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A theory of the thermal conductivity of superconductors is presented, based on the theory of supercon-
ductivity due to Bardeen, Cooper, and Schrieffer. The excited states of the system are treated as quasi-
particles, allowing a Boltzmann equation to be set up. The electronic contribution to the thermal conductiv-
ity when the dominant scatterers are impurities has been calculated exactly. The result is very close to that
of the Heisenberg-Koppe theory which is in fair agreement with experiment. The variational principle of
Wilson has been used to 6nd the electronic conductivity when the dominant scatterers are lattice waves.
It is concluded that the theory fails to predict the sharp drop in the ratio s„/e,„as the temperature is
lowered below T„a feature which is characteristic of the experimental results. The effect of the electrons
on the lattice conductivity has also been calculated. The theoretical values may be too large.

I. INTRODUCTION

"'N recent years many experiments have been per-
~ - formed' ' to determine accurately the thermal con-
ductivity of superconductors and so to provide insight
into the mechanism of superconductivity. In many cases
interpretation of the experimental results is complicated
because both the electrons and the lattice contribute to
the thermal conductivity and because both contribu-
tions can be limited by several scattering mechanisms.
A full discussion of these points and further references
are given in the review articles of Olsen and Rosenberg, "
Klemens, "and Serin. "In some cases one can be certain
that there is only one contribution to the thermal
conductivity and that one scattering mechanism is
dominant. From these cases a number of results have
been established for which a theoretical explanation is
desired.

In the 6rst place, except for the most impure speci-
mens, the main contribution to the thermal conduc-
tivity (near the critical temperature, T,) comes from
the electrons. As the temperature is lowered, the elec-
tronic contribution decreases while the lattice contri-
bution increases, until at about 0.2T, to 0.3T. the
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lattice contribution is dominant. These features are in
qualitative agreement with the two-Quid model in which
it is assumed that only the normal electrons carry heat
or scatter phonons and that the number of these elec-
trons decreases from the number in the normal state at
T, to zero at the absolute zero of temperature. Accord-
ingly one expects the electronic conductivity to decrease
as the temperature is lowered while, as long as the
lattice waves are scattered mainly by electrons, the
lattice conductivity will increase. The exact tem-
perature dependence of the thermal conductivity
depends on the details of the theory and should be a
good test of the theory.

Another outstanding feature of the experimental
results is the different behavior of the electronic con-
ductivity according to whether the dominant scatterers
are impurities or phonons. The ratio of the thermal
conductivity in the superconducting state to that in
the normal state plotted against (T/T.) has a zero
slope at T, if the scattering is predominantly by the
impurities, but it has a large slope, of order 5, if the
scattering is predominantly by phonons. This important
difference has long been a puzzle and is not explained
by the present theory.

Previous theories of thermal conduction in super-
conductors have been based on the two-Quid model, the
most complete being that of Heisenberg and the later
modification by Koppe. "Although these theories were
based on a microscopic theory now known to be incor-
rect, the applications to specific heats and thermal
conduction do not depend on the details of the theories
and they may be regarded as particular types of phe-
nomenological two-Quid models. The version of Koppe
may be interpreted as giving an energy gap with an
exponential variation of speci6c heat at low tempera-
tures, not far from that observed. When applied to
thermal conduction limited by impurity scattering, the
theory gives a reasonably good ht to experimental data
but fails to account for the large drop in I(., near T,
observed for phonon scattering. As we shall see, our

"H. Koppe, Ergeb. exakt. Naturw. 23, 283 (1950).
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results for impurity scattering, although based on quite
diGerent concepts, are close to those of the Heisenberg-
Koppe theory.

According to the theory of superconductivity pre-
sented by Bardeen, Cooper, and Schrie8er, '4 a state
with energy lower than that of the normal state can be
formed by taking a linear combination of normal-state
configurations in which states of electrons of equal but
opposite momentum and spin (kf, —kg) are both either
occupied or unoccupied. This state is identified with the
superconducting ground state. Excited states are formed
when only one state of a pair is occupied in all con-
hgurations or when pair excitations are formed so as
to be orthogonal to the ground state. Valatin'5 and
Bogolyubov" have shown independently that the two
kinds of excitations can be handled in the same way
and that they behave like quasi-particles which obey
the Fermi-Dirac statistics. At the low temperatures at
which the phenomenon of superconductivity is found,
the system is not highly excited so that it is reasonable
to treat the excitations as independent. The mean free
path for scattering of one quasiparticle by another is
large. The fact that the excitations behave like a set of
independent quasi-particles simplifies the treatment
for one can set up a Boltzmann equation for the trans-
port problem and borrow many of the results of single-
particle theories. It is evident that these quasi-particles
correspond to the normal electrons of the two-Quid
theory. The energy gap accounts for the exponential
decay of the excitations with decreasing temperature.
Thus the microscopic theory certainly accounts for
those qualitative features which were adequately
described by the two-Quid model.

The theory of BCS is based on a simplified model.
Comparison with experiment is based on the law of
corresponding states for superconductors. This law
implies that the ratio of the thermal conductivity in
the superconducting state to that in the normal state
should be a universal function of (T/T, ) for the elec-
tronic contribution and the lattice contribution sepa-
rately when one scattering mechanism predominates.
Experimental results indicate that such universal
functions exist' only as a rough approximation and
that there are marked deviations for particular metals.
(For instance the ratio for tin is not even isotropic. ) It
is only in this sense that one can expect agreement
between the present idealized theory and experiment.

