line broadening; (2) the time of preparation should not be long compared to the half-lives involved.

The target usually consisted of 20 to 50 mg of carefully purified rare-earth oxides. Following bombardment, the oxide was dissolved in HCl and the acid removed by evaporation. The target was then adsorbed on a previously conditioned ion exchange column.

The column of Dowex $50 \times 12\%$, <400 mesh, with resin bed 12 cm \times 1 cm was used in a setup similar to that of Boyd and Kettelle.3 The elution was performed at 90°C at a flow rate of 1 ml/cm²-min. The eluting solutions ranged from 0.2M alpha-hydroxy-isobutyric acid, pH 3.8, for Lu-Yb separation to 0.4M, pH 4.4, for Pr-Ce.⁴ When the half-life of the product permitted, a second separation was performed under almost identical conditions. This separation gave a much purer and more solid-free product. Two separations are to be preferred since one may obtain the desired degree of purity more quickly and easily than with a single separation. Removal of the product from the eluting solution was performed by adjustment of the pH to 6 and extraction with 0.5M TTA in xylene, and back extraction into 1M HCl. This step afforded considerable time saving over previous methods of using a second ion exchange column to remove the eluting agent. Following evaporation of the HCl and gentle ignition, the product was dissolved in 0.2Mformic, 0.15M ammonium formate⁵ for electroplating onto a 10-mil Pt wire, 2 cm long.

Especially purified reagents were necessary in all this work. Triple-distilled water was used in make-up of the solutions. The TTA and alpha-hydroxy-isobutyric acid were purified by vacuum distillation. Previous to the use of purified reagents, considerable difficulty was encountered in the reliability of plating, and often solids other than rare earths caused considerable difficulty. The time required for separation and deposition was two to four hours.

We shall discuss the various activities of a given atomic mass, correlating our data with those obtained by other means, such as studies of beta decay and the Coulomb excitation process. In particular, we shall discuss the radioactivities for masses 161 to 173, and shall discuss as a corollary the levels in nuclei of masses 151 to 159.

During the course of our rather lengthy experimental investigation, Mottelson and Nilsson⁶ have performed an analysis of the intrinsic states of odd-A nuclei which possess an ellipsoidal equilibrium shape. Many of our

data complement the predictions and conclusions they present. They have described the relevant levels in terms of the asymptotic quantum number notation; in general, we indicate only spin and parity for the levels discussed here unless there is need for a fuller description.

These "asymptotic" quantum numbers will describe the particle states in the assumed nonspherical field in the limit where the nuclear potential becomes a very anisotropic axially symmetric harmonic oscillator. In the limit, the quantum numbers (written N, n_z, Λ) are N, the total number of nodes in the wave function, n_z , the number of nodal planes perpendicular to the symmetry axis, and Λ , the component of the particles orbital angular momentum along the symmetry axis.

II. EXPERIMENTAL RESULTS

A. Tm^{161} (~30 min) $\rightarrow Er^{161}$ (3 hr) $\rightarrow Ho^{161}$ $(2.5 \text{ hr}) \rightarrow Dy^{161}$

A target enriched in Er¹⁶² gave rise to an activity which we assign to Tm^{161} . The half-life is 30 ± 10 minutes and a number of internally converted gammaray transitions were observed to follow the electroncapture decay of Tm¹⁶¹. Table I presents our data.

We have analyzed the radiations of Er¹⁶¹ (using both the descendant of the Tm¹⁶¹ decay and the Er fraction of the target), and find an internally converted (in Ho) transition of 211 kev. In all Er targets, there is produced an appreciable amount of Tm¹⁶⁷ (9.6 day), which decays by electron capture to a metastable level in Er^{167} , which is depopulated by a 208-kev E3 transition. The conversion lines¹ of this transition serve as a convenient half-life standard for the unknown lines. The K/L ratio and L structure of the transitions of 211 and 208 kev are very similar, if indeed, not identical. Hence, it seems reasonable to designate the 211-kev transition as an isomeric transition, probably of E3 character, occurring in Ho¹⁶¹. The energy difference of the K and L lines is clearly characteristic of Ho. The half-life of the isomeric level is unspecified except that it is less than 3 hours. The 208-key level in Er¹⁶⁷ has a half-life of 2.5 seconds, and one should expect the half-life of Ho^{161m} to be somewhat comparable.

For Ho (Z=67), the Nilsson⁷ diagram indicates a pair of close lying levels $(\frac{7}{2} - \text{ and } \frac{1}{2} +)$ which are consistent with the existence of E3 isomers. Hammer and Stewart⁸ have observed a 305-kev transition in Ho¹⁶³ ($T_{\frac{1}{2}}=0.8$ sec) which is, on the basis of conversion data, also of E3 character.

A very reasonable assignment of $\lceil 521, \frac{3}{2} - \rceil$ for Er¹⁶¹ may be made, which then permits a first-forbidden unhindered electron capture to the 211-key isomeric

³ B. H. Kettelle and G. E. Boyd, J. Am. Chem. Soc. 69, 2800

^{(1947).} ⁴G. R. Choppin and R. J. Silva, J. Inorg. & Nuclear Chem. 3,

⁶ R. Ko, Nucleonics 15, No. 1, 72 (1957). ⁶ B. R. Mottelson and S. G. Nilsson, Mat. fys. Skr. Dan. Vid. Selsk. 1, No. 8 (1959).

⁷S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 29, No. 16 (1955).

⁸ C. L. Hammer and M. G. Stewart, Phys. Rev. **106**, 1001 (1957).

Transition energy (kev)	K	$L_{\mathbf{I}}$	L_{II}	$L_{\rm III}$	M	N	Remarks ^{a, b}
$\overline{\mathrm{Tm}^{161}} \; (\sim 30 \; \mathrm{min}) \rightarrow \mathrm{Er}^{161}$							
84.4 143.9 146.8 172.1	1000 100 330 210						
$\mathrm{Er^{161}}$ (3 hr) $\rightarrow \mathrm{Ho^{161}}$							
211.4	1000	с	800°	550	400		E3 isomeric transition in Ho
Ho ¹⁶¹ (2.5 hr) \rightarrow Dy ¹⁶¹							
25.7 43.8 49.1		$ \sim \begin{array}{c} 800 \\ 100 \\ \sim \begin{array}{c} 60 \\ 35 \end{array} $	$\sim 650^{\circ}$	1000 w	d w w	240 พ	E1 Coulomb-excited
77.5 98.1 103.2	d d 225	$ \sim \begin{array}{c} 33\\ \sim 190^{\circ}\\ \sim 15^{\circ}\\ 45\\ 3 \end{array} $	$\sim {585 \atop c} {23^\circ}$	585 19 12	350 8 14	w^w_4	$ \begin{array}{c} M1 + E2(\frac{7}{2} - \rightarrow \frac{5}{2} -) \\ M1 + E2(9/2 - \rightarrow \frac{7}{2} -) \end{array} $
175.6	50	c	23°	13	12	4	$E2(9/2 - \rightarrow \frac{5}{2} -)$
$\mathrm{Tb^{161}}$ (7 days) $\rightarrow \mathrm{Dy^{161}}$							
25.7 28.7		780 50	~ 580	1000	$\sim^{d} \frac{15}{15}$	270	E1
43.8 49.1 57.4 59.3		$\sim 50 \\ 9150 \\ 950 \\ \sim 15$	1550 d	510 d	$\sim 15 \\ 2700 \\ 310 \\ 77$	с 100	Coulomb-excited $M1$
74.7 77.5 103.2 106.3	$520 \\ d \\ \ll 240^{d} \\ 50$	$\sim^{260}_{w} 20$	70° 40°	105 35	100 25	28	E1 M1+E2

TABLE I. Conversion electron data for decay chain Tm¹⁶¹, Er¹⁶¹, Ho¹⁶¹, Ho¹⁶¹m, Dy¹⁶¹, and Tb¹⁶¹.

Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise.
Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates a weak line.

Conversion line is not completely resolved.
 Conversion line is a composite of two or more lines.

level in Ho¹⁶¹ [411, $\frac{1}{2}$ +]. If Tm¹⁶¹ has a spin of $\frac{1}{2}$, $[411, \frac{1}{2}]$, as may be the case, then a first-forbidden unhindered electron capture to the Er¹⁶¹ ground state is expected. There are several orbitals⁶ available for the region of 91 to 95 neutrons, and possibly the transitions observed in Er¹⁶¹ are between these intrinsic levels.

Ho¹⁶¹ has a half-life of 2.5 hr and decays to levels¹ in stable Dy161, whose levels have been studied with Coulomb excitation¹⁰ as well as with Tb¹⁶¹ which decays via beta decay^{11,12} to Dy¹⁶¹. A comparison of the levels reached in these three ways is interesting. We have produced intense sources of both Tb¹⁶¹ and Ho¹⁶¹ and compared the conversion electron spectra.

The decay of Tb¹⁶¹ to Dy¹⁶¹ has recently been reported by Hansen, Nathan, Nielsen, and Sheline.¹¹ Our data agree well with theirs except that we were able to employ more intense sources and were able to observe a few transitions not reported by them. Furthermore, Bés¹³ has shown that the level structure in Dy^{161} is in accord with the predictions of the unified model.¹⁴ with the inclusion of Coriolis-force effects.¹⁵

Figure 2 indicates the genetic relationship of the activities of mass 161, as well as those for masses up to 173. We have indicated in each case the most reliable information available, and have specified a lower limit on the energy of the highest level populated by electron capture or beta decay. We have included the predicted energy (Mev) available for decay in square brackets to the right of the nuclide designation. These energies are obtained from the mass tables of Cameron¹⁶ and, although these values are not expected to be exact, do serve as a guide. Where known, the energy difference of two nuclei as determined from beta-decay energies are indicated with vertical dashed lines.

Level spins which are underlined are measured values and those in parentheses are the values read on the Nilsson⁷ diagram. Spins not indicated in one of the two manners mentioned are values deduced from

¹⁰ E. M. Bernstein and S. Buccino, Bull. Am. Phys. Soc. Ser. II, **3**, 55 (1958).

¹¹ Hansen, Nathan, Nielson, and Sheline, Nuclear Phys. 6, 630 (1958). We are indebted to Dr. Sheline for a preprint of this

paper.
 ¹² Cork, Brice, Schmid, and Helmer, Phys. Rev. 104, 481 (1956).
 ¹³ D. R. Bés, Nuclear Phys. 6, 645 (1958).

Mat.-fys. Medd **30**, No. 1 (1955). ¹⁵ A. Kerman, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. **30**, No. 15 (1955). ¹⁶ A. C. W. Course, A. C. Mat.-fys. ¹⁴ A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,

¹⁶A. G. W. Cameron, Atomic Energy of Canada Limited Report AECL-433, 1957 (unpublished).

beta decay or electron capture selection rules or from the rotational nature of the levels.

Data shown on Fig. 2 are taken from the Table of Isotopes,¹⁷ from data reported in this paper, or from unpublished work in our laboratories.

B. Tm^{163} (2 hr) $\rightarrow Er^{163}$ (75 min) $\rightarrow Ho^{163}$ (?) $\rightarrow Dy^{163}$

It is worth mentioning here that in our series of irradiations of very light stable Er isotopes, no evidence of any activity attributable to the even-mass isotopes Tm¹⁶² or Tm¹⁶⁴ was observed. Obviously, either the associated half-lives are too short $(<\frac{1}{2}$ hr) or the energies available are not sufficient to allow decay to levels which depopulate with observable internally converted transitions. There is, for example, a level^{1,18} of 91.0 kev (2+) in Er¹⁶⁴ which might be reached from Tm¹⁶⁴.

Proton irradiations of targets enriched in Er¹⁶⁴ gave rise to an activity of 2.0-hr half-life which, on the basis of activation data is due to Tm¹⁶³. The conversion lines of the 9.6-day Tm¹⁶⁷ served as a convenient half-life standard. Table II is a tabulation of our conversion electron data.

We have indicated a possible partial level scheme in Fig. 2 proposed solely on the basis of energies and intensities. The spins and parities assigned to the Tm¹⁶³ and Er¹⁶³ are consistent with those predicted from the Nilsson⁷ formulation, but the reliability for these very

neutron-deficient nuclei might be open to question. (Tm¹⁶³ is six mass units from the stability line.)

Er¹⁶³ (75 min) has been found to emit gamma rays of 430 and 1100 kev¹⁹ following electron capture. We were able to observe by internal conversion a 432.5-kev transition which may be attributed to this activity.

The electron capture of Er¹⁶³ to Ho¹⁶³ is expected to be an allowed unhindered transition $\lceil 523, \frac{5}{2} \rceil \rightarrow$ $[523, \frac{7}{2}]$. Accordingly, one should expect intense Auger lines characteristic of Ho resulting from the Er¹⁶³ daughter of Tm¹⁶³. Although we do observe Ho Auger lines, the complexity of the internal conversion spectra does not allow one to draw any conclusion as to the mass of the responsible activity. Since Er¹⁶⁴ constitutes 1.56% of the natural element, even an enriched target includes considerable Er¹⁶⁶ and Er¹⁶⁷, so that appreciable amounts of Tm¹⁶⁵ and Tm¹⁶⁶ are present.

Hammer and Stewart⁸ have produced [by a $(\gamma, 2n)$] reaction in Ho¹⁶⁵] an isomeric level of 0.8-sec half-life which is depopulated by a 330-kev transition. The indicated multipolarity (E3) is consistent with the predicted levels $(\frac{7}{2} - \text{ and } \frac{1}{2} +)$ for this nucleus. We have not observed this transition; this fact is consistent with the spin assignments shown.

No evidence of the decay of Ho¹⁶³ to Dy¹⁶³ was observed. This confirms a previous conclusion that the half-life of Ho¹⁶³ is very long,^{1,19} and that the energy available may be too small to permit K capture. The mass tables of Cameron¹⁶ indicate that very little energy is available for this electron capture.

