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The question of paramagnetic relaxation at low temperatures and the “phonan bottleneck’ is discussed
in terms of the analogy with Holstein’s theory of trapping of resonance radiation in gases. It is observed that
the diffusion of phonon energy to the wings of the line is the limiting process, and a new mechanism for this
in dilute cases is proposed. Since this mechanism involves the spin-spin interactions as well as phonons, it
provides a reason for the observed increase of relaxation rate with concentration.

T is clear that the difficulty of equilibration of the
phonons with the temperature bath may be an im-
portant and often dominant feature in paramagnetic
spin-lattice relaxation at low temperatures, especially
for those paramagnetic salts which have a fairly fast
intrinsic relaxation rate between spins and phonons.
Townes ef al.! have called attention to this fact and have
performed a number of experiments which suggest that
some salts do have their relaxation limited in this
manner. They have also presented a theory of the
process.
The purposes of this note are threefold:

(1) to point out that there is a close analogy even as
to orders of magnitude of constants between this process
and the trapping of resonance radiation in gases?;

(2) to observe that the theory of Holstein® for reso-
nance radiation trapping usesan approach quite different
from the Townes' way of calculating the spin-lattice
relaxation, and that on this question the Holstein
scheme is correct;

(3) to add to the Holstein scheme a new concept,
diffusion of energy through the spectrum by a specific
new process involving the combined effects of spin-
lattice relaxation and spin-spin interaction, which leads
to better qualitative agreement with experiment than
the Townes theory or the Holstein scheme transferred
bodily to the spin case.

First let us make the analogy quite clear. In the spin-
lattice problem the situation described in reference 1 is
the following:

A crystal contains a number #~10%2/cc of
paramagnetic ions, which have a paramagnetic reso-
nance line of center frequency wo and width Aw~108
sec™! typically. An individual ion absorbs and re-emits
phonons of frequency near wq at a rate 7! which may be
~10%/sec. These phonons are reabsorbed at a consid-
erably faster rate because the number of ions is larger
than the total number of phonons in the band of width

! Giordmaine, Alsop, Nash, and Townes, Phys. Rev. 109, 302
(1958). See also earlier suggestions of Gorter, Van der Marel, and
Bolger, Physica 21, 103 (1955); J. H. Van Vleck, Phys. Rev. 59,
724 (1959).

2 Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949) ;
85, 985 (1952).

3T. Holstein, Phys. Rev. 72, 1212 (1947); 83, 1159 (1951).
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dﬂph
Hph = —— (hAw) = drwPAwc ™3~ 1015-10"7, (1)
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(We assume kT so low that £7'/%w is not large enough
to affect orders of magnitude.) Thus the phonons are
absorbed in a time

Tph=T7(npn/1)~10~17~ 10" sec. (2)

and a distance ~1073 cm. If they are to leave the crystal
and equilibrate with the bath, it can only be by a kind
of diffusion through successive re-emissions and absorp-
tions, which may take a time 7'y of many (perhaps 102?)
7; this is the observed spin-lattice time.

The resonance radiation trapping situation is in
principle exactly the same except that certain numbers
are scaled and we must think in terms of photons, not
phonons, and of excited atoms, not reversed spins. The
gas contains a number #~10'¢ of atoms, a few of which
are excited in a resonance state of frequency wo~10®
and width Aw~10". These will radiate spontaneously
at a natural rate 7 of the order of 10~%/sec (several
orders slower than Aw, as in the spin-lattice case). How-
ever, these photons can travel only a short time and
distance before being reabsorbed, the time again being
determined by the number of photon states in the band
Aw

Npn = drwP Awc=3~10%, (3)

and thus the photon is reabsorbed in
Toh=T(%pn/1)~10712 sec, (4)

and goes only ~10=%2 cm. Again the process of de-
excitation can only go on through successive re-emis-
sions and reabsorptions. The nearly exact analogy is
obvious.

On point (2): Recently Townes ef al.! have proposed
a theory of the spin-lattice system discussed above in
which the phonons are assumed to have an energy width
given approximately by #/7,,>>%/7. If this is so, their
widths may often extend beyond the wings of the reso-
nance line, which leads to their actually being less ab-
sorbed on the average; the diffusion rate is then a com-
promise involving this effect and the dimensions of the
sample, etc. A major consequence is the transfer of
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excitation between lines, an observed effect which is
claimed as experimental proof.