Section 2 is devoted to the properties of the quasi-
particle excitations of the system and succeeding
sections are devoted to the calculation of the electronic
conductivity when impurity scattering or lattice scat-
tering predominates and of the lattice conductivity when
electronic scattering predominates. In Sec. 6 we return to
a discussion of the results and a comparison of theory
with experiment.

Bardeen, Cooper, and SchrieGer, Phys. Rev. 108, 1175
(1957).

'5 J. G. Valatin, Nuovo cimento 7, 843 (1958).
"N.

¹ Bogolyubov, Nuovo cimento 7, 794 (1958).

2. GROUP VELOCITY OF EXCITATIONS

In order to calculate the heat carried by the excita-
tations of the superconducting system it is necessary
to know the group velocity of the excitations. The
ground state of the system is given by the wave function
%,~ which is that component of the wave function +„
which contains exactly E electrons, the number of
electrons present,

y.= {II[(I—tl.)'+ Il.'f .*3)C o, (2.1)

where C p is the vacuum state. The operators bk are
defined by

bk= Ck/C kg,

where the C's are destruction operators for electrons.
The definition of hk is

hk= o (&—ek/&k), (2.2)

where ek is the energy of the electron with wave-vector
k in the normal metal,

&k= + (ek'+ eo') *' (2.3)

and 26p is the energy gap for the formation of excita-
tions. In the future we shall ignore the subscripts X.
The notation is that of BCS. States in which two par-
ticles are excited in states (k, t) and (—l,g) are given
by the wave functions

yk, l= {g [(&—&k )*'+Ilk *'&k *])C-g*Ckt*yo. (2.4)
k'Qk, ]

The energy of this state measured from the energy of
the ground state is

Wk, l= &k+K

A wave-packet Xk., & can be formed from these states by
taking a sum of these excited states with k ko, i.e.,

Xk, l
——pk n(k)%k, l exp( —iWk, lt/5)

where n(k) is zero unless k—ko. The particle density in
this state is

P(r) = P (Xkol, Cp' Cp +kol)~'"
p) p

n (k)n*(k')
k, k' p, p', o.

Xexp{i(y—y') r+i(Wk, l —Wk, l)t/h)

X(yk', lyCp'r Cpa yk, 1).

In accordance with the established notation ~ denotes
the thermal conductivity, subscripts e and g denote
electronic and lattice contributions, respectively, and
subscripts e and s indicate whether we are referring to
the normal or superconducting state of the metal.
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p(r) =2 P hk+(1 —2ht)+(1 —2hkp) P n*(k')n(k)

XexP{i(k—k') Pr V—kpEkpi/A]}

The first two terms represent uniform distributions of
particles while the last represents a particle localized
near r=V0Ekpt/A. Therefore, the localized excitation
moves with group velocity V 0E&0/A.

The average particle density present is

2 g hk+ (1—2hkp)+ (1—2ht),

which is diferent from the particle density E in the
ground state. This is because, in choosing the excitations
0'1,, 1 as wave functions of the excited states, the fact
that the number of electrons is fixed has been ignored.
If we were to take this condition into account exactly,
we should have to add to the functions h& quantities
of order 1V '. Then, ipso facto, the average particle
density would be S while the group velocity would be
altered by an amount of order E ' which could be
ignored.

The amount of charge localized in the packet is only
(1—2h) e; the remainder is spread throughout the metal.
This can be interpreted as follows. A transfer of the
excitation from one region to another can take place by
an electron transfer in state (kt) with probability
(1—hk) or by a transfer of (—ki) in the opposite direc-
tion with probability h&. The net charge transfer is
(1—2h)e corresponding to transfer of the excess in the
excitation, (1—2h)e, from one region to the other.

Valatin" and Bogolyubov' have shown independ-
ently that all the single-particle and pair excited states
can be obtained from the ground state by operating on
it with new operators p&0*, p»* which obey the Fermi-
Dirac commutation relations. These new operators are
dehned by the equations

vko= (1—hk) ~Ckt —&k~C—kg*,

Vkl = (1—hk) '*C-W+hk*Ckt*

The state %1,, 1 is given by

+k, 1 PRO +11 +g.

(2.5)

(2 6)

The state in which the excited pair of momentum k is
present is given by p&0~&»*+,. Thus, in this formalism
there is no need to differentiate between the single-
particle and pair excitations; for this reason the for-

Using the table of matrix elements of BCS, we find

p(r) =2+0 ho+ (1—2ht)+P n(k)n*(k')
xexp{i(k —k') r+i(Ek. —Ek)t/t'p}

XL(1—hk) '(1—hk ) —hk**hk '*]

If the wave function X1„,1 is normalized to unity, then

ZkLn(k) 7'= »
and

malism is extremely useful. It is necessary to note that
the operator ykl* creates a particle in (—kg) so that
the group velocity of the excitation is (—VkE/A).

The analogy with the normal metal is most clearly
brought out if one uses the terminology of electrons and
holes for that case. In the limit that e0 —+0, h1, ap-
proaches 0 above the Fermi surface and 1 below the
Fermi surface. Therefore, y1,0* creates an electron in
(kg) above the Fermi surface and creates a hole in

(—kg) below the Fermi surface while ykl* creates an
electron in (—ki,) above the Fermi surface and a hole
in (kf) below the Fermi surface.

where

tt(k —k') =0-') e'&'-'& 'V (r)d'r (3 2)

In terms of the operators for the creation of the quasi-
particle excitations, we have

II.= p l(k —k'){((1—h)l(1 —Ip')l —h&h'l]

X (vk o*vko+vt i*mt t)+Up'*(1 —h')**+h"(1 h)~]

X (Vk'0 Vkl +7k'17kp)+2hkttk, k'}y (3 3)

where h denotes h1, and h' denotes h1, . We can now And
the relaxation time of the electrons by a Inethod similar
to that used for normal metals. If the probabilities that
the excited states kO, k1 are occupied are fkp, fkl, then
the probability that an excitation of type "0" is scat-
tered from k to k' is

(2tr/tp)
~
tt(k —k)

~

'P(1—h)-'*(1—h') l —hlh'-:]'

Xf'(1—f)~(E'—E).