Transition energy (kev)	K	$L_{\rm I}$	LII	LIII	М	N	Remarks ^{a, b}
22.2		~ 15	d	\sim 10	~ 9	w	
60.2		55	$\sim 12^{\circ}$	$\sim 12^{\circ}$	20		
69.2	\gg 55	35	~ 5	$< 10^{d}$	10	พ	
83.9	30	$\sim 6^{\circ}$	40	40	20	5	(<i>E</i> 2)•
85.1	25	d			w		
104.4	1000	260	$\sim 30^{\circ}$	8	70	d	
145.3	3						
164.4	30	5	w	w			
190.1	30	~ 6			w		
239.7	65	10					
241.5	140	22			5.5		
275.3	25	4	r.				
300.0	35	6	· · · · · · · · · · · · · · · · · · ·				
335.4	3.5						
393.5	5.5						
471.2	3.8	w		•			
505.1	\sim 1.7						
549.9	~ 2.7	w					
579.9	2.5						
656.4	w						

TABLE II. Conversion electron data for decay of $\rm Tm^{163}$ (2.0 hr) to $\rm Er^{163}.$

Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise. Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates a weak line.

eak line. Conversion line is not completely resolved. Conversion line is a composite of two or more lines.

¹⁷ Strominger, Hollander, and Seaborg, Revs. Modern Phys. 30, 585 (1958).
¹⁸ H. Brown and R. L. Becker, Phys. Rev. 96, 1372 (1954).
¹⁹ T. H. Handley and E. L. Olson, Phys. Rev. 92, 1260 (1953).

Transition energy (kev)	K	L_{I}		LIII	M	N	Remarks ^{a, b}
15.45					100	~ 20	$M_{\rm H}M_{\rm HI};$
30.05 35.2 47.15		$3.3 \\ 10 \\ \sim 300 \\ 100$	2.3 6 $< 200^{d}$	3.3 ~200	w w d	w 45	$(E1)^{\circ}$ $(E1)^{\circ}$
53.2 54.45 59.15 60.4		$\sim 180 \\ \sim 1500^{\rm d} \\ 10 \\ \sim 200^{\rm d}$	$\sim 50 \ d \ 40 \ d$	$d \\ d \\ d$	$\sim \begin{array}{c} a \\ \sim 500 \\ \sim \begin{array}{c} 20 \\ 45 \end{array}$	$\overset{20}{\sim}\overset{150}{\overset{5}{_{12}}}$	(E2+M1)°
70.6 77.2 82.25 86.9	$\sim \begin{array}{c} 250\\ 90\\ \sim 1.9\\ w \end{array}$	$\sim \begin{array}{c} 40 \\ 25^{\circ} \\ \sim \end{array} \begin{array}{c} 1.5 \end{array}$	$\overset{4}{\underset{4}{\overset{250}{\sim}}}_{1.3}$	$\sim \begin{array}{c} 1.5\\ 260\\ \sim 1.0\\ d\end{array}$	\sim^{d}_{130}	2 35	$E2 \\ (E2+M1)^{\circ} \\ (E2)^{\circ}$
88.2 113.6 151.0	20 300 8	d_{50}	5	1.5	1.3 12	3	
165.8 196.0	7 5	$egin{array}{c} w \ d \end{array}$					
210.3 219.3	4.5 132	25			6.5	1.9	
243.3 279.4	1000 6.6	160° e	e 1.8º	10.8 w	d_{w}	12.5	(<i>E</i> 2)°
296.5 297.8	70 115	10 22			$< \frac{2.6}{8^{d}}$	าย	
307.3 312.7	2.5 10	<i>d</i> 1.8					
331.1 347.3 356.9	$\begin{array}{c} 2.7\\ 35\\ 20\end{array}$	$\begin{bmatrix} w \\ 5 \\ 4 \end{bmatrix}$			พ พ		
Energy (kev)	K	L	Energy (kev)	K	L Energy	(kev) K	L
365.9 389.7 420.7 442.6	6.1 4.4 1.3 1.5	~0.8 w	526.8 542.6 558.4 564.3 575.0	1.9 4.6 1.1 8.5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2 0.1
456.1 460.3 471.5 477.4 487.1	5.7 11.3 1.9 2.1 5.3	0.7 2.0 w	590.0 623.5 665.3 677.5 681.3	$<3.4^{d}$ ~0.6 1.0 0.45 ~0.3	$\begin{array}{cccc} 0.45 & 95 \\ 113 \\ \sim 0.2 & 118 \\ 138 \end{array}$	$\begin{array}{cccc} 0.1 \\ 3.4 \\ 2.6 \\ 0.3 \\ 6.0 \\ 0.44 \\ 1.4 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.11 \\ 0.11 \\ 0.12 \\ 0.11 \\ 0.12 \\ 0.11 \\ 0.12 \\ 0.11 \\ 0.12 \\ 0.11 \\ 0.12 $	w
513.4	1.6	0.0	699.3	1.4	0.45		

TABLE III. Conversion electron data for decay of Tm¹⁶⁵ (29 hr) to Er¹⁶⁵.

* Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise. b Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates a weak line. • Possible.

^a Conversion line is a composite of two or more lines.
^e Conversion line is not completely resolved.

C.
$$Tm^{165}$$
 (29 hr) $\rightarrow Er^{165}$ (10 hr) $\rightarrow Ho^{165}$

The partial level scheme shown in Fig. 2 is consistent with the energies and intensities of transitions listed in Table III and with the results of preliminary $\gamma - \gamma$ coincidence measurements; however, the level at 77 kev has not been established with coincidence measurements. Incidentally, the 77-kev transition appears to be a pure E2 transition. Two of the most intense transitions (those of 54.4 and 297.8 kev) are very tentatively placed as shown.

It may be remarked here that the decay of Tm¹⁶⁵ to Er¹⁶⁵ is one of the most complicated we have thus far observed. The number of transitions is in excess of 60.

Confirming our previous results,¹ no evidence was obtained for electron capture of Er¹⁶⁵ (10 hr) proceeding to any excited levels (>20 kev) in Ho¹⁶⁵. The only

measured spin^{20,21} in this decay chain is that of Ho¹⁶⁵ $(I=\frac{7}{2}-)$. Possible spins⁷ for Er¹⁶⁵ (97 neutrons) are $\frac{5}{2}\pm$, although caution must be employed since the level ordering is sensitive to the assumed deformation. The short half-life and apparently small energy difference between Er¹⁶⁵ and Ho¹⁶⁵ are consistent with an allowed K capture, and this indicates that the spin of Er^{165} may be $\frac{5}{2}$ —. Mottelson and Nilsson⁶ conclude that this transition is an allowed unhindered one: $[523, \frac{5}{2}] \rightarrow$ $[523, \frac{7}{2}].$

D. Lu¹⁶⁷ (54 min) \rightarrow Yb¹⁶⁷ (18 min) \rightarrow Tm¹⁶⁷ $(9.6 \text{ day}) \rightarrow \text{Er}^{167}$

Irradiation of targets enriched in Yb¹⁶⁸ gave rise to an activity attributable to Lu¹⁶⁷ which initiates the

²⁰ J. E. Mack, Revs. Modern Phys. 22, 64 (1950).

²¹ J. M. Baker and B. Bleany, Proc. Phys. Soc. (London) A68, 257 (1955).