The Holstein resonance trapping theory, on the other
hand, proceeds throughout with photons of perfectly
sharp frequencies. It is assumed (justifiably in the gas
problem, as Holstein proves in his Appendix) that on
each re-emission the photon appears with a distribution
of frequency given by the actual line shape (that which
would be observed in an infinitesimal sample). Then the
kinetics are controlled by the fact that the wings of the
line are far more transparent than the center, so that
excitation persists essentially until by chance the photon
is emitted on the wing, where its free path is larger than
the sample size, and can fly out through the transparent
gas. Correspondingly the phenomenon of self-reversal
typically accompanies trapping. Holstein’s theory has
had detailed experimental confirmation.?

Except for slowly varying factors, in fact, the Holstein
results can be simply computed in the following way.
Choose a v, such that k(v,)L~1 (where & is the ab-
sorption coefficient, L the sample size). The trapping
time 7’7 in units of emission time 7 will then be the ratio
of the whole line intensity to the intensity beyond .,
Le., of the probabilities of being emitted in the center
and on the wing. For Gaussian lines, T1~koL7 o« nLT®
where ko is the absorption coefficient in the center. For
Lorentzian lines, Ti~(koL)}r < n®T—*L} more nearly
the Townes result.

A simple uncertainty principle argument will show
why the phonons have a sharp frequency and not a
breadth %/7,n, aside from whatever external broadening
influences act on the spins independently of the phonons.
Consider a single reversed spin in the absence of other
interactions. It emits a phonon only after a time 7, and
thus its energy can be defined at least as well as %/7.
This phonon is immediately absorbed after 7,n. If
Townes is right, it had an energy breadth Arpy* and
so it may be reabsorbed at any energy in a band of this
width. The reabsorbing spin holds the energy, however,
for a time 7 and so has an energy again defined to
%/ 7"/ Tpn; energy conservation requires that this be
the same as the original spin’s energy, which limits the
phonon breadth also to the natural breadth #/r. The
interactions have the effect of limiting the spatial ex-
tension of the phonon without necessarily broadening
it. A phonon artifically constrained to exist throughout
a large volume, that is to have a sharp momentum dis-
tribution, would have a broad frequency spectrum, but
that is not the question here.*

Now we come to point (3). In the Holstein type of

4 C. Kittel, Proceedings of the Kamerlingh-Onnes Memorial
Conference on Low-Temperature Physics, Leyden, Jumne, 1958
[Suppl. Physica 24, 588 (1958)], has pointed out that actually the
re-emitted frequency does not even have the natural breadth 1/7,
just as in resonance fluorescence [W. Heitler, Quantum Theory of
Radiation (Oxford University Press, Oxford, 1944)7]. Thus the
excitation transfer effects cannot even be ascribed to the extreme
Lorentzian wings of the natural line. I am indebted to
C. H. Townes for telling me of this result.
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theory a vital part is played by the spectrum of the re-
emitted radiation: How rapidly can the energy diffuse
to the wings of the line, where it can radiate out of the
system directly? In the case of truly homogeneous lines
the answer would be immediate. In a time short com-
pared to 7 spin-spin or other interactions would homog-
enize the frequency of a reversed spin, the reradiated
spectrum would be the full line shape, and the whole
Holstein theory would be valid. This predicts a rather
weak temperature dependence, and a concentration de-
pendence from 7%n'. Concentrated salts, for which we
expect homogeneous lines, show neither; there is ob-
served a rather strong temperature dependence, and a
concentration dependence of the wrong sign. This may
indicate either that our ideas about spectral diffusion
are valid in concentrated salts too or that this case
requires still more examination.

Dilution of the paramagnetic salt (or increasing in-
homogeneous sources of line broadening) may lead to a
phenomenon new to the Holstein theory. The re-emitted
phonon is not homogenized, but must have a frequency
more or less near to the frequency which was absorbed.
This is because under inhomogeneous conditions the
spectral diffusion caused by spin-spin interactions alone
slows down severely or comes to a complete stop.’
Qualitatively we expect that now the phonons experi-
ence much greater difficulty in getting out to trans-
parent regions of the spectrum, so that there will be a
very pronounced slowing of the relaxation process,
which is exactly what is observed.®