Hence, taking into account the possibility that the
excitation can be scattered into k, we have

&fko 2Ã=—P i
tt(k —k') i'L(1 —h)'*(1—h')i

Bt „ii
—(hI')']'Lf'(1 —f)—f(1—f')]~(E'—E) (3 4)

(Since the collisions are elastic no pairs of excitations
can be created. ) If the departure from equilibrium is
given by

B Io
fko= fk' &S'(E)—

BE

where fkp is the equilibrium value of fkp, namely

3. ELASTIC SCATTERING

I,et us suppose that the electrons are scatteredelas-
tically by a potential V(r). In terms of the creation and
annihilation operators for electrons, the Hamiltonian
contains the scattering term

H, = P t (k—k')Ck, *Ck.,
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Les'"r+1j ',"and s is the direction of the disturbance, to the s axis have come from a region that was at the
then temperature (T+hT) where

af),p N(0)
t ds'dQ'is(k —k') isa~,„2a ~

1( es' —so ) af
X-i 1+ i k.C(E)

2& EE' )I aE

B-k.'C(E') 8(E-E),
BE'.

where N(0) is the density of states at the Fermi surface.
Hence

where kp is the wave-vector at the Fermi surface.
Therefore

af) p I f),o fs'—
—coll E 7 n

where r is the relaxation time in the normal state.
Therefore, there exists a relaxation time, 7„ in the
superconducting state given by

r,= iE/etr .

In the same way we find that the distribution of the
"1"excitations relaxes with the same relaxation time z,.
It follows from this result and the formula obtained in
Sec. 2 for the group velocity that the mean free path
of the excitations is the same in the normal state as in
the superconducting state.

Now let us consider the heat Qow by transfer of
excitations from one region to another in a supercon-
ductor in the presence of a temperature gradient
parallel to the z axis. Along some xy plane in the metal
the excitations are in equilibrium at a temperature T.
The number of excitations per unit volume at the plane
with energy between E and E+dE is

t;2f(E)2N(0) (de/dE) dE)z.

The speed of these excitation is s=
~
s/E~so, where sp

is the velocity of electrons at the Fermi surface in the
normal metal. Therefore the energy Row to the right
away from the plane is

pm/2 d0 coso E
sin8 E vp2 f(E)2N (0)—

2 E Z'

On the average the electrons which Qow to the plane
have come a distance 5. Those that Qow at an angle 0

af)p N(0) af' E
kpC(E)

Bt „ll 25 BE e E2

t'k, k, 'y
dn'f v(k —k') f'] ——

/

& k k' & k=~'=s,

BT
~T=l cos8

Bz

Hence the Row of energy from the right to the plane is

IVY,= dE sin8 d8 cos8 2N(0)soEf(E)

and the thermal conductivity is

Wa —Wz, 2N(0) vo

aT/as ~.p

EdE
Jp

-BT E const

2N(0) sot ~" af
dEE

3T 4 ep BE

y= ep/kT)

f s"ds
P-(—y) =

"o 1+e~"

The function F„(—y) has been tabulated by Rhodes. 'r

4. THERMAL SCATTERING

The interaction between the electrons and the
phonons gives rise to the term in the Hamiltonian""

&r= Q (&p(-k~p, .*(-"~,.f)ps+&o*&) .*(-")+p,.kp), (41)
k)$) 0'

where b~* is the operator which creates a phonon of
wave-vector p and energy hv„and V, is a c number
which is proportional to q:. Part of this interaction has
been used already in forming the superconducting
ground state. However, the parts of Bl that can lead
to real transitions remain. (See Frohlich's and Bardeen
and Pines" for a discussion of this point. ) We shall
suppose that we are dealing only with this remainder

"P.Rhodes, Proc. Roy. Soc. (London) A204, 596 (1950)."H. Frohiich, Proc. Roy. Soc. (London) A215, 191 (1952)."J.Bardeen and D. Pines, Phys. Rev. 991 1140 (1955).

The thermal conductivity of the normal metal is given
by the same expression but with 6p=o. Therefore

Kpg t af p afE' dE E' dE
~.„~.o aE ~ o aE

2Fr( —y)+2y ln(1+e ")+y'/(1+e&)
(3.6)

2Z, (0)
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of Hi. In terms of the operators yo, y~, we have

e,= P v,f,*&L(1—h)-:(1—h')-:—(ha')&]
k, k', q

1

X(v~ o*v~o+v~i*y~ i)+I h (1—h)*+h (1—h)*]

X (y~ o*yoi*+go iyj p))+comp. conj. (4.2)

We can now obtain a Boltzmann equation in the usual
way by equating the total rate of change of the dis-
tribution function to zero.