Transition energy (kev)	K	L_{I}	LII	$L_{\rm III}$	М	N	Remarks ^{a, b}
$\mathrm{Lu^{167}}~(54~\mathrm{min}) \rightarrow \mathrm{Yb^{167}}$							
$\begin{array}{c} 29.7\\ 56.4\\ 123.2\\ 178.7\\ 188.5\\ 213.0\\ 222.8\\ 239.1\\ 258.3\\ 261.6\\ 278.1\\ 317.4\end{array}$	$345 \\ 170 \\ 120 \\ 460 \\ 110 \\ 1000 \\ 170 \\ 145 \\ 155 \\ 90$	930 ~ 440 c c 95 w 190 25 w 20 w	830	1090	~550 c w 65	с	(<i>E</i> 1) ^d
401.4 $Vb^{167} (18 \text{ min}) \rightarrow Tm^{167}$	100	w					
25.8 37.1 62.9 106.1 113.3 116.5 131.9 150.5 176.2	$1000 \\ 420 \\ 60 \\ 52 \\ 5 \\ 30$	$\sim \begin{array}{c} 40 \\ 210 \\ 270 \\ 225 \\ 65 \\ f \\ w \\ w \end{array}$	35 25 32 c 32 19	32 c 13 15 31 17	$\sim 25 \\ 65 \\ 55 \\ 18 \\ 19 \\ c$	17	$\begin{array}{c} (\frac{7}{2} + \to \frac{3}{2} +)^{\mathfrak{o}} \\ (M1 + E2) \\ (M1 + E2) (\frac{5}{2} + \to \frac{3}{2} +)^{\mathfrak{o}} \\ (E1)^{\mathfrak{o}} \\ (E2) (\frac{5}{2} + \to \frac{1}{2} +)^{\mathfrak{o}} \\ (E2) (\frac{7}{2} + \to \frac{3}{2} +)^{\mathfrak{o}} \end{array}$
Tm^{167} (9.6 day) $\rightarrow Er^{167}$ 57.10 208.2 532.2	1000 2.2	$280 \\ f \\ 0.35$	235 820 ^f	245 430	180 370 0.1	50 100	$M1+E2E3(\frac{1}{2}-\rightarrow\frac{7}{2}+)^{d}\\\epsilon_{k}=0.036\pm0.015$

TABLE IV. Conversion electron data for decay chain Lu¹⁶⁷, Yb¹⁶⁷, and Tm¹⁶⁷.

• Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise. • Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates Conversion line is a composite of two or more lines.
Probable.

Possible

^t Conversion line is not completely resolved.

decay chain ending with stable Er¹⁶⁷. The conversion electron data for these activities are presented in Table IV. Because of the short half-life of Yb¹⁶⁷, the only criterion for assigning transitions to Yb or Tm is the difference in energy of the observed K, L, and Mconversion lines.

The conversion electron spectrum of Yb¹⁶⁷ decaying to Tm¹⁶⁷ is quite interesting. The data are consistent with the premise of an anomalous¹⁴ rotational band based on a ground state with spin of $\frac{1}{2}$. This value of spin for the ground state of the odd-mass Tm isotopes is consistent with the measured²⁰ and deduced¹⁷ spin of Tm¹⁶⁹ and Tm¹⁷¹, respectively.

The levels at 179 and 293 kev, as shown in Fig. 2, are consistent with the energies and intensities of the observed transitions. The spins and parities shown are very tentative and are perhaps analogous to the case of Tm¹⁶⁹.6

It may be remarked that the rather complete data obtained on the decay of Yb¹⁶⁷ to Tm¹⁶⁷ were possible because of the fortuitous occurrence of the Lu¹⁶⁷ parent of 54-min half-life.

The ground state of Lu¹⁶⁷ is probably $\lceil 404, \frac{7}{2} + \rceil$ or [514, 9/2-] while Yb¹⁶⁷ may be a $[523, \frac{5}{2}-]$ or $[642, \frac{5}{2}+]$ state.⁶

The ground state of Tm¹⁶⁷ decays with a half-life of 9.6 days to levels in Er¹⁶⁷, as has been discussed previously.1 The existence of a 208-kev E3 isomeric transition in Er¹⁶⁷ has been established, and since the ground state is a $\frac{7}{2}$ + level, the isomeric state is very reasonably $\frac{1}{2}$ –. Two additional transitions of 57 keV and 532 kev have been observed. The electrons have been tabulated in Table IV. The experimental internal conversion coefficient (based on the value of 0.48 for the K conversion coefficient of the 208-kev transition) of the 532-kev transition is 0.036 ± 0.015 , which is consistent with the value²² for an M1 transition, or possibly E1+M2. At any rate, one should not expect more than one unit of angular momentum change to be associated with this transition. The L ratio of the 57-kev transition is consistent with an assignment of M1(87%) + E2(13%).

It is probable that the spin of Tm^{167} is $\frac{1}{2}$. The possibility exists that the 57-kev transition arises from the first rotational excitation level $(\frac{3}{2})$ of the intrinsic $\frac{1}{2}$ - level at 208 kev. In this case, the postulated spin of $Tm^{167}(\frac{1}{2}+)$ would not allow electron capture to the $\frac{5}{2}$ - level of this rotational family.

²² M. E. Rose, Internal Conversion Coefficients (North-Holland Publishing Company, Amsterdam, 1958).

Transition energy (kev)	K	$L_{\mathbf{I}}$	L_{II}	LIII	М	N	Ren	arks ^{a, b}
24.23			>650	>630	>320	>80	$E3(\frac{1}{2}$	→ 7 /+)°
62.75		250	530	510	d	70	M1+E2	$\left(\frac{3}{2}-\rightarrow\frac{1}{2}-\right)^{\circ}$
70.85	$\gg 260$	< 680 ^d	$< 250^{d}$	210	~ 200	50	·	· - /
75.0	70)		315	$\sim 320^{d}$	155	d	$E2(\frac{5}{2}$	$\rightarrow \frac{1}{2} -)^{\circ}$
87.4	>1000	480	130	90	180	35		- /
90.75	> 280	80	~ 20	d	30	7		
92.0	340	$\sim 60^{\circ}$						
104.35	290	50			d			
108.0	40	7						
110.9	840	150	30	25	45	11		
133.5	$\sim 80^{\circ}$	10						
144.6	140	20			d		$\left(\frac{7}{2} \longrightarrow \frac{5}{2}\right)$	-)°
157.0	115	e	60°	40	d		$E^{2}(\frac{1}{2}$	$\rightarrow (\frac{3}{3} -)^{\circ}$
161.7	\tilde{d}	e	$\sim 4^{\circ}$	~ 2.5	~ 3		(E2)°	4 /
165.2	145	ē	80°	50	30	d	E2(9/2 -	$\rightarrow \frac{5}{2}$ $\rightarrow)^{\circ}$
166.5	20	$\overset{\circ}{d}$		••				2 /
191.4	290	50	е	6	d			
198.4	30	ď	•	-				
226.2	\sim 7^{d}	70						
244.9	d	\sim 2.5					(11/2	→])?
258 7	27	<i>d</i>			70		(/-	2).
291.6	$\frac{-1}{24}$	4			["] 1			
369.6	$\bar{24}$	d			ī			
379.2	54	8			$\tilde{2}$			
Energy (kev)	K	L	Energy (kev)	K	 	Energy (kev)	K	 L
404.6			656 7	1		1075.0	1.2	
404.0	11	~ <i>i</i> 2	601.2	~13		1075.9	~ 1.3	w
430.8	11 b9	$\sim 1^{2}$	708.0	~ 1.3		1172 5	~ 0.4	
470.8	~ 04	<i>i</i> ∼1.5	706.9	~ 1.4		1179.1	~ 1.2	
480.5	$\sim 1.3^{\circ}$		720.9	~ 1.2	64	1170.1	~ 0.9	
404.0	3.7 - 1.7d		769.5	24	w	1100.0	5.0	w
489.7	~ 1.7	w	702.1 922.6	2.4		1207 4	~ 0.5	
549.1	3.5		022.0 991 1	~ 1.2		1207.4	~ 0.5	
505.8	2.5	w 1 0	001.1 901.2	~1.0		12/2.0	~ 0.0	
5/7.1	0.0	1.4	091.4	2.1	1 2	1292.4	~ 0.7	
591.4	5.5	1.0	902.4	9.0	1.5	1380.2	~0.9	
023.7	~ 1	·	1002.5	$\sim 2.8^{\circ}$	<u>.</u>	1383.3	w	
030.2	4.5	w	1000.3	~ 0.7	05	1394.1	~ 0.9	
047.5	~ 1.3		10/2.0	4.3	~ 0.5	1592.0	w	