To understand what is happening we have to find the
mechanism which does change the frequency of the
excitations. This cannot be spin-spin interactions alone
(except at an extremely slow rate)® and as we have seen
phonon interactions are not a good candidate either.*
Therefore, we look at the simplest combination of these
two, which is the following: Surrounding any spin there
is a group of neighbors having various interaction
energies I(r;;) with it. If this spin has just absorbed a
phonon, during the course of the time this spin is up
one or more of the neighbors will almost certainly them-
selves absorb or emit phonons. Thus the phonon will
effectively change frequency by various combinations
of I(r;;)’s. (One should note that all of these considera-
tions change when the frequencies become much larger
than kT, since then the general flip rate is much slower
than the absorption and emission time.) A simple way
of expressing it is the following: At each re-emission the
phonon has a frequency distribution which is very
nearly that of the emitting spin caused by its spin-spin
interactions alone. The breadth of this distribution is
roughly (for dipolar interactions) u?/7* in energy, so
that every 7 seconds the phonon may change by this
frequency. Then we may very qualitatively expect that

5 P, W. Anderson, Phys. Rev. 109, 1492 (1958).
6 See for instance Gorter, Van der Marel, and Bolger, Physica
21, 103 (1955) and references therein.
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since N=2AAwr’u? is the number of steps of this size to
the transparent regions at the sides of the line, the time
taken and thus the observed 7'y will go as N?« %2, not
inconsistent with the observations in some cases. Note
that there is approximate independence of sample size
in this region.

In the Appendix we discuss these processes in detail,
and also show how phonons may, with a reduced prob-
ability, even exchange energies considerably greater
than the individual spin-spin interactions, thus ex-
plaining transfer of excitation over fairly large gaps in
the spectrum.!

At great dilutions the extreme, Lorentzian wings of
the dipolar interaction line may take over, in which case
one can argue that the density dependence may be
slower, even as slow as #. We should emphasize that
here as in the Holstein theory the extreme wings of the
lines, and thus close pairs or triplets of spins, play an
important role; they alone may often be enough to
transfer excitation from one apparently distinct hyper-
fine line to another.

At great dilutions or large inhomogeneities various
new mechanisms will appear. Ideally, eventually the
diffusion time to the extreme wing will become longer
than the time to go directly without change of frequency
to the surface, which goes as (L/m.f.p.)2« % and there
will be a region Ti=#n? decreasing to the true spin-
lattice time 7. More likely in many cases is that some
paramagnetic impurity of short relaxation time (and
thus of large phonon capture cross section), will capture
the phonons before they diffuse out of the line and trans-
form their frequency very quickly to a transparent
region. The likelihood of this increases as 1/% so the
relaxation time may slowly curve over and enter a size-
independent T'; « % region.” Evenin such density regions,
however, there may be observed a relatively rapid
transfer of excitation by the spin-spin mechanism from
one region of the line to another with a time constant
« 72 or less, as is seen in the Ni fluosilicate experiments
of Mims and Bowers.®

One final comment, related to the explanation of still
another experiment : One may expect many rather com-
plex phenomena, like the “quenching” phenomena of
gas problems, related to the effects of impurities, espe-
cially when these have fast intrinsic relaxation times.
As an example, one might interpret the experiments of
Feher and Scovil® on the Gd-Ce ethyl sulfate system as
follows: Suppose that both the Gd and Ce lines are
hindered in their relaxations by phonon diffusion effects,
this hindrance being slight for the Gd but rather larger
for Ce. At the higher temperature, however, Ce relaxes
freely because of an extremely fast intrinsic relaxation
rate or a Raman process, so that the rate of the Gd is

7 G. Feher suggests that indirect, Raman phonon processes may
take over in the low concentration region, leading to a concentra-
tion-independent, highly temperature-dependent region.

8 W. B. Mims and K. D. Bowers (private communication).

9 G. Feher and H. E. D. Scovil, Phys. Rev. 105, 760 (1957), and
private communication.
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controlled simply (when the lines coincide) by the time
7¢a required to emit a phonon. The Ce absorbs phonons
so readily that its full effect is felt far out on the wing
where only a few Ce are available to absorb.

At the lower temperature, the Ce relaxation rate is
much slower, but still sufficiently faster than Gd that
the Gd relaxation rate increases practically to 7ea™.
The reason why the relaxation time decreases to less
than that of Ce may be that under normal circumstances
the Gd represents a purely inhomogeneous broadening
mechanism as far as Ce is concerned. When the lines
coincide, however, coupling between the two allows the
Gd spins to flip faster thus also increasing the rate of
spectral diffusion for Ce; alternatively, the Ce may be in
the Tioc#? region, and an effective broadening then
makes the medium more transparent.