The rate of change of the distribution functions due
to collisions is calculated in the following way. The
probability that an excitation is scattered from (k,O)

to (k', 0) with the absorption of a phonon of momentum

Q 1S
27I' 1 jt pp —op )

Qo.(k,k', q) =—
I
Vol'X-I 1+

2 E EE'

X)5(E+E» o)iV —o+5(—E +E+»o)

X (E,+1)]

=P, (k,k') (1—fp) (1—fg').

q=k' —k

(1—fo) (1—f~')

Similarly, the total probability that the excitations
(k,0) and (k', 1) are destroyed is

The total probability that the excitations (k,O) and
(k', 1) are created is

Q, (k,k') =g, LQ„(k,k', q)+Q„(k,k', q)]

2or 1 ( pp' —&o )= —Iv, I'x-I 1—
5 2 ( EE'

2or 1 ( pp' —po )x~(E' —E—&vo)~(k' —k—q)f»(1 —f'o) Q~(k, k') = —
I v, I'x-I 1—

II 5(E'+E—hv, )
5 2E EE' )

=Ep.(k,k', q) fop(1 —fg p),

where Ãq is the number of phonons of momentum p
present. Similarly the probability that an excitation is
scattered from (k,O) to (k', 0) with the emission of a
phonon of momentum q is

27r 1( pp —
pp )

Q .(k,k', q) =—
I v, I'x-I 1+ I(iv, +1)

a
' 2i EE )

X&(E'—E+hvo)&(k'+q —k) f~o(1—f~ o)

=&o,(k,k', q) fso(1—fz'o)

X (1V,+1)+8(E'+E+»,)1V,]
=P„(k,k') fofx'.

q=k' —k
ko k'1

=2 L
—Qo(k»')+Qo(k' k)+Q. (k,k')

- coll
Qg(k, k')], (4.3)

Summing over all possible processes, we obtain for
the rates of change of the distribution functions fp, f~,
due to collisions

Therefore the total probability that the excitation is gf
scattered from (k,O) to (k', 0) is Qj, (k k )+Qp(k', k)+Q, (k', k)

Bt —Qg(k', k)]. (4.4)

In the usual way, we write for the distribution functions

Qp(»k') = —
I V.I'x-I 1+ I

E~(E' E »P. — —
Ie '

2& EE' )

+~(E'—E+»-o) (&-o+1)] foo(1 —f~ o)l. ., .
=&o(k,k')

fop�(1

fp o)—
f»= fao —X~o

~&a
(4 5)

The probabilities for the scattering of an excitation of
type "1"are given by similar formulas. There is also
the possibility that two excitations are created or
destroyed, the analog of the creation or destruction of
electron-hole pairs in a normal metal. For instance, the
probability that the excitation (k,0) and (k', 1) are
created with the absorption of a phonon of momentum

q is
2n. 1 f pp —po')

Q,.(k,k', q) =—
I V, IoX-I 1— Ia(k —k' —q)

fi 2( EE' )

~ 1.
'

f~i= fpo X~r-
BEg,

(4.6)

where fpo is the equilibrium value of the distribution
functions and the second terms describe the small

departures from equilibrium. We shall assume that we

can neglect the departure from equilibrium of the
phonons. One can verify easily that

Pp(k', k) fj (1—fI,')=Pp(k, k') fj,'(1—fg'), (4.7)

X$(E +E» )g (1 f~o)(1 f ) P, (k,k') (1—fP) (1—f&') = PP(k, k')fo f&', (4.8)

=E,.(k,k', q) (1—fp) (1—fg'). when 37~ is the equilibrium number of phonons of
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momentum q. It follows that

H fao

- coll

1 t'
Pp(k, k )fp (1—fs )

kT~
X (X~p —Xa o)d'&'

Xj i———Xso= —Xp(say), (4.10)

Hfio
W(k)k') (X„—Xk.)d'k'= —AX, , (4.11)

Bt

where

W(k, k') = (kT)—'{Pp(k,k') f„'(1—f„')
+P.(»k') (1—f') (1—fp') }, (4 12)

and A is the integral operator defined by the identity.
As there will be no chance of confusion, we shall in the
future drop the superscript zero from f&P. It is easy to
see that

W(k', k) =W(k, k').

The rate of change of fqo due to the temperature
gradient is given by

- ~T E const d&

1
P, (k,k') (1—fs') (1—fi.')

kT~
X (Xso+Xp i)d'&' (4 9)

Now the function fbi gives the distribution of particles
of momentum —k. Therefore, in the presence of a
temperature gradient, (f~,—fop) and (fop —f ) are
equal in magnitude and opposite in sign, i.e.,

Ziman, " this principal has a simple physical inter-
pretation. The thermal current is

Sk. dfgo
W= IEs, (fso—fbi)d k= —2 Xi es dsk.

m dE

Therefore if Xk is the solution of (4.13), one can write

Ak, df'
=T XaAXgd'k 2 Xg es d'k . (4.14)

mrs dE

Thus we have to determine the function Xl, which
makes the thermal resistivity (written in the above
form) a minimum. By using this variational principle
we shall obtain at least a lower bound to the thermal
conductivity.

Our next task is to guess a functional form for xl,
which should give a fair approximation to the thermal
conductivity ~. A guide to the choice of x is the fact
that as T —+ T„X should tend to the corresponding
function of the normal metal, A good approximation
for X in the normal metal is be cos8,"where 8 is the
angle between k and the s axis, and b is a constant.
This X is antisymmetric about the Fermi surface and
has the property that in any direction in k space, the
increase in the number of electrons above the Fermi
surface is equal to the increase in the number of holes
at the same distance below the Fermi surface. This
property is physically reasonable and we would expect
it to hold true for X~ in the superconductor. This
suggests that we try the following possibilities for X&.'

flak, e Edf dT
=AXl, .

m ETdEds
(4.13)

where the s axis is taken along the direction V'T.
Using the result of Sec. 2 for the group velocity, one
obtains the Boltzmann equation

(a) xg= les cosH) (b) xg= les cosH~
~k

~k
(c) Xg ——bos —cosH.

~I

(4.15)

One obtains the same equation for Xl, from a consider-
ation of the rate of change of fear. This confirms Eq.
(4.10).