TABLE V. Conversion electron data for decay of Lu¹⁶⁹ (1.5 day) to Yb¹⁶⁹.

Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise.
 Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nucleids. "w" indicates weak line.
 Possible.
 Conversion line is a composite of two or more lines.
 Conversion line is not completely resolved.

The placement of the 532-kev transition is also uncertain. No transitions of energy equal to the sum or difference of 208 and 532 kev were observed within the limits of our detection thresholds. One then has the choice of the 532-kev transition being in cascade with the "208," in cascade with both the "57" and "208," or simply proceeding to the ground state. The transition of 532 key is far less intense than the one of 57 key.

The β -decay of Ho¹⁶⁷ (whose spin is possibly $\frac{7}{2}$ - or $\frac{1}{2}$, in analogy with other Ho isotopes) does not populate any of the levels reached by electron capture. Ho¹⁶⁷ (3.0 hr) has been reported²³ to decay with two β -branches (end points of 280 and 960 kev) and photons of 350 and 700 kev.

E. Lu¹⁶⁹ (1.5 day) \rightarrow Yb¹⁶⁹ \rightarrow Tm¹⁶⁹

It was previously mentioned¹ that Lu¹⁶⁹ had been produced by irradiating natural Yb with protons.

Subsequent experiments with separated isotopes indicated the existence of a complex de-excitation spectrum. Table V lists our internal conversion data. The most likely spin for Yb¹⁶⁹ is $\frac{7}{2}$ +, as deduced from its decay to Tm¹⁶⁹, and in agreement with the prediction of Nilsson.⁷ An isomeric state is predicted for Yb¹⁶⁹; isomeric states also arise from similar configurations of 99 neutrons in Dy¹⁶⁵ and Er¹⁶⁷.

A 20- to 30-kev radiation of 50-sec lifetime has been observed by others¹⁷ in Yb, mass unknown. Conversion spectra of mass 169 show radiation at 24.2 kev of electric character. From half-life and L-M subshell conversion data, this isomeric transition is possibly of E3 multipole order and may populate the level $[521, \frac{1}{2}-]$ above the ground state $[633, \frac{7}{2}+]$. The conversion electron data indicate an intense rotational band $(K=\frac{1}{2})$ which has the 9/2- and possibly the 11/2- levels populated. We have shown on Fig. 2 a scheme consistent with these premises.

²³ Handley, Lyon, and Olson, Phys. Rev. 98, 688 (1955).

Transition energy (kev)	K	$L_{\mathbf{I}}$	L_{II}	$L_{\rm III}$	M	N	Remarks ^{a, b}
19.3		≫120	~190	~ 200	~130	40	(E1)°
27.0		w	d	~ 9	~ 5		$M_{\rm II} \simeq M_{\rm III} \simeq 2.5$
46.45		20	5	4.5	\sim 7		
55.65		115	~ 10	\sim 3	32	~ 8	
66.7		115	210	215	≥ 100		$M1 + E2\left(\frac{3}{2} \rightarrow \frac{1}{2}\right)$
72.3	$\gg 50$	90	30	22	d	8	
75.9	>90	$\sim~50^{ m e}$	950	1000	540	130	$E2(\frac{5}{2} \rightarrow \frac{1}{2})$
85.5	85	$\sim 18^{ m e}$	d	d	\sim 12	\sim 4	5
91.3	42	d					
109.2	65	13	\sim 2	~ 1.5	4	~ 1	
142.6	\sim 7°	w					
154.6	3	\sim 0.6	е	\sim 0.2			$M1+E2(\frac{7}{2}\rightarrow \frac{5}{2})^{\circ}$
163.8	7.5	\sim 0.5	2.3	1.8	1.4	w	$E2(\frac{7}{2} \rightarrow \frac{3}{2})^{c}$
170.6	$\sim 1.2^{ m e}$	\sim 0.2	\sim 0.35 $^{\circ}$.	d	\sim 0.2		$E2(9/2 \rightarrow \frac{5}{2})^{\circ}$
183.2	0.6						
195.0	3	\sim 0.3	0.6	d	d		
499.1	0.45	d	N	÷			
518.2	1.2	0.2					
627.4	1.5	w					
668.2	4.5	0.65					
690.0	0.7	d d					
713.6	1.6	w					
740.9	14	1.9			0.4		
768.5	0.9	าย					
782.0	1.1	w					
786.0	w						
795.1	w						
827.3	w						
841.6	3.3	0.5					
854.4	~ 0.5						

TABLE VI. Conversion electron data for decay of Lu¹⁷¹ (8.1 day) to Yb¹⁷¹.

^a Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise. ^b Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates a weak line. • Possible

^d Conversion line is a composite of two or more lines. ^e Conversion line is not completely resolved.

F. Lu^{171} (8.1 day) $\rightarrow Yb^{171}$

In previous publications¹ we have reported on the electron capture of Lu¹⁷¹. The data then available indicated the presence of highly converted transitions of 66.7 and 75.9 kev. The multipolarity of the 66.7-kev transition was assigned as M1 and E2, and the 75.9-kev transition appeared to be of E2 or E3 multipole order, with the latter choice being preferred on the basis of rather uncertain K/L ratio criteria. Subsequent data obtained by us using enriched Yb targets and recently reported experiments of others have led to re-examine the 75.9-kev transition. It is more likely that this transition is of E2 multipole order and may proceed between the $\frac{5}{2}$ and $\frac{1}{2}$ levels of a ground state rotational band in Yb¹⁷¹ $(I_0 = \frac{1}{2})$. Higher levels, $\frac{7}{2}$ and 9/2, may be populated by radiations observed in the conversion spectrum. Agreement of calculated and experimental values for the higher rotational states is very close; likewise, the multipole character of the radiations are consistent with the above premise.§

The beta decay of Tm¹⁷¹ leads to a level of 66.7 key in Yb, and Smith et al.24 concluded that this level was of rotational nature. Elbek et al.25 have measured the inelastically scattered protons from a Yb¹⁷¹ target, employing a high-resolution heavy-particle spectrograph. They observed proton groups corresponding to levels of 67 and 76 kev which they interpreted as the first two levels of a $K=\frac{1}{2}$ rotational band. Recent Coulomb excitation experiments by Chupp et al.²⁶ also are consistent with this interpretation.