The above is an attempt not at a general explanation
of all low-temperature spin-lattice relaxation phe-
nomena but of some fraction of them, those which are
limited by the “spin-resonance trapping of phonons.”
The concepts here presented, if not the whole story,
must play an important role in such phenomena. On
the other hand, undoubtedly there are cases, especially
those with long spin-lattice times, which do not involve
trapping ; perhaps also there are cases of direct spin-spin
interaction effects.
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APPENDIX. DETAILED DISCUSSION OF THE
SPECTRAL DIFFUSION PROCESS

One can think of the processes by which the spin
interactions change the phonons’ energies as inelastic
scatterings of pairs of phonons against each other
through the spin interactions. The requirement of the
phonon pair as well as of the spin interaction may most
easily be seen by considering a two-spin system for
which we choose a Hamiltonian with a specially simple
interaction

H=ws1.Fwss2.+ V1251252 (5)

The energy-level diagram is shown in Fig. 1. Suppose

1

F16. 1. Energy levels of a
simple two-spin system.
Arrows show scheme dis-
cussed in text.
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we start in the state 8(1)a(2). Then spin 1 can absorb a
phonon of energy wi+ Vs, and after a time 7 this may
be re-emitted by spin 2 at ws+Vis: Apparently our
phonon has changed by wi—w,. This is, however, falla-
cious because the system is in the state @182 now and
still can re-emit w;— V1, with unchanged probability;
i.e., it still contains the first phonon. Clearly the only
safe way to consider the system is in terms of a cyclic
process by which we start (say) in 818s, absorb wi— V1,
and ws+ Ve, then re-emit wi;4 7V and ws—Vie to
return, thereby effectively scattering these two phonons
against each other and interchanging the interaction
energy Vis. It is only because such a collision will
probably occur during a phonon’s stay on a spin that
the process appears to involve simply the spin inter-
actions and a single phonon.

An anomalous situation where only single phonons
are involved has been noted by Mims”: Inhomogeneous
broadening when single spins have two randomly placed
possible final states. This three-level system is much
more complex. However, experimentally it will act
quite differently from spin interactions. Suppose we
saturate it with a frequency w;. There will be a series of
ws’s at which the spins excited by w; can also emit. After
the initial pulse these ws’s have decreased susceptibility
also: They are partly saturated and represent a breadth
of the initially saturated packet. Emission of phonons
at either w; or w, leads at first to recovery of the line.
That is, this three-level width acts like a true homo-
geneous width of the initial spin packets, which does
not seem to explain Mims’ observations.

In the three-interacting-spin case comes our first en-
counter with a new phenomenon: True shifts in fre-
quency by much more than the spin interaction (at
correspondingly reduced rates). A typical system in
which this might occur involves three spins of equally
spaced frequencies wo— Aw, wo, wo+Aw, with the follow-
ing interactions:

H= (wo"' Aw)Slz+w052z+ (wo+Aw)53z

+ Vi (S1+82_ + Sl—~52+) + V9352:832. (6)

An example of the kind of process which might occur is
the following: If Vi, is small compared to Aw we can
approximately label the states according to the separate
spins, and we start with the state labeled “Bias8s.”” We
absorb phonons at wo+Aw and we—Aw by the usual
process, arriving at aiasas. Again by the usual process
we emit wg, arriving at “a;Bsas.”

Because of the interaction Vs, this state is not pure
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F16. 2. Energy levels of a three-spin system and a possible
transition scheme. Dotted line is forbidden in the absence of
interaction.

but is approximately
“arBaas” 2 (i — efraz)as, (7
€= V12/Aw. (8)

Unfortunately, this is nearly orthogonal to the 1-2 com-
bination occurring in “BiasBs”’, which will be

“BrasBs” = (Broat €' B2)Bs. 9)

But in the presence of the Vg3 interaction, ¢ differs
from e by an amount V,3/Aw because of the different
energy denominator. Thus there is a matrix element for
returning to “BiasBs” of order ViaVas/(Aw)?, and a
probability

P(w0+Aw,w0—Aw - wo,wo)SVm? V232Aw_4.

(10)

Figure 2 shows an energy-level diagram and the cycle
we describe. Since in many physical cases Vs or Va3 or
both may be quite large relative to Aw, this may be a
perfectly valid way of explaining transfer of excitation
over fairly large energy ranges. For instance, in the Cu
salt reported by Townes et al.,* his estimate of 7=~10—*
sec means that in the one second before observation,
excitation could be transferred to the order of several
times the nearest neighbor V1, or ~10 gauss, or easily
over the observed distances, especially considering that
it need go only by successive jumps from one line to its
neighbor.