Equation (4.13) cannot be solved exactly, so we shall

employ a variational principle to put a bound on ~,.
We have seen that W(k', k) is positive definite and
symmetric in k and k'. Therefore, of all the functions
Xg for which J'XqAXqd'k exists, that which makes the
functional

AIe, dfk'
XkAXkd'k Xl, ~g d'kl.

a minimum satisfMS Eq. (4.13)." As pointed out by
'0 A. H. Wi1son, The Theory of Metals (Cambridge University

Press, London, 1954), p. 301, second edition.

All of these tend to bc', cos9 as T —+ T,. We shall first
restrict our calculations to the form (a). Ic is independent
of b, so we shall take b to be unity.

The numerator of (4.14) is given by (4.11) and
(4.12). That part which arises from Pp(k, k') we denote

by po. It is given by

2sr r t. 1 ( « —eo')
d u')V, ~'X-( 1+

ours~ ~ 2& EE' &

Xf(E)[1—f(E') jLH(E' —E—hr, )iV,

+5(E E+kvp) (Ep+1)je c—osH(e cosH —e cosH }.
"J.M. Zimant Can. J. Phys. 54, 1256 (1956).
n H. Jones, Handbuch der Physs7e (Springer-Verlag, Berlin, 1956),

p. 281, Chap. VI, Vol. 19.
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YVe set

d k =sing d1Pdp k dk

one obtains

( op ) Ep
x "I 1- I- f(z)l:1-f(z)jEz') ZZ'.cos8'= cosf cos8+sinP sin8 cosy',

cosP= (k"+k'—q')/2kk'. XL5(E'—E—hv)N, +5(E'—E+hv) (N,+1)j.

where p is the angle between k and k and p is the kTp z J J
~ 'Qo= (hv) d(hv) do do

p p p
azimuthal angle from the plane given by k and the
z direction. Then

When we integrate over p', the part containing cosy '
vanishes. The integral over P can be changed into an
integral over q=

I

k' —kl. This leads to

1 p r" ~~'+~ 2mq
k'2dk' dql v, l'

kT' ~p & tg, g, )
kk'

1 ( «' —oo'l
X-I 1+ If(z) I:1—f(z') 32( Ez' )
XP(E E hv )N +"o(E E+hr p)(No+1) j

C r"
(hv)'d (hv)

kT2 ~p dp

f
de ' de

op $ po™
X o'I 1+, I+, (1—f)(1—f')

Ez') Ez'

XL8(E'+E—hv)N, +8(E'+E+hv) (N,+1)j.
The total result for the numerator can be written

Similarly, the part of the numerator of ~ ' which comes
from P.(k,k') is

t k"+k' —q'y 00 00

Xo cos 8 & &
I I g= (hv)od(hv)2kk' J„

Now the important values of q are such that hv, kT.
Therefore, when the temperature is near T„

q/ko-10 ',

ep ) ee
X o'I 1—

I
— f(1—f')

Ez') Ez'

X fb(E' E hv) N, +—8 (E—' E+hv) (N,—+1)j,
where the sign of E is conventionally taken to be the
same as that of e. Hence

hv ko
10 '.

q h'kpq/m Ev q

op' q (oo')'

, f(z)(1—f(z'))Ez)pk"+k' —q'q
o—o'I

I
= (.—.)-.Lo(.,/z, )+o(q/k, )j,

2kk' ) x8(z' —z—*),

O'
I
" x'dx

Hence one can take the lower limit of the integral over
kT ~ .~e.—1~

q to be zero and the upper limit to be infinity (8ii)) T,).
Moreover,

so that except at the very lowest temperatures which
are not of interest here, the second term can be neglected
in comparison with the first. Using the fact that

I V, I'
is proportional to hv, and replacing the variables of
integration k, k', q by e, e', hv, respectively, one obtains

C p" t' p 1 t' oo' —opo)

gp —— (hv)'d(hv) ~ dodo'-I 1+ zz' )

where the energies are expressed in units of kT. The
symbol x is used for hv/kT but the other symbols have
been retained despite their altered meanings. If we
perform the integration over x, we obtain

C'
t
" t'" (E'—E)'

7l= de
kT ~.

( oo' ) o'o"
o

I
1—

I
— f(1 f')—Ez') ZZ'

Xf(E)l 1—f(E')fl 8(z' —E—hv)N,

+5(E' E+hv) (N,+1)jo(o——o'),

where C is a constant. Using the fact that some terms
of the integrand are even in e, e' and some odd in e,e',

C' t."
t
" (E' E)'—

2kT' ~ ~ „ I

EE' E 1I—
op ) op

1—
I

— f(1—f'), (4.16)
Zz') ZZ'
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t' ep i (ee )
Eo ( EE'i (EE')P

or by

( pop

E'I 1—
I
—ee',

EE')

respectively.
The heat Row in the three cases is given by

(a) W=Q" eof(E)[1 f(E)]—de)

where E' has the same sign as e'. ln the limit T —+ T„
~p~ 0 and g tends to the value it has in the normal
state with the same constant O'. Had we used the
functions (b) or (c) for x, we should have found the
same expression for g except that the term in square
brackets would be replaced by

= P [Qp (k,k, q) —
Qp (k,k, q)+Qy (k,k q)

-Q~, (k,k', q)+Q„(k,k', q) —Q~, (k,k', q)

+Q„(k,k', q) —Q,.(k,k', q)]

2 1 ( ee —eo''r=—lit. l' 2 &(k'-k-q) -I 1+
2E EE' i

X[&(E'—E—h )((N +1)f'(1—f)
N,f(1—f') )+—b(E E' h—v)—

X((N,+1)f(1-f')-N,f'(1-f))]
E6 —6p )

—
I [p(E+E'+hv)

EE' i
1(+-I 1—
2(

X((N,+1)(1—f)(1-f')-N, ff)
+b(E+E' hv)((N, —+1)ff'

—Np(1 —f)(1—f'))] .