Since the 75.8-kev level does not appear to be the expected $\frac{7}{2}$ + isomeric state, the obvious question may be raised as to why no such level is populated since Lu¹⁷¹ should have a spin of $\frac{7}{2}$ + or 9/2 -. The answer lies in the fact that the low-lying $\frac{3}{2}$ - and $\frac{5}{2}$ - levels of the $K=\frac{1}{2}$ ground-state band may destroy the "metastability" of the $\frac{7}{2}$ + level, despite the fact that the transitions to the rotational levels will be K-forbidden.

Let us assume for sake of argument that the $\frac{7}{2}$ + level were at ~ 175 kev. An E3 transition to the ground

[§] Note added in proof.—An anomalous rotational spectrum has been observed in a similar configuration of 101 neutrons in the electron capture decay of $_{73}$ Ta¹⁷³ (2.5 hr) to $_{72}$ Hf¹⁷³. One may postulate levels above the ground state $(I_0=\frac{1}{2})$ in Hf¹⁷³ of 69.8 kev (I_0+1) , 81.5 kev (I_0+2) , 241.8 kev (I_0+3) , and 262.3 kev (I_0+4) .

²⁴ Smith, Robinson, Hamilton, and Langer, Phys. Rev. 107, 1314 (1957)

²⁵ Elbek, Nielson, and Oleson, Phys. Rev. 108, 406 (1957).

²⁰ Chupp, DuMond, Gordon, Jopson, and Mark, University of alifornia Radiation Laboratory Report UCRL-5171 (un-California published).

Transition energy (kev)	K	L_{I}	L_{II}	$L_{\rm III}$		M	N	Remarks ^{a, b}
Hf ¹⁷³ (24 hr) \rightarrow Lu ¹⁷³							anna a chuireann an chuireann fear ann	
78.0	~ 5	$\sim 1^{\circ}$						
123.8	780	100	28	32		32	75	E1
135.0	260	32	51	46		33	12	M1 + E2
139.8	1000	140	36	22		54	15	M1 + E2
162.1	37	5.3	6	11		17	0.5	(F1)e
207 3	57	8	ć	12		~ 2	0.0	(221)
307.0	10.5	17	d	~ 0.4		0.45		
311.8	10.5	25	u C	0.55		0.10		
357 5	\sim ¹ / _{5°}	0.05	U	0.50		0.7		
423.3	0.7	w				0.20		
Energy (kev) K	L	Energy (kev)	K	L	En	ergy (kev)	K	L
541.2 2.15	0.27	762.5	0.18	w		1041.3	0.32	0.05
550.7 2.5	0.36	767.0	~ 0.06			1073.2	0.065	710
557.5 0.56	~ 0.1	823.7	~ 0.05			1208.4	0.21	0.037
569.4 0.46	~ 0.05	855.3	0.12			1213.3	0.08	70
578.7 0.14	w	859.5	c			1351.2	~ 0.014	
$596.5 \sim 0.05$		877.2	0.07			1485.1	~ 0.018	
619.1 d		881.6	0.13			1551.0	~ 0.015	
626.8 ~0.06		901.2	1.4	0.19		1780.8	W	
720.2 0.10	w	1036.7	0.42	0.055				
Transition energy (kev)	K	L_{I}	$L_{\rm II}$	$L_{\rm III}$	М	N	Remark	IS ^{a,b}
Lu^{173} (1.4 yr) \rightarrow Yb ¹⁷³	3							
78.7	≫1650	1000	250	180	350	95	$M1 + E2(\frac{7}{2} -$	- → ⁵)
100.7	890	235	40	27	70	20	M1 + E2(9/)	$2 \rightarrow \overline{4} \rightarrow 4$
171.5	25		6	70)	d		E1 + M2	2 2
179.5	40	c	170	13	9	2.4	$E^{2}(9/2$	5-)
272.4	100	1.3°	6	2.2	4		E1 + M2	2 /
285.6	2.8	~ 0.4	v	2.2	-		E1+M2	
351.2	1.0	70					E1 + M2	
457 1	14	0.2					$(M1 + E2)^{\circ}$	
558.1	$\hat{2} \hat{2}$	04					$(M1 + E2)^{\circ}$	
626.9	5.0	1 1						

TABLE VII. Conversion electron data for decay chain Hf¹⁷³, Lu¹⁷³, and Yb¹⁷³.

^a Multipole assignments were made on the basis of K/L or L ratios, unless noted otherwise. ^b Intensity data are internally consistent for lines of the same activity. Comparison may not be made between data for different nuclides. "w" indicates Conversion line is not completely resolved.
 Conversion line is a composite of two or more lines.

• Probable.

state will have a transition probability²⁷ corresponding to a half-life of 2.5 sec for the $\frac{7}{2}$ + state (if we assume a retardation factor of \sim 500).²⁸ The E1 transition to the $\frac{5}{2}$ $(K=\frac{1}{2})$ level would have to be retarded by more than 10¹³ in order to have comparable intensity. Such a retardation is not consistent with the change in K-number ($\Delta K = 3$). Also, the M2 transition $(\frac{7}{2} + \rightarrow \frac{3}{2} -)$ might become important. A retardation of 106 would make such a transition compete with the "E3."

Table VI is a tabular presentation of Yb¹⁷¹ conversion electron data. Gamma-ray transitions of energy as great as 854 kev are observed. One may conjecture the existence of a rotational band based on the $\frac{5}{2}$ + state. Such a sequence is possible with M1+E2 transitions of 85.5 plus 109.2 kev with an E2 crossover at 195 kev. However, the connection to the ground-state $K=\frac{1}{2}$ band is not clear.

G. $Hf^{173} \rightarrow Lu^{173} \rightarrow Yb^{173}$

We have analyzed the radiations of Hf¹⁷³ (24 hr) with more intense sources and have been able to obtain considerably more data. A complex gamma-ray spectrum (the most energetic transition seen thus far being one of 1780 kev) has been observed. Table VII presents the conversion electron data.

The multipolarity¹ of the 123.9-kev transition has been confirmed, and the half-life²⁹ of the level from which it originates has been measured as 70 µsec. Hence, the E1 transition is retarded²⁷ by a factor of 10^9 . Furthermore, the 140-kev transition, contrary to our previous report,²⁹ is found to be a prompt $(T_{\frac{1}{2}} < 5 \times 10^{-8})$ sec) transition of M1 multipole order with some E2admixture.

The ground state of Lu¹⁷³ (1.33 years) decays to levels in stable Yb¹⁷³ $(I_0 = \frac{5}{2})$.^{30,31} The essential features

²⁷ S. A. Moszkowski, in Beta- and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland Publishing Company, Amsterdam, 1955), Chap. 13. ²⁸ J. W. Mihelich and B. Harmatz, Phys. Rev. **106**, 1232 (1957).