(c) ~=C" eEf(E)[1—f(E)]d'

C" is independent of e and 6p, but it does depend on
temperature. Further discussion of this thermal con-
ductivity is left to Sec. 6.

S. THERMAL CONDUCTIVITY OF THE LATTICE

Ke consider here only the thermal conductivity of
the lattice when it is limited by electron scattering, this
being the only new feature. The Boltzmann equation
for this problem is"

q, BÃq BT BEq
Np-

g BT Bs 8$ J

where Eq is the number of phonons of wave vector q
and Np is the velocity of sound in the metal. We have
obtained already in Sec. 4 the probabilities for absorp-
tion and admission of phonons by the electrons. To
And (BNo/Bt)]„u, all we have to do is to sum over the
possible excited states. Thus the probability per second
that a phonon of momentum q is absorbed is

P [Qo,(k,k', q)+Q&. (k,k', q)+Q„(k,k', q)+Qd, (k,k', q)]

Therefore if 8gq is the departure of Xq from its equi-
librium value, Ã,P, we have

2m 1( ee' —eo )-I 1+ l(f'-f)
2~ EE' i

(&' =&+q)

X[5(E'—E—h )—5(E—E'—h )]
1t' ee —eo)+-I 1+- l(1-f-f')
2E EE' i

X[p(E+E'+hv) h(E+E' hv)]— —

We change the sum to an integral over e and the polar
angles, 8 and p. The integration over p can be per-
formed and the integration over 8 changed to one over
t.'. Then

BXq

X[5(E+hv —E')—5(E'+hv —E)]

( ee —cop
+I 1— I(1—f—f')

EE' i
XP (E+E'+hv) 5(E+E' hv)]— —

where C is a constant, independent of g. The limits of

ee —ep )
=5N, C de de'

I
1+ l(f' f)—

Bt „)) & „~ ( EE' i
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the integral over e' are

k kpg A kpg kg
s+- + and e— +

m 2m

One obtains

AQp BT
b(u) = )I'dE

4CIT as

Since the important values of q are such that AQpg kT Th the t erma current density is
while e,e' ~p(0j, we have that

(gzshq/yg))) e er (i'rsqs/2')

Therefore the limits of the integral over e' can be
taken as & ~. The integrals can then be replaced by
integrals from 0 to ~ and the variables then changed
from e,e' to E,E', respectively. The result is

Wp= Q, hg, ups8X,

b(u) KV,P

= —Pg, up

Therefore the thermal conductivity is

=&X,X4C~ dE~ dE'
~I - con 40 &0

eo' l
I
(f' f)C~(E—+hv E')—

EE'i
so' 'i—&(E'+hv —E)j+ I

1+ I (1—f—f')
EE')

X$6(E+E'+hv) h(E+E' —hv)j—
=&1V,X4C ~dEdE

J

EE'
f

ps' ( EE')

In the last step, the integrals are to be taken over all
those positive and negative values of E and E' for
which

I
E

I
)ep, I

E'I )ep. Therefore .

00 Q dQ
=D(T/0)' )

(e 1)(1 e ")g(u)
(5.2)

1—e"
t

EE' ( cosy
g(u) = dE

I
1— If(&)f(—E')

u Ij se 0 EE )

and the energies are measured in units of kT. It is shown
in Appendix 8 that a good approximation for g(u)
in the low-temperature region, sp) 2, is

( 2 so

g(u) =(1-e ")I—
iu+2sp)

where D is a constant independent of temperature and

- 00ii

F00

=&&sx4C, dE+".0 ~„-h,
r

(3u+4op) u
X Er(u/2)+ LIt r (u/2) —Ep(u/2) j

8ep(u+2ep)
(5.3)

—hv —ep

dE I1— '
EE'i

X4C 2

for Q&26p and infinitely large for Q&2ep. Ep and E~
are Bessel functions of imaginary argument in the
notation of Watson. "

The lattice thermal conductivity in the normal state
is obtained from Eq. (5.2) by letting sp tend to zero.
ln this limit g(u) is unity and

X, (f'—f)
66 E'=E+hv

p—ep

dE+, dE 00 Q dQ
D(T/0)s

(e"—1)(1—e ")
( sps q EE'

(f' f)—
EE') ps' =7.2D(T/O~) s.

The second integral is to be taken into account only if
hv+ 26p.

Following the procedure for normal metals we look
for a solution of the Boltzmann equation of the form

b(u) 81V,o

8X,=—q, , u =hv/hT.
kT BQ

0. RESULTS AND DISCUSSIONS

We shall discuss in turn the diGerent contributions to
the thermal conductivity and the eBects of diGerent
scat terers.

2'G. N. Watson, Treatise on the Theory of Bessel Functions
(Cambridge University Press, London, 1952),p. 78, second edition.
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(a) Electronic Contribution in
Impure Specimens

A plot of the thoretical (»„/», „) from Eq. (3.6),
verses (T/T, ), together with a plot of (»„/«, „) obtained
from the Heisenberg-Koppe theory'3 is shown in Fig. 1.
It can be seen that the two curves lie close together. As
it is already known' that for the most impure specimens
there is fair agreement between the Heisenberg-Koppe
theory and experiment, at least insofar as the experi-
mental curves can be described by a universal function,
we deduce that there is the same fair agreement between
the present theory and experiment. The two theories
diverge very close to T,.According to the present theory
the slope of the curve near T, is ~3 (1—T/T, )'* whereas
according to the Heisenberg-Koppe theory it is
4(1—T/T, ).More accurate measurements near T, may
show up the difference.

1.0-

10 0.2 0.4 0.6 09
T/Tc

eory

-Koppe

I

1.0

(b) Electronic Contribution in Pure Specimens

For the purest specimens of tin, lead, and mercury
the experimentally determined»„/«, „drops very sharply
as the temperature is lowered below T,. An indication
of the size of this decrease is

d(«.,/». )/d (T/T. )~5,

at T,. The very different shape of the plot of (»„/»,„)
vs (T/T, ) for these specimens from that for the impure
specimens indicates that the dominant scattering
mechanism is not impurity scattering. It is generally
believed to be lattice scattering. In Appendix A we
calculate the ratio («„j»,„) near T, for the three cases
of Sec. 4. The results are

(1) K8»/»8»= 1 0.1to
&

(2) «„/»,„=1—0.3ep',

(3)».,/», = 1+0.05ep'.

Since

T Ao /dT 10 at T„——

the gradient of the curve («.,/«, „) vs (T/T, ) is for the
three cases, (1) 1.0, (2) 3.0, and (3) —0.5. According
to the variational principle the true»„/», „ is greater
than the greatest of our three values (assuming the
approximation for», to be accurate), so that the slope
at T, is. less than (—0.5). There is therefore disagree-
ment between theory and experiment. To see whether
there is disagreement at T, only, we have calculated
(«„/«,„) for T=0.72T, (i.e., co= 2) and have found for
case (1) that «„/», „is 0.75 and for case (3) that »„/«, „is
0.78. The experimental value is approximately 0.3,
showing that there is still disagreement at the lower
temperature. The fact that the experimental value of
(»../». ) is smaller than the theoretical one suggests
that an extra mechanism for scattering may be acting
more strongly in the superconducting than in the

Fxo. 1. The ratio of the electronic thermal conductivity in the
superconductor, E„ to that in the normal metal, X„, when im-
purity scattering is predominant.

normal state. One reason for this may be that in the
superconductor the excitations near the Fermi surface
have a smaller velocity than the corresponding electrons
in the normal metal. Consequently, they are more
likely to be scattered by larger obstacles. In this case
one would have a mechanism that would be sensitive
to the structure of the specimen. This possibility cannot
yet be ruled out by experiment.

(c) Lattice Contribution Limited by
Electronic Scattering

Unfortunately there are no experimental values of
the thermal conductivity which can be unequivocally
interpreted as lattice conductivity limited by electron
scattering. At the lowest temperatures (less than 1'K)
where it is certain that the electronic contribution is
negligible, it appears that the lattice waves are scat-
tered mainly by the boundaries of the crystal. At higher
temperatures where it is certain that the lattice waves
are scattered mainly by the electrons, the main con-
tribution to the thermal conductivity comes from the
electrons. In impure specimens and alloys the con-
tribution of the lattice is not negligible at the higher
temperatures, so some attempt has been made by
Hulm, ' Laredo, ' and Sladek to subtract out a, in order
to obtain a,. Since ~, is then obtained as the small dif-
ference of two large quantities this procedure is not
reliable, particularly since the ~,„obtained by Hulm
does not have the T' dependence predicted by theory
and the results of the experimenters dier widely. In
view of this, the comparison we now make must be
regarded as tentative. In Fig. 2 we have plotted the
curves of Hulm and Laredo for»„j»,„ together with
that obtained from Sec. 5. Laredo has suggested that
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lO
2
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——After Holm

——After Loredo

Hence near T„where ep —+ 0, we have

C))t=, ) dede F(e)e )0)
4uT»

Kgg

gh

BP BP
+2(E—e) (e,e',0)+ep'

i9E 86p

lO
t' ~

,
dede' F(e,e',0)—2f —1

f4kT'~ " &E )

&&LF(eie')0) F(0)e')0)3+eP
86p

I
0.2 oA o.s

t=PTc
0.8

where an integration by parts has been performed to
obtain the second equation. Therefore

FIG. 2. The ratio of the lattice thermal conductivity in the
superconductor, Eg„ to that in the normal metal, X, , when
electronic scattering is predominant.

F
i

' dede F(e)e )0)
4PZ2 j J

in the region of temperature, 0.4 T, to 0.6 T„his ratio
)4,./e, „may be proportional to T '. It can be seen that
the theoretical curve does follow a T ' law closely in
this temperature range but that the theoretical values
of the ratio are about three times the experimental ones.

Sladek~ has made measurements on single-crystal and
polycrystalline samples of indium-thallium alloys and
has found results which cannot be 6tted by a universal
function )4„/a, (T/T, ). All the same, his results are
greater than those of Hulm and Laredo and, particu-
larly on the polycrystalline samples, are in fair agree-
ment with the theory. In the temperature range from
0.4 T, to 0.6 T, Sladek finds that )4„/)4, „varies with
temperature according to (T/T, ) ", where 3&v&6.

To draw a definite conclusion about the agreement
of theory with experiment, we shall have to wait upon
more clear-cut experimental results.

APPENDIX A

In this Appendix we calculate )4„/)4,„near T„ from
the formulas of Sec. 4.