²⁹ Ward, Mihelich, Harmatz, and Handley, Bull. Am. Phys. Soc. Ser. II, 2, 341 (1957), and to be published. ³⁰ A. H. Cook and J. G. Park, Proc. Phys. Soc. (London) A69,

^{282 (1956).}

²⁴² (1950). ³¹ K. Krebs and H. Nelkowski, Z. Physik 141, 254 (1955) and Ann. Physik 15, 124 (1954).

TABLE VIII. Empirical constants for rotational energy formula.

 $E_{I} = E^{0} + (h^{2}/2 \mathfrak{s}) \{ I(I+1) + a(-1)^{I+\frac{1}{2}}(I+\frac{1}{2}) \} + B\{ I(I+1) + a(-1)^{I+\frac{1}{2}}(I+\frac{1}{2}) \}^{2},$

where E_I is the energy of state of spin I, \mathfrak{s} is the moment of inertia, E^0 is a constant, and a is the decoupling parameter which is nonzero only for $K = \frac{1}{2}$, $I_0 = \frac{1}{2}$ cases.

Nuclide	I ₀	$E(I_0+1)$	$E(I_0+2)$	$E(I_0+3)$	Predicted next level	$\left(\frac{3\hbar^2}{g}\right)_{kev}$	$B_{ m kev}$	a	Reference
Tb155	$\frac{3}{2} + a$	65.4	155.8		$270.1(I_0+3)$	78.9	-0.014		b
$\mathrm{Tb^{157}}$	$\frac{3}{2} + a$	60.8	143.9		$252.4(I_0+3)$	75.5	-0.021		с
$\mathrm{Tb^{159}}$	$\frac{3}{2} + d$	58.0	137.5		$236.8(I_0+3)$	70.2	-0.020		c,e
Tm^{167}	$\frac{1}{2} + a$	10.5	116.5	142.3	$344.9(I_0+4)$	72.2	+0.028	-0.71	,
$\mathrm{Tm^{169}}$	$\frac{1}{2} + f$	8.4	118.2	139.0	$351.7(I_0+4)$	71.8	+0.034	-0.77	g
Tm^{171}	1-1-a	5.6	116.7	129.1	$343.9(I_0+4)$	69.8	+0.030	-0.86	g.h
$\mathrm{Yb^{169}}$	$\frac{1}{2}$ _ a, i	62.8	75.0	219.7	$240.2(I_0+4)$	70.4	-0.008	+0.79	87
Yb^{171}	ii	66.7	75.9	230.5	$246.7(I_0+4)$	72.4	-0.004	+0.85	
Yb^{173}	$\frac{5}{2}$ — j,k	78.7	179.5		$302.1(I_0+3)$	67.6	-0.003	,	

* Spin listed is consistent with decay or excitation data.	8 E. N.
^b Reference 33.	h Crans

E. N. Hatch and F. Boehm, Phys. Rev. 108, 113 (1957). Cranston, Bunker, and Starner, Phys. Rev. 110, 1427 (1958). Reference 30.

Reference 1

^d Reference 20. • Reference 34. f Reference 26.

Reference 31

ⁱ Assume $I = \frac{1}{2}$ is at 0 kev for comparison with Yb¹⁷¹.

of this decay chain are shown in Fig. 1. It is most reasonable to designate the ground state of Lu¹⁷³ as 9/2- [514, 9/2-], with 123.4-kev E1 transition possibly originating at the $[404, \frac{7}{2}+]$ level. A more detailed discussion of the features of the A = 173 decay chain will be discussed in a subsequent publication.

III. DISCUSSION

It has become apparent, as we extend our studies further, that the low-lying (< 2.0 MeV) excitation of the rare-earth nuclei is very complex. This complexity makes the construction of unique level schemes difficult, particularly when the decay involves several dozen gamma-ray transitions, some of which differ in energy by very small amounts. At the present stage of the experiment, one may postulate only partial schemes in most cases. It is certainly hoped that further experiments on coincidence sequences, level half-lives, photon intensities, directional correlations of radiations, spins and magnetic moments of radioactive nuclei, etc., will shed more light on the nature of these closely spaced levels. Levels due to vibrational excitation¹⁴ of these odd-mass nuclei should be observed; these levels should lie considerably lower than is the case for even-even nuclei. The occurrence of a number of E2 transitions (see tabular data) may indicate that such levels are being populated in these decays.

The general features of the low-energy excitation spectra of these nuclei is becoming more clear as improvements in experimental data and theoretical interpretation continue.

The internal conversion electron spectra of the

transition de-exciting the levels in these nuclei are, in most cases, necessary before carrying out further investigation. Therefore we are publishing, at this time, our results which are fairly complete. Of course, in all cases, there are probably a number of weaker transitions which have not been detected. In general, where possible, we have tabulated electron lines which are $\simeq 10^{-5}$ times as intense as the most prominent one. It is obvious that only an instrument which records and integrates the radiations over a considerable range of energy simultaneously is able to effectively analyze these spectra which are very complex and sometimes due to a short-lived activity. Furthermore, very often the energy available for electron capture decay is sufficient to allow the population of rather high-energy levels.

We have attempted to indicate on Figs. 2 and 3 some of the genetic relationships of the radioactivities in the odd-mass rare earths between A = 151 and A = 173. We have indicated the level structure which seems most reasonable at the present time. The somewhat awkward display of β^- decay (up and toward the left) is necessitated by our desire to plot the various nuclei in such a fashion as to maintain a given proton number in a horizontal line and a given neutron number vertically. It is felt that such a plot displays rather graphically the over-all picture of the odd-A rare earths and affords a perspective which is useful.

Figure 2 displays the rather striking regularity in the low-energy levels of 69 Tm^{167,169,171}; in each case the development of an anomalous $K=\frac{1}{2}$ ground-state rotational band is observed. Table VIII, which displays the empirical data on energy levels, shows the consistent trend in the moments of inertia, second-order correction B, and decoupling parameter a in the rotational energy formula.14 Parameters for anomalous rotational sequences in 70Yb¹⁶⁹ and 171 are also tabulated. With regard to the value of a, the experimental data indicate, when comparison is made with the curve of Mottelson and

 $[\]parallel$ Note added in proof.—Similar rotational and intrinsic states are populated in odd A(N=103) nuclides $_{70}$ Yb¹⁷³ $+_{72}$ Hf¹⁷⁵. Transitions following electron capture of Ta¹⁷⁵ (11 hr) to Hf¹⁷⁵ indicate a rotational sequence based on the ground state $(I_0 = \frac{5}{2})$ of 81.5 kev (7/2), 185.8 kev (9/2), and 312.4 kev (11/2). Intrinsic excited states are found at energies of 348 and 622 kev in Hf175. Also present are an anomalous rotational band with spins $\frac{1}{2}$ through 9/2 and an excited state at 1045 kev.