Case (a)

'She integral g can be written

6p BP
+ [F(e)e'—

)0) F(0)e')0—)j+ep'
Q2 86p

where one has to take the principal part of the integral
that has a singularity at &=0. The 6rst term of g is
just the value one has for the normal metal. Now

pQO x'
= f(e) dx

Ic *—1I(1+c* ')

=f(e)f(—e) I

dxx' + +
e' —1 (1+e* )) (1+e*+))

x' 2e
= f(e)f(—e) II dx-

~p 5 (c —1)'

(1+e~')' (1+e'+')'

r" x'+10x'e'+Sxe4
= pf(e)f( e) 284+2 dx

~ p (1+e*)(1+c *)

g= I

~
de de F(E)E )ep)) (A1)

(f el
—x)edx

2
(1+ *)(1+ *)

= —',f(e)f(—e) 24Ip+2cp+20e'cp+10e4ci

(E+E')'
F(E,E', o)=, f

1— If(E)f(E').
fc

—~—~' —1l E EE')
(fel —x)'d*

f2
(1+e')(1+e )
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where The thermal current is

n
(e'—1)(1—e )

md' ( 1

(e'+1)(1+e *) 4 2" ')
Therefore

dede'I F(e)«', 0) F(0,e—',0)je

W~ e'de f(E) f( E)—

«'d» f(e) f( e)—

8
»'d»(E ») —Lf(»—) f(—»)j

86

d«= —',(go+co) —Lf(»)f(—e) ——,'j
~ „e2

+8CoC3+4cocg+ 2E

=2c2——2'»p2) de f(e) f(—e)

=2c2—
gap ~

8 00

(u.+ )E +8cpco+4cyc2+2E)
Sm' o(222+=1)2

&es 82(1—»o'/2C2)

8 —o'((14/1~ ')(8+ )( /6)+2 —&+Z

6&6 )fp
86p eo=p

f d««' (»+«')'
f(»)f(')

»» ie'' —1i

f" d» f(») f( »)—
= —2 dS x

—00 p

t
"d» f(e) f( e) 1

"dx—x4
=—2J» lp 4

1+e):—). 1+ex+)

where

d» f'
R= »2) f(»)f(—»))' (e——x)'f(x) f(—x)dx.

p p

Similarly

The integrals E and S have been evaluated numerically
and lead to

)I:„/a,„=1—0.13ep'.

Case (b)

g can still be written in the form (A1) but in this case

F(E E' »p)

(E+E')'f(E) f(E'), ((EoyE'2)
i

1+
EE'j

(» 4 (E+E') .p4-
X( 1+ —

i
—4eo'+2 1—ep' +

E2E)2)

X (E2» 2)$(E 2» 2)$

The only term of 1V different from that in case (a) is
the One inVO1Ving BF/Bepo NOW.

f d»

-0O

X
(1+ex—).)2 (1+eg+))2

BP
de d» (e)e,»p)

BCp

f f (e+e')' ff'ded«'
=—2 e--

I

= —16(coco+cocr) —4S.

4 +4 3 + f ( )4 f( ) f( )d t The thermal current is

00

= —8 (Coco+ cocr) —2S,
W~2 d« f(E) f( E)— —

Qp jV

where

d»-f()f(—) ' ( —)'f()f( *)d*. -
=2C2—6p .

, , e f(«) f( »)—
=2, i de e' f(e) f( «)+ ii de»—'ep'—

p p f36
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Therefore

z„/~.~= 1—0.29 pp'.

Case (c)

Again q can be written in the form (A1) but in this
case

(E+E')' (E) f(E')
F(E,P,pp) = (E'+E")

~
1+

e ~ s"—1 ( EE')

+2 (E'—pp') &(E"—pp') &

The only term different from case (a) is that involving
8F/8«P, which in this case is zero.

The thermal current is

W~ 2 dp «Ef(E) f( E)= 2cp+O(pp ).
Jp

Therefore

~„/~,„=1+0.05 pp'.

APPENDIX 3

We have to evaluate

If we put y= (E—
pp) this integral becomes approxi-

mately

t' y )'( 2«)'
1+

(y+ul 4u+2pp) - 4pp 2(u+2pp)

Similarly

l."EN, 2ep

f(E) f( E—') dE=-e "
2 (u+2 pp)

dye ~ 3y y
X 1+

"p y&(y+u) & 4pp 2 (u+2pp)
Hence

( 2pp ) & t" dye " u (3u+4«) uy
Jg ——e-'o/ y+ —+

4u+2pp) J p y&(y+u)& 2 Spp(u+2pp)

2pp p &u (3u+4pp)u
60

)
—e"~' Kg(u/2)+

(u+2.p& 8pp(u+2 pp)

X [Kg(u/2) —Kp(u/2) j,
where Ep and Ej are Bessel functions of imaginary
argument.

J2 is nonzero only if N)2ep. The exponentials are
less than e 'p throughout the interval, so that at low
temperatures the integral is

where

g(u) = (2Jz+ Jp), EE' ( «'pJ=
i 1— idE.

+—u+ep Ep i EE )

U fp

p +Eu
I f(E) f( E'), —

pp

This integral can be evaluated exactly in terms of
complete elliptic integrals and one finds

Jp=2[(pu+«)E(k) —u«(qu+«) K(k)],
Cp

J2= dE
~—%+Op

whereEE'
, If(&) f( E'), -

pp' ( EE' ) k= (u —2pp)/(u+2«).

E'=E+u

At low temperatures

f" e (E'—«' l ~

dE f(E) f(—E')= i—J„ (E"—p(P)

For small k, one has

Jp=~(-'u'+ pp')/(pu+ «)

When u) 26p and 6p) 2, one has J2))2J~. If one takes
J2 to be infinitely large when m)2ep, one obtains a
result which is accurate to within 10%%ua when pp=2,
and more accurate than this for larger values of ep.