Nucleus	Energy (kev)	L_{I} : L_{II} : L_{III}	M1:E2ª	Levels involved
64Gd155	60.1	1.0:>0.27:0.25	35:1	$(\frac{5}{2} - \rightarrow \frac{3}{2} -)K = \frac{3}{2}$
65Tb157	60.8	$1.0: \ge 0.14: 0.12$	60:1	$(\frac{5}{2} + \rightarrow \frac{3}{2} +)K = \frac{3}{2}$
65Tb159	58.0	1.0:0.18:0.12	65:1	$(\frac{5}{2} + \rightarrow \frac{3}{2} +)K = \frac{3}{2}$
66Dy ¹⁶¹	77.5	0.3:1.0:1.0	0.9:1	$\left(\frac{\tilde{7}}{2} \longrightarrow \frac{\tilde{5}}{2} \longrightarrow \right)^{b}$
68Er ¹⁶⁷	57.1	1.0:0.9:0.9	7:1	$\left(\frac{3}{2} \longrightarrow \frac{1}{2} \right)$ (?) ^b
69Tm ¹⁶⁷	106.2	1.0:0.14:0.06	45:1	$(\frac{5}{2} + \rightarrow \frac{3}{2} +)K = \frac{1}{2}$
70Yb169	62.8	0.47: 1.0: 0.96	1.5:1	$(\frac{3}{2} \rightarrow \frac{1}{2} \rightarrow K = \frac{1}{2}b$
$_{70}{ m Yb^{171}}$	66.8	0.55:1.0:0.95	2:1	$(\frac{3}{2} + \rightarrow \frac{1}{2} +)K = \frac{1}{2}$
$_{70}{ m Yb^{178}}$	78.7	1.0:0.25:0.17	20:1	$\left(\frac{7}{2} \longrightarrow \frac{5}{2} \longrightarrow K = \frac{5}{2}\right) K = \frac{5}{2}$
$_{71}Lu^{173}$	135.0	0.6:1.0:0.9	0.6:1	$(9/2 + \rightarrow \frac{7}{2} +)(?)^{b}$
	139.8	1.0:0.25:0.16	8:1	

TABLE IX. Mixed M1+E2 transitions (155< A < 173).

^a Ratios (of photon intensities) obtained from L ratios. ^b Not a ground-state rotational band.

Nilsson,³² who have calculated the expected value of afor Z=69 as a function of deformation (δ), that the deformation of the Tm nuclei decreases with decreasing mass.

Another series of nuclides with fixed atomic number and differing by pairs of neutrons is that of the Tb isotopes of mass 155, 157, and 159. Here, the spectra observed (see Fig. 3) are consistent with a ground-state spin of $\frac{3}{2}$ (stable Tb¹⁵⁹ has a measured spin of $\frac{3}{2}$). The Nilsson⁷ level ordering would predict two low-lying states: $[411, \frac{3}{2}]$ and $[532, \frac{5}{2}]$. In each of the Tb isotopes, the data are consistent with a $\frac{5}{2}$ state at about 300 kev, the position varying smoothly with neutron number.

The level schemes of the three odd-A isotopes of Tb (155, 157, and 159) show a strong similarity. The decay of Dy^{155} to Tb^{155} has been reported by Toth and Rasmussen.³³ Although no multipole order data were given, the levels may be tentatively arranged as shown, with rotational levels at 65 and 156 kev and two other levels at 227 and 271 kev. Levels which are possible here, besides the $[411, \frac{3}{2}+]$ ground state, are those designated as $[532, \frac{5}{2}]$, $[523, \frac{7}{2}]$, or $[413, \frac{5}{2}]$.

The levels in Tb¹⁵⁷ are postulated on the basis of transition energies. The transitions from the level of 327 kev are all dipoles (with the possibility of quadrupole mixing); hence, the 327-kev level is $\frac{5}{2}\pm$. The level at 364 kev in Tb¹⁵⁹ has been established as a $\frac{5}{2}$ - state.³⁴

Of the two postulated levels for Dy¹⁵⁹ (134 days), $\begin{bmatrix} 521, \frac{3}{2} \end{bmatrix}$ and $\begin{bmatrix} 523, \frac{5}{2} \end{bmatrix}$, the former seems most probable since electron capture occurs to the 58-kev $\frac{5}{2}$ + state in Tb¹⁵⁹, but not to the 138-kev $\frac{7}{2}$ + state. Assuming a small energy (<500 kev) for this decay,

the data are consistent with the expected first-forbidden unhindered classification.

In a previous publication¹ we have reported on the spectra following electron capture of odd-mass Tb isotopes of mass 151 through 155. We have plotted on Fig. 3 the levels indicated by these data. The levels in Gd¹⁵³ are proposed on the basis of energies; the levels in Gd¹⁵⁵ were established with coincidence measurements.35

As regards the level in Gd isotopes (Z=64), only those of mass 155 and 157 have been investigated to very great extent; Gd¹⁵⁷ levels are not populated by electron capture of Tb¹⁵⁷, so that the only data are those from Coulomb excitation experiments.¹⁷ A partial level scheme is shown in Fig. 3. The lower lying levels have been discussed by Mottelson and Nilsson⁶; we should like to remark that there is evidence for the existence of expected levels of $\lceil 660, \frac{1}{2} \rceil$ and $\lceil 521, \frac{1}{2} \rceil$ in Gd155.

A possible level ordering is shown for Gd¹⁵³, and the first excited state of Gd¹⁵¹ is indicated on Fig. 3.

Another question of interest is that of M1 and E2mixtures. In general, the existence of an appreciable amount of E2 radiation to M1 radiation is due to an "unusual" situation as regards the relative probability for these two kinds of radiations. The "enhanced" E2 probabilities are, of course, intimately related to the collective excitation described by the "unified" model.¹⁴ We have tabulated in Table IX the mixing ratios for the various M1+E2 transitions observed in our work on masses 151 to 173, giving, where possible, the description of the levels involved. In all cases, the mixing ratios have been obtained from the measured L ratios.

Another interesting question is that of *E*1 transitions. Since these transitions proceed between levels of different parity, when electric dipoles are observed one should expect, in general, two intrinsic levels close together. Where the data are reasonably good, we have indicated in the tables (I to VII) which transitions are consistent with this assignment.

ACKNOWLEDGMENTS

We should like to express our gratitude to Dr. R. S. Livingston for his continued interest in this work. The operating crews of the ORNL 86-inch Cyclotron performed a large number of highly successful irradiations for us. The Division of Stable Isotopes of the Oak Ridge National Laboratory is to be thanked for supplying some of the isotopically enriched rare earths and high-purity rare-earth salts. We are indebted to Dr. K. P. Jacob of Notre Dame for his assistance.

³² B. R. Mottelson and S. G. Nilsson, Z. Physik 141, 217 (1955).

 ¹³ K. S. Toth and J. O. Rasmussen, Bull. Am. Phys. Soc. Ser. II, 2, 386 (1957). Also Dzhelepow, Preobrazhenskii, Rogachev, and Tishkin, Bull. Acad. Sci. U.S.S.R. 22, 210 (1958).
 ³⁴ Jordan, Cork, and Burson, Phys. Rev. 92, 315 (1953). N. Marty, Compt. rend. 241, 385 (1955).

³⁵ Ward, Mihelich, and Harmatz (to be published).

